Properties

Label 1710.2.a.p
Level $1710$
Weight $2$
Character orbit 1710.a
Self dual yes
Analytic conductor $13.654$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(13.6544187456\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + q^{5} - 4 q^{7} + q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + q^{4} + q^{5} - 4 q^{7} + q^{8} + q^{10} - 6 q^{11} - 4 q^{14} + q^{16} + 4 q^{17} - q^{19} + q^{20} - 6 q^{22} - 4 q^{23} + q^{25} - 4 q^{28} - 10 q^{29} - 2 q^{31} + q^{32} + 4 q^{34} - 4 q^{35} - 4 q^{37} - q^{38} + q^{40} + 10 q^{41} - 12 q^{43} - 6 q^{44} - 4 q^{46} + 9 q^{49} + q^{50} - 6 q^{53} - 6 q^{55} - 4 q^{56} - 10 q^{58} + 4 q^{59} - 10 q^{61} - 2 q^{62} + q^{64} - 8 q^{67} + 4 q^{68} - 4 q^{70} + 6 q^{73} - 4 q^{74} - q^{76} + 24 q^{77} - 10 q^{79} + q^{80} + 10 q^{82} + 14 q^{83} + 4 q^{85} - 12 q^{86} - 6 q^{88} + 10 q^{89} - 4 q^{92} - q^{95} - 6 q^{97} + 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 1.00000 1.00000 0 −4.00000 1.00000 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(-1\)
\(19\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1710.2.a.p yes 1
3.b odd 2 1 1710.2.a.a 1
5.b even 2 1 8550.2.a.q 1
15.d odd 2 1 8550.2.a.bl 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1710.2.a.a 1 3.b odd 2 1
1710.2.a.p yes 1 1.a even 1 1 trivial
8550.2.a.q 1 5.b even 2 1
8550.2.a.bl 1 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1710))\):

\( T_{7} + 4 \) Copy content Toggle raw display
\( T_{11} + 6 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{53} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T + 4 \) Copy content Toggle raw display
$11$ \( T + 6 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T - 4 \) Copy content Toggle raw display
$19$ \( T + 1 \) Copy content Toggle raw display
$23$ \( T + 4 \) Copy content Toggle raw display
$29$ \( T + 10 \) Copy content Toggle raw display
$31$ \( T + 2 \) Copy content Toggle raw display
$37$ \( T + 4 \) Copy content Toggle raw display
$41$ \( T - 10 \) Copy content Toggle raw display
$43$ \( T + 12 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T - 4 \) Copy content Toggle raw display
$61$ \( T + 10 \) Copy content Toggle raw display
$67$ \( T + 8 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T - 6 \) Copy content Toggle raw display
$79$ \( T + 10 \) Copy content Toggle raw display
$83$ \( T - 14 \) Copy content Toggle raw display
$89$ \( T - 10 \) Copy content Toggle raw display
$97$ \( T + 6 \) Copy content Toggle raw display
show more
show less