Properties

Label 1710.2.a.m.1.1
Level $1710$
Weight $2$
Character 1710.1
Self dual yes
Analytic conductor $13.654$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(13.6544187456\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1710.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{5} -2.00000 q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{5} -2.00000 q^{7} +1.00000 q^{8} -1.00000 q^{10} +2.00000 q^{11} -4.00000 q^{13} -2.00000 q^{14} +1.00000 q^{16} -6.00000 q^{17} +1.00000 q^{19} -1.00000 q^{20} +2.00000 q^{22} -8.00000 q^{23} +1.00000 q^{25} -4.00000 q^{26} -2.00000 q^{28} +6.00000 q^{29} -8.00000 q^{31} +1.00000 q^{32} -6.00000 q^{34} +2.00000 q^{35} -8.00000 q^{37} +1.00000 q^{38} -1.00000 q^{40} +12.0000 q^{41} +2.00000 q^{44} -8.00000 q^{46} -3.00000 q^{49} +1.00000 q^{50} -4.00000 q^{52} -10.0000 q^{53} -2.00000 q^{55} -2.00000 q^{56} +6.00000 q^{58} +6.00000 q^{59} -6.00000 q^{61} -8.00000 q^{62} +1.00000 q^{64} +4.00000 q^{65} +12.0000 q^{67} -6.00000 q^{68} +2.00000 q^{70} -12.0000 q^{71} -10.0000 q^{73} -8.00000 q^{74} +1.00000 q^{76} -4.00000 q^{77} -8.00000 q^{79} -1.00000 q^{80} +12.0000 q^{82} +8.00000 q^{83} +6.00000 q^{85} +2.00000 q^{88} +8.00000 q^{89} +8.00000 q^{91} -8.00000 q^{92} -1.00000 q^{95} -14.0000 q^{97} -3.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) 2.00000 0.426401
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −4.00000 −0.784465
\(27\) 0 0
\(28\) −2.00000 −0.377964
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −6.00000 −1.02899
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 1.00000 0.162221
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) 12.0000 1.87409 0.937043 0.349215i \(-0.113552\pi\)
0.937043 + 0.349215i \(0.113552\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) −8.00000 −1.17954
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) −4.00000 −0.554700
\(53\) −10.0000 −1.37361 −0.686803 0.726844i \(-0.740986\pi\)
−0.686803 + 0.726844i \(0.740986\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) −2.00000 −0.267261
\(57\) 0 0
\(58\) 6.00000 0.787839
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) −6.00000 −0.768221 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) −8.00000 −1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) −6.00000 −0.727607
\(69\) 0 0
\(70\) 2.00000 0.239046
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) −8.00000 −0.929981
\(75\) 0 0
\(76\) 1.00000 0.114708
\(77\) −4.00000 −0.455842
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) −1.00000 −0.111803
\(81\) 0 0
\(82\) 12.0000 1.32518
\(83\) 8.00000 0.878114 0.439057 0.898459i \(-0.355313\pi\)
0.439057 + 0.898459i \(0.355313\pi\)
\(84\) 0 0
\(85\) 6.00000 0.650791
\(86\) 0 0
\(87\) 0 0
\(88\) 2.00000 0.213201
\(89\) 8.00000 0.847998 0.423999 0.905663i \(-0.360626\pi\)
0.423999 + 0.905663i \(0.360626\pi\)
\(90\) 0 0
\(91\) 8.00000 0.838628
\(92\) −8.00000 −0.834058
\(93\) 0 0
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) −3.00000 −0.303046
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −2.00000 −0.199007 −0.0995037 0.995037i \(-0.531726\pi\)
−0.0995037 + 0.995037i \(0.531726\pi\)
\(102\) 0 0
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) −4.00000 −0.392232
\(105\) 0 0
\(106\) −10.0000 −0.971286
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) −2.00000 −0.190693
\(111\) 0 0
\(112\) −2.00000 −0.188982
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 0 0
\(115\) 8.00000 0.746004
\(116\) 6.00000 0.557086
\(117\) 0 0
\(118\) 6.00000 0.552345
\(119\) 12.0000 1.10004
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) −6.00000 −0.543214
\(123\) 0 0
\(124\) −8.00000 −0.718421
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 18.0000 1.59724 0.798621 0.601834i \(-0.205563\pi\)
0.798621 + 0.601834i \(0.205563\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 4.00000 0.350823
\(131\) −2.00000 −0.174741 −0.0873704 0.996176i \(-0.527846\pi\)
−0.0873704 + 0.996176i \(0.527846\pi\)
\(132\) 0 0
\(133\) −2.00000 −0.173422
\(134\) 12.0000 1.03664
\(135\) 0 0
\(136\) −6.00000 −0.514496
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) 2.00000 0.169031
\(141\) 0 0
\(142\) −12.0000 −1.00702
\(143\) −8.00000 −0.668994
\(144\) 0 0
\(145\) −6.00000 −0.498273
\(146\) −10.0000 −0.827606
\(147\) 0 0
\(148\) −8.00000 −0.657596
\(149\) 2.00000 0.163846 0.0819232 0.996639i \(-0.473894\pi\)
0.0819232 + 0.996639i \(0.473894\pi\)
\(150\) 0 0
\(151\) 20.0000 1.62758 0.813788 0.581161i \(-0.197401\pi\)
0.813788 + 0.581161i \(0.197401\pi\)
\(152\) 1.00000 0.0811107
\(153\) 0 0
\(154\) −4.00000 −0.322329
\(155\) 8.00000 0.642575
\(156\) 0 0
\(157\) 24.0000 1.91541 0.957704 0.287754i \(-0.0929087\pi\)
0.957704 + 0.287754i \(0.0929087\pi\)
\(158\) −8.00000 −0.636446
\(159\) 0 0
\(160\) −1.00000 −0.0790569
\(161\) 16.0000 1.26098
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 12.0000 0.937043
\(165\) 0 0
\(166\) 8.00000 0.620920
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 6.00000 0.460179
\(171\) 0 0
\(172\) 0 0
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) 0 0
\(175\) −2.00000 −0.151186
\(176\) 2.00000 0.150756
\(177\) 0 0
\(178\) 8.00000 0.599625
\(179\) −2.00000 −0.149487 −0.0747435 0.997203i \(-0.523814\pi\)
−0.0747435 + 0.997203i \(0.523814\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 8.00000 0.592999
\(183\) 0 0
\(184\) −8.00000 −0.589768
\(185\) 8.00000 0.588172
\(186\) 0 0
\(187\) −12.0000 −0.877527
\(188\) 0 0
\(189\) 0 0
\(190\) −1.00000 −0.0725476
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) −2.00000 −0.143963 −0.0719816 0.997406i \(-0.522932\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) −14.0000 −1.00514
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 26.0000 1.85242 0.926212 0.377004i \(-0.123046\pi\)
0.926212 + 0.377004i \(0.123046\pi\)
\(198\) 0 0
\(199\) −24.0000 −1.70131 −0.850657 0.525720i \(-0.823796\pi\)
−0.850657 + 0.525720i \(0.823796\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) −2.00000 −0.140720
\(203\) −12.0000 −0.842235
\(204\) 0 0
\(205\) −12.0000 −0.838116
\(206\) −14.0000 −0.975426
\(207\) 0 0
\(208\) −4.00000 −0.277350
\(209\) 2.00000 0.138343
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) −10.0000 −0.686803
\(213\) 0 0
\(214\) −4.00000 −0.273434
\(215\) 0 0
\(216\) 0 0
\(217\) 16.0000 1.08615
\(218\) −2.00000 −0.135457
\(219\) 0 0
\(220\) −2.00000 −0.134840
\(221\) 24.0000 1.61441
\(222\) 0 0
\(223\) −14.0000 −0.937509 −0.468755 0.883328i \(-0.655297\pi\)
−0.468755 + 0.883328i \(0.655297\pi\)
\(224\) −2.00000 −0.133631
\(225\) 0 0
\(226\) 18.0000 1.19734
\(227\) −16.0000 −1.06196 −0.530979 0.847385i \(-0.678176\pi\)
−0.530979 + 0.847385i \(0.678176\pi\)
\(228\) 0 0
\(229\) 30.0000 1.98246 0.991228 0.132164i \(-0.0421925\pi\)
0.991228 + 0.132164i \(0.0421925\pi\)
\(230\) 8.00000 0.527504
\(231\) 0 0
\(232\) 6.00000 0.393919
\(233\) 10.0000 0.655122 0.327561 0.944830i \(-0.393773\pi\)
0.327561 + 0.944830i \(0.393773\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 6.00000 0.390567
\(237\) 0 0
\(238\) 12.0000 0.777844
\(239\) 28.0000 1.81117 0.905585 0.424165i \(-0.139432\pi\)
0.905585 + 0.424165i \(0.139432\pi\)
\(240\) 0 0
\(241\) −18.0000 −1.15948 −0.579741 0.814801i \(-0.696846\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) −7.00000 −0.449977
\(243\) 0 0
\(244\) −6.00000 −0.384111
\(245\) 3.00000 0.191663
\(246\) 0 0
\(247\) −4.00000 −0.254514
\(248\) −8.00000 −0.508001
\(249\) 0 0
\(250\) −1.00000 −0.0632456
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) 0 0
\(253\) −16.0000 −1.00591
\(254\) 18.0000 1.12942
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 10.0000 0.623783 0.311891 0.950118i \(-0.399037\pi\)
0.311891 + 0.950118i \(0.399037\pi\)
\(258\) 0 0
\(259\) 16.0000 0.994192
\(260\) 4.00000 0.248069
\(261\) 0 0
\(262\) −2.00000 −0.123560
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 0 0
\(265\) 10.0000 0.614295
\(266\) −2.00000 −0.122628
\(267\) 0 0
\(268\) 12.0000 0.733017
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) −6.00000 −0.363803
\(273\) 0 0
\(274\) 6.00000 0.362473
\(275\) 2.00000 0.120605
\(276\) 0 0
\(277\) 4.00000 0.240337 0.120168 0.992754i \(-0.461657\pi\)
0.120168 + 0.992754i \(0.461657\pi\)
\(278\) −20.0000 −1.19952
\(279\) 0 0
\(280\) 2.00000 0.119523
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) −20.0000 −1.18888 −0.594438 0.804141i \(-0.702626\pi\)
−0.594438 + 0.804141i \(0.702626\pi\)
\(284\) −12.0000 −0.712069
\(285\) 0 0
\(286\) −8.00000 −0.473050
\(287\) −24.0000 −1.41668
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) −6.00000 −0.352332
\(291\) 0 0
\(292\) −10.0000 −0.585206
\(293\) −30.0000 −1.75262 −0.876309 0.481749i \(-0.840002\pi\)
−0.876309 + 0.481749i \(0.840002\pi\)
\(294\) 0 0
\(295\) −6.00000 −0.349334
\(296\) −8.00000 −0.464991
\(297\) 0 0
\(298\) 2.00000 0.115857
\(299\) 32.0000 1.85061
\(300\) 0 0
\(301\) 0 0
\(302\) 20.0000 1.15087
\(303\) 0 0
\(304\) 1.00000 0.0573539
\(305\) 6.00000 0.343559
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) −4.00000 −0.227921
\(309\) 0 0
\(310\) 8.00000 0.454369
\(311\) −20.0000 −1.13410 −0.567048 0.823685i \(-0.691915\pi\)
−0.567048 + 0.823685i \(0.691915\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 24.0000 1.35440
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) 12.0000 0.671871
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) 16.0000 0.891645
\(323\) −6.00000 −0.333849
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 4.00000 0.221540
\(327\) 0 0
\(328\) 12.0000 0.662589
\(329\) 0 0
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) 8.00000 0.439057
\(333\) 0 0
\(334\) 16.0000 0.875481
\(335\) −12.0000 −0.655630
\(336\) 0 0
\(337\) 6.00000 0.326841 0.163420 0.986557i \(-0.447747\pi\)
0.163420 + 0.986557i \(0.447747\pi\)
\(338\) 3.00000 0.163178
\(339\) 0 0
\(340\) 6.00000 0.325396
\(341\) −16.0000 −0.866449
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) −2.00000 −0.107521
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) −22.0000 −1.17763 −0.588817 0.808267i \(-0.700406\pi\)
−0.588817 + 0.808267i \(0.700406\pi\)
\(350\) −2.00000 −0.106904
\(351\) 0 0
\(352\) 2.00000 0.106600
\(353\) 10.0000 0.532246 0.266123 0.963939i \(-0.414257\pi\)
0.266123 + 0.963939i \(0.414257\pi\)
\(354\) 0 0
\(355\) 12.0000 0.636894
\(356\) 8.00000 0.423999
\(357\) 0 0
\(358\) −2.00000 −0.105703
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 14.0000 0.735824
\(363\) 0 0
\(364\) 8.00000 0.419314
\(365\) 10.0000 0.523424
\(366\) 0 0
\(367\) 14.0000 0.730794 0.365397 0.930852i \(-0.380933\pi\)
0.365397 + 0.930852i \(0.380933\pi\)
\(368\) −8.00000 −0.417029
\(369\) 0 0
\(370\) 8.00000 0.415900
\(371\) 20.0000 1.03835
\(372\) 0 0
\(373\) 28.0000 1.44979 0.724893 0.688862i \(-0.241889\pi\)
0.724893 + 0.688862i \(0.241889\pi\)
\(374\) −12.0000 −0.620505
\(375\) 0 0
\(376\) 0 0
\(377\) −24.0000 −1.23606
\(378\) 0 0
\(379\) 12.0000 0.616399 0.308199 0.951322i \(-0.400274\pi\)
0.308199 + 0.951322i \(0.400274\pi\)
\(380\) −1.00000 −0.0512989
\(381\) 0 0
\(382\) −12.0000 −0.613973
\(383\) −16.0000 −0.817562 −0.408781 0.912633i \(-0.634046\pi\)
−0.408781 + 0.912633i \(0.634046\pi\)
\(384\) 0 0
\(385\) 4.00000 0.203859
\(386\) −2.00000 −0.101797
\(387\) 0 0
\(388\) −14.0000 −0.710742
\(389\) 26.0000 1.31825 0.659126 0.752032i \(-0.270926\pi\)
0.659126 + 0.752032i \(0.270926\pi\)
\(390\) 0 0
\(391\) 48.0000 2.42746
\(392\) −3.00000 −0.151523
\(393\) 0 0
\(394\) 26.0000 1.30986
\(395\) 8.00000 0.402524
\(396\) 0 0
\(397\) 20.0000 1.00377 0.501886 0.864934i \(-0.332640\pi\)
0.501886 + 0.864934i \(0.332640\pi\)
\(398\) −24.0000 −1.20301
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −24.0000 −1.19850 −0.599251 0.800561i \(-0.704535\pi\)
−0.599251 + 0.800561i \(0.704535\pi\)
\(402\) 0 0
\(403\) 32.0000 1.59403
\(404\) −2.00000 −0.0995037
\(405\) 0 0
\(406\) −12.0000 −0.595550
\(407\) −16.0000 −0.793091
\(408\) 0 0
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) −12.0000 −0.592638
\(411\) 0 0
\(412\) −14.0000 −0.689730
\(413\) −12.0000 −0.590481
\(414\) 0 0
\(415\) −8.00000 −0.392705
\(416\) −4.00000 −0.196116
\(417\) 0 0
\(418\) 2.00000 0.0978232
\(419\) −10.0000 −0.488532 −0.244266 0.969708i \(-0.578547\pi\)
−0.244266 + 0.969708i \(0.578547\pi\)
\(420\) 0 0
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) 4.00000 0.194717
\(423\) 0 0
\(424\) −10.0000 −0.485643
\(425\) −6.00000 −0.291043
\(426\) 0 0
\(427\) 12.0000 0.580721
\(428\) −4.00000 −0.193347
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 16.0000 0.768025
\(435\) 0 0
\(436\) −2.00000 −0.0957826
\(437\) −8.00000 −0.382692
\(438\) 0 0
\(439\) −28.0000 −1.33637 −0.668184 0.743996i \(-0.732928\pi\)
−0.668184 + 0.743996i \(0.732928\pi\)
\(440\) −2.00000 −0.0953463
\(441\) 0 0
\(442\) 24.0000 1.14156
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) −8.00000 −0.379236
\(446\) −14.0000 −0.662919
\(447\) 0 0
\(448\) −2.00000 −0.0944911
\(449\) 8.00000 0.377543 0.188772 0.982021i \(-0.439549\pi\)
0.188772 + 0.982021i \(0.439549\pi\)
\(450\) 0 0
\(451\) 24.0000 1.13012
\(452\) 18.0000 0.846649
\(453\) 0 0
\(454\) −16.0000 −0.750917
\(455\) −8.00000 −0.375046
\(456\) 0 0
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) 30.0000 1.40181
\(459\) 0 0
\(460\) 8.00000 0.373002
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) 10.0000 0.464739 0.232370 0.972628i \(-0.425352\pi\)
0.232370 + 0.972628i \(0.425352\pi\)
\(464\) 6.00000 0.278543
\(465\) 0 0
\(466\) 10.0000 0.463241
\(467\) −32.0000 −1.48078 −0.740392 0.672176i \(-0.765360\pi\)
−0.740392 + 0.672176i \(0.765360\pi\)
\(468\) 0 0
\(469\) −24.0000 −1.10822
\(470\) 0 0
\(471\) 0 0
\(472\) 6.00000 0.276172
\(473\) 0 0
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) 12.0000 0.550019
\(477\) 0 0
\(478\) 28.0000 1.28069
\(479\) 12.0000 0.548294 0.274147 0.961688i \(-0.411605\pi\)
0.274147 + 0.961688i \(0.411605\pi\)
\(480\) 0 0
\(481\) 32.0000 1.45907
\(482\) −18.0000 −0.819878
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) 14.0000 0.635707
\(486\) 0 0
\(487\) −26.0000 −1.17817 −0.589086 0.808070i \(-0.700512\pi\)
−0.589086 + 0.808070i \(0.700512\pi\)
\(488\) −6.00000 −0.271607
\(489\) 0 0
\(490\) 3.00000 0.135526
\(491\) −18.0000 −0.812329 −0.406164 0.913800i \(-0.633134\pi\)
−0.406164 + 0.913800i \(0.633134\pi\)
\(492\) 0 0
\(493\) −36.0000 −1.62136
\(494\) −4.00000 −0.179969
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) 24.0000 1.07655
\(498\) 0 0
\(499\) −12.0000 −0.537194 −0.268597 0.963253i \(-0.586560\pi\)
−0.268597 + 0.963253i \(0.586560\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 0 0
\(502\) −18.0000 −0.803379
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 0 0
\(505\) 2.00000 0.0889988
\(506\) −16.0000 −0.711287
\(507\) 0 0
\(508\) 18.0000 0.798621
\(509\) 14.0000 0.620539 0.310270 0.950649i \(-0.399581\pi\)
0.310270 + 0.950649i \(0.399581\pi\)
\(510\) 0 0
\(511\) 20.0000 0.884748
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 10.0000 0.441081
\(515\) 14.0000 0.616914
\(516\) 0 0
\(517\) 0 0
\(518\) 16.0000 0.703000
\(519\) 0 0
\(520\) 4.00000 0.175412
\(521\) 24.0000 1.05146 0.525730 0.850652i \(-0.323792\pi\)
0.525730 + 0.850652i \(0.323792\pi\)
\(522\) 0 0
\(523\) −36.0000 −1.57417 −0.787085 0.616844i \(-0.788411\pi\)
−0.787085 + 0.616844i \(0.788411\pi\)
\(524\) −2.00000 −0.0873704
\(525\) 0 0
\(526\) −16.0000 −0.697633
\(527\) 48.0000 2.09091
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) 10.0000 0.434372
\(531\) 0 0
\(532\) −2.00000 −0.0867110
\(533\) −48.0000 −2.07911
\(534\) 0 0
\(535\) 4.00000 0.172935
\(536\) 12.0000 0.518321
\(537\) 0 0
\(538\) −10.0000 −0.431131
\(539\) −6.00000 −0.258438
\(540\) 0 0
\(541\) −38.0000 −1.63375 −0.816874 0.576816i \(-0.804295\pi\)
−0.816874 + 0.576816i \(0.804295\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −6.00000 −0.257248
\(545\) 2.00000 0.0856706
\(546\) 0 0
\(547\) 8.00000 0.342055 0.171028 0.985266i \(-0.445291\pi\)
0.171028 + 0.985266i \(0.445291\pi\)
\(548\) 6.00000 0.256307
\(549\) 0 0
\(550\) 2.00000 0.0852803
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) 16.0000 0.680389
\(554\) 4.00000 0.169944
\(555\) 0 0
\(556\) −20.0000 −0.848189
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 2.00000 0.0845154
\(561\) 0 0
\(562\) 0 0
\(563\) −16.0000 −0.674320 −0.337160 0.941447i \(-0.609466\pi\)
−0.337160 + 0.941447i \(0.609466\pi\)
\(564\) 0 0
\(565\) −18.0000 −0.757266
\(566\) −20.0000 −0.840663
\(567\) 0 0
\(568\) −12.0000 −0.503509
\(569\) 24.0000 1.00613 0.503066 0.864248i \(-0.332205\pi\)
0.503066 + 0.864248i \(0.332205\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) −8.00000 −0.334497
\(573\) 0 0
\(574\) −24.0000 −1.00174
\(575\) −8.00000 −0.333623
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 19.0000 0.790296
\(579\) 0 0
\(580\) −6.00000 −0.249136
\(581\) −16.0000 −0.663792
\(582\) 0 0
\(583\) −20.0000 −0.828315
\(584\) −10.0000 −0.413803
\(585\) 0 0
\(586\) −30.0000 −1.23929
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) −6.00000 −0.247016
\(591\) 0 0
\(592\) −8.00000 −0.328798
\(593\) −18.0000 −0.739171 −0.369586 0.929197i \(-0.620500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) 0 0
\(595\) −12.0000 −0.491952
\(596\) 2.00000 0.0819232
\(597\) 0 0
\(598\) 32.0000 1.30858
\(599\) −8.00000 −0.326871 −0.163436 0.986554i \(-0.552258\pi\)
−0.163436 + 0.986554i \(0.552258\pi\)
\(600\) 0 0
\(601\) 30.0000 1.22373 0.611863 0.790964i \(-0.290420\pi\)
0.611863 + 0.790964i \(0.290420\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 20.0000 0.813788
\(605\) 7.00000 0.284590
\(606\) 0 0
\(607\) 22.0000 0.892952 0.446476 0.894795i \(-0.352679\pi\)
0.446476 + 0.894795i \(0.352679\pi\)
\(608\) 1.00000 0.0405554
\(609\) 0 0
\(610\) 6.00000 0.242933
\(611\) 0 0
\(612\) 0 0
\(613\) −20.0000 −0.807792 −0.403896 0.914805i \(-0.632344\pi\)
−0.403896 + 0.914805i \(0.632344\pi\)
\(614\) 16.0000 0.645707
\(615\) 0 0
\(616\) −4.00000 −0.161165
\(617\) −22.0000 −0.885687 −0.442843 0.896599i \(-0.646030\pi\)
−0.442843 + 0.896599i \(0.646030\pi\)
\(618\) 0 0
\(619\) −12.0000 −0.482321 −0.241160 0.970485i \(-0.577528\pi\)
−0.241160 + 0.970485i \(0.577528\pi\)
\(620\) 8.00000 0.321288
\(621\) 0 0
\(622\) −20.0000 −0.801927
\(623\) −16.0000 −0.641026
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 14.0000 0.559553
\(627\) 0 0
\(628\) 24.0000 0.957704
\(629\) 48.0000 1.91389
\(630\) 0 0
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) −8.00000 −0.318223
\(633\) 0 0
\(634\) 18.0000 0.714871
\(635\) −18.0000 −0.714308
\(636\) 0 0
\(637\) 12.0000 0.475457
\(638\) 12.0000 0.475085
\(639\) 0 0
\(640\) −1.00000 −0.0395285
\(641\) −28.0000 −1.10593 −0.552967 0.833203i \(-0.686504\pi\)
−0.552967 + 0.833203i \(0.686504\pi\)
\(642\) 0 0
\(643\) −4.00000 −0.157745 −0.0788723 0.996885i \(-0.525132\pi\)
−0.0788723 + 0.996885i \(0.525132\pi\)
\(644\) 16.0000 0.630488
\(645\) 0 0
\(646\) −6.00000 −0.236067
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) −4.00000 −0.156893
\(651\) 0 0
\(652\) 4.00000 0.156652
\(653\) 2.00000 0.0782660 0.0391330 0.999234i \(-0.487540\pi\)
0.0391330 + 0.999234i \(0.487540\pi\)
\(654\) 0 0
\(655\) 2.00000 0.0781465
\(656\) 12.0000 0.468521
\(657\) 0 0
\(658\) 0 0
\(659\) −30.0000 −1.16863 −0.584317 0.811525i \(-0.698638\pi\)
−0.584317 + 0.811525i \(0.698638\pi\)
\(660\) 0 0
\(661\) −18.0000 −0.700119 −0.350059 0.936727i \(-0.613839\pi\)
−0.350059 + 0.936727i \(0.613839\pi\)
\(662\) −28.0000 −1.08825
\(663\) 0 0
\(664\) 8.00000 0.310460
\(665\) 2.00000 0.0775567
\(666\) 0 0
\(667\) −48.0000 −1.85857
\(668\) 16.0000 0.619059
\(669\) 0 0
\(670\) −12.0000 −0.463600
\(671\) −12.0000 −0.463255
\(672\) 0 0
\(673\) −2.00000 −0.0770943 −0.0385472 0.999257i \(-0.512273\pi\)
−0.0385472 + 0.999257i \(0.512273\pi\)
\(674\) 6.00000 0.231111
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) −6.00000 −0.230599 −0.115299 0.993331i \(-0.536783\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(678\) 0 0
\(679\) 28.0000 1.07454
\(680\) 6.00000 0.230089
\(681\) 0 0
\(682\) −16.0000 −0.612672
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) 20.0000 0.763604
\(687\) 0 0
\(688\) 0 0
\(689\) 40.0000 1.52388
\(690\) 0 0
\(691\) −36.0000 −1.36950 −0.684752 0.728776i \(-0.740090\pi\)
−0.684752 + 0.728776i \(0.740090\pi\)
\(692\) −2.00000 −0.0760286
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) 20.0000 0.758643
\(696\) 0 0
\(697\) −72.0000 −2.72719
\(698\) −22.0000 −0.832712
\(699\) 0 0
\(700\) −2.00000 −0.0755929
\(701\) −42.0000 −1.58632 −0.793159 0.609015i \(-0.791565\pi\)
−0.793159 + 0.609015i \(0.791565\pi\)
\(702\) 0 0
\(703\) −8.00000 −0.301726
\(704\) 2.00000 0.0753778
\(705\) 0 0
\(706\) 10.0000 0.376355
\(707\) 4.00000 0.150435
\(708\) 0 0
\(709\) 14.0000 0.525781 0.262891 0.964826i \(-0.415324\pi\)
0.262891 + 0.964826i \(0.415324\pi\)
\(710\) 12.0000 0.450352
\(711\) 0 0
\(712\) 8.00000 0.299813
\(713\) 64.0000 2.39682
\(714\) 0 0
\(715\) 8.00000 0.299183
\(716\) −2.00000 −0.0747435
\(717\) 0 0
\(718\) −8.00000 −0.298557
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) 28.0000 1.04277
\(722\) 1.00000 0.0372161
\(723\) 0 0
\(724\) 14.0000 0.520306
\(725\) 6.00000 0.222834
\(726\) 0 0
\(727\) −22.0000 −0.815935 −0.407967 0.912996i \(-0.633762\pi\)
−0.407967 + 0.912996i \(0.633762\pi\)
\(728\) 8.00000 0.296500
\(729\) 0 0
\(730\) 10.0000 0.370117
\(731\) 0 0
\(732\) 0 0
\(733\) 36.0000 1.32969 0.664845 0.746981i \(-0.268498\pi\)
0.664845 + 0.746981i \(0.268498\pi\)
\(734\) 14.0000 0.516749
\(735\) 0 0
\(736\) −8.00000 −0.294884
\(737\) 24.0000 0.884051
\(738\) 0 0
\(739\) −28.0000 −1.03000 −0.514998 0.857191i \(-0.672207\pi\)
−0.514998 + 0.857191i \(0.672207\pi\)
\(740\) 8.00000 0.294086
\(741\) 0 0
\(742\) 20.0000 0.734223
\(743\) −24.0000 −0.880475 −0.440237 0.897881i \(-0.645106\pi\)
−0.440237 + 0.897881i \(0.645106\pi\)
\(744\) 0 0
\(745\) −2.00000 −0.0732743
\(746\) 28.0000 1.02515
\(747\) 0 0
\(748\) −12.0000 −0.438763
\(749\) 8.00000 0.292314
\(750\) 0 0
\(751\) 16.0000 0.583848 0.291924 0.956441i \(-0.405705\pi\)
0.291924 + 0.956441i \(0.405705\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −24.0000 −0.874028
\(755\) −20.0000 −0.727875
\(756\) 0 0
\(757\) −36.0000 −1.30844 −0.654221 0.756303i \(-0.727003\pi\)
−0.654221 + 0.756303i \(0.727003\pi\)
\(758\) 12.0000 0.435860
\(759\) 0 0
\(760\) −1.00000 −0.0362738
\(761\) −28.0000 −1.01500 −0.507500 0.861652i \(-0.669430\pi\)
−0.507500 + 0.861652i \(0.669430\pi\)
\(762\) 0 0
\(763\) 4.00000 0.144810
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) −16.0000 −0.578103
\(767\) −24.0000 −0.866590
\(768\) 0 0
\(769\) −2.00000 −0.0721218 −0.0360609 0.999350i \(-0.511481\pi\)
−0.0360609 + 0.999350i \(0.511481\pi\)
\(770\) 4.00000 0.144150
\(771\) 0 0
\(772\) −2.00000 −0.0719816
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) −14.0000 −0.502571
\(777\) 0 0
\(778\) 26.0000 0.932145
\(779\) 12.0000 0.429945
\(780\) 0 0
\(781\) −24.0000 −0.858788
\(782\) 48.0000 1.71648
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) −24.0000 −0.856597
\(786\) 0 0
\(787\) −12.0000 −0.427754 −0.213877 0.976861i \(-0.568609\pi\)
−0.213877 + 0.976861i \(0.568609\pi\)
\(788\) 26.0000 0.926212
\(789\) 0 0
\(790\) 8.00000 0.284627
\(791\) −36.0000 −1.28001
\(792\) 0 0
\(793\) 24.0000 0.852265
\(794\) 20.0000 0.709773
\(795\) 0 0
\(796\) −24.0000 −0.850657
\(797\) −2.00000 −0.0708436 −0.0354218 0.999372i \(-0.511277\pi\)
−0.0354218 + 0.999372i \(0.511277\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) −24.0000 −0.847469
\(803\) −20.0000 −0.705785
\(804\) 0 0
\(805\) −16.0000 −0.563926
\(806\) 32.0000 1.12715
\(807\) 0 0
\(808\) −2.00000 −0.0703598
\(809\) 16.0000 0.562530 0.281265 0.959630i \(-0.409246\pi\)
0.281265 + 0.959630i \(0.409246\pi\)
\(810\) 0 0
\(811\) 4.00000 0.140459 0.0702295 0.997531i \(-0.477627\pi\)
0.0702295 + 0.997531i \(0.477627\pi\)
\(812\) −12.0000 −0.421117
\(813\) 0 0
\(814\) −16.0000 −0.560800
\(815\) −4.00000 −0.140114
\(816\) 0 0
\(817\) 0 0
\(818\) 10.0000 0.349642
\(819\) 0 0
\(820\) −12.0000 −0.419058
\(821\) 38.0000 1.32621 0.663105 0.748527i \(-0.269238\pi\)
0.663105 + 0.748527i \(0.269238\pi\)
\(822\) 0 0
\(823\) 26.0000 0.906303 0.453152 0.891434i \(-0.350300\pi\)
0.453152 + 0.891434i \(0.350300\pi\)
\(824\) −14.0000 −0.487713
\(825\) 0 0
\(826\) −12.0000 −0.417533
\(827\) −48.0000 −1.66912 −0.834562 0.550914i \(-0.814279\pi\)
−0.834562 + 0.550914i \(0.814279\pi\)
\(828\) 0 0
\(829\) −10.0000 −0.347314 −0.173657 0.984806i \(-0.555558\pi\)
−0.173657 + 0.984806i \(0.555558\pi\)
\(830\) −8.00000 −0.277684
\(831\) 0 0
\(832\) −4.00000 −0.138675
\(833\) 18.0000 0.623663
\(834\) 0 0
\(835\) −16.0000 −0.553703
\(836\) 2.00000 0.0691714
\(837\) 0 0
\(838\) −10.0000 −0.345444
\(839\) −16.0000 −0.552381 −0.276191 0.961103i \(-0.589072\pi\)
−0.276191 + 0.961103i \(0.589072\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 10.0000 0.344623
\(843\) 0 0
\(844\) 4.00000 0.137686
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) 14.0000 0.481046
\(848\) −10.0000 −0.343401
\(849\) 0 0
\(850\) −6.00000 −0.205798
\(851\) 64.0000 2.19389
\(852\) 0 0
\(853\) −12.0000 −0.410872 −0.205436 0.978671i \(-0.565861\pi\)
−0.205436 + 0.978671i \(0.565861\pi\)
\(854\) 12.0000 0.410632
\(855\) 0 0
\(856\) −4.00000 −0.136717
\(857\) 38.0000 1.29806 0.649028 0.760765i \(-0.275176\pi\)
0.649028 + 0.760765i \(0.275176\pi\)
\(858\) 0 0
\(859\) 20.0000 0.682391 0.341196 0.939992i \(-0.389168\pi\)
0.341196 + 0.939992i \(0.389168\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −40.0000 −1.36162 −0.680808 0.732462i \(-0.738371\pi\)
−0.680808 + 0.732462i \(0.738371\pi\)
\(864\) 0 0
\(865\) 2.00000 0.0680020
\(866\) −34.0000 −1.15537
\(867\) 0 0
\(868\) 16.0000 0.543075
\(869\) −16.0000 −0.542763
\(870\) 0 0
\(871\) −48.0000 −1.62642
\(872\) −2.00000 −0.0677285
\(873\) 0 0
\(874\) −8.00000 −0.270604
\(875\) 2.00000 0.0676123
\(876\) 0 0
\(877\) 12.0000 0.405211 0.202606 0.979260i \(-0.435059\pi\)
0.202606 + 0.979260i \(0.435059\pi\)
\(878\) −28.0000 −0.944954
\(879\) 0 0
\(880\) −2.00000 −0.0674200
\(881\) 52.0000 1.75192 0.875962 0.482380i \(-0.160227\pi\)
0.875962 + 0.482380i \(0.160227\pi\)
\(882\) 0 0
\(883\) −36.0000 −1.21150 −0.605748 0.795656i \(-0.707126\pi\)
−0.605748 + 0.795656i \(0.707126\pi\)
\(884\) 24.0000 0.807207
\(885\) 0 0
\(886\) −12.0000 −0.403148
\(887\) 8.00000 0.268614 0.134307 0.990940i \(-0.457119\pi\)
0.134307 + 0.990940i \(0.457119\pi\)
\(888\) 0 0
\(889\) −36.0000 −1.20740
\(890\) −8.00000 −0.268161
\(891\) 0 0
\(892\) −14.0000 −0.468755
\(893\) 0 0
\(894\) 0 0
\(895\) 2.00000 0.0668526
\(896\) −2.00000 −0.0668153
\(897\) 0 0
\(898\) 8.00000 0.266963
\(899\) −48.0000 −1.60089
\(900\) 0 0
\(901\) 60.0000 1.99889
\(902\) 24.0000 0.799113
\(903\) 0 0
\(904\) 18.0000 0.598671
\(905\) −14.0000 −0.465376
\(906\) 0 0
\(907\) 8.00000 0.265636 0.132818 0.991140i \(-0.457597\pi\)
0.132818 + 0.991140i \(0.457597\pi\)
\(908\) −16.0000 −0.530979
\(909\) 0 0
\(910\) −8.00000 −0.265197
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 16.0000 0.529523
\(914\) 10.0000 0.330771
\(915\) 0 0
\(916\) 30.0000 0.991228
\(917\) 4.00000 0.132092
\(918\) 0 0
\(919\) −20.0000 −0.659739 −0.329870 0.944027i \(-0.607005\pi\)
−0.329870 + 0.944027i \(0.607005\pi\)
\(920\) 8.00000 0.263752
\(921\) 0 0
\(922\) −30.0000 −0.987997
\(923\) 48.0000 1.57994
\(924\) 0 0
\(925\) −8.00000 −0.263038
\(926\) 10.0000 0.328620
\(927\) 0 0
\(928\) 6.00000 0.196960
\(929\) −36.0000 −1.18112 −0.590561 0.806993i \(-0.701093\pi\)
−0.590561 + 0.806993i \(0.701093\pi\)
\(930\) 0 0
\(931\) −3.00000 −0.0983210
\(932\) 10.0000 0.327561
\(933\) 0 0
\(934\) −32.0000 −1.04707
\(935\) 12.0000 0.392442
\(936\) 0 0
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) −24.0000 −0.783628
\(939\) 0 0
\(940\) 0 0
\(941\) 18.0000 0.586783 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(942\) 0 0
\(943\) −96.0000 −3.12619
\(944\) 6.00000 0.195283
\(945\) 0 0
\(946\) 0 0
\(947\) 12.0000 0.389948 0.194974 0.980808i \(-0.437538\pi\)
0.194974 + 0.980808i \(0.437538\pi\)
\(948\) 0 0
\(949\) 40.0000 1.29845
\(950\) 1.00000 0.0324443
\(951\) 0 0
\(952\) 12.0000 0.388922
\(953\) 18.0000 0.583077 0.291539 0.956559i \(-0.405833\pi\)
0.291539 + 0.956559i \(0.405833\pi\)
\(954\) 0 0
\(955\) 12.0000 0.388311
\(956\) 28.0000 0.905585
\(957\) 0 0
\(958\) 12.0000 0.387702
\(959\) −12.0000 −0.387500
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 32.0000 1.03172
\(963\) 0 0
\(964\) −18.0000 −0.579741
\(965\) 2.00000 0.0643823
\(966\) 0 0
\(967\) −2.00000 −0.0643157 −0.0321578 0.999483i \(-0.510238\pi\)
−0.0321578 + 0.999483i \(0.510238\pi\)
\(968\) −7.00000 −0.224989
\(969\) 0 0
\(970\) 14.0000 0.449513
\(971\) 10.0000 0.320915 0.160458 0.987043i \(-0.448703\pi\)
0.160458 + 0.987043i \(0.448703\pi\)
\(972\) 0 0
\(973\) 40.0000 1.28234
\(974\) −26.0000 −0.833094
\(975\) 0 0
\(976\) −6.00000 −0.192055
\(977\) −26.0000 −0.831814 −0.415907 0.909407i \(-0.636536\pi\)
−0.415907 + 0.909407i \(0.636536\pi\)
\(978\) 0 0
\(979\) 16.0000 0.511362
\(980\) 3.00000 0.0958315
\(981\) 0 0
\(982\) −18.0000 −0.574403
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) 0 0
\(985\) −26.0000 −0.828429
\(986\) −36.0000 −1.14647
\(987\) 0 0
\(988\) −4.00000 −0.127257
\(989\) 0 0
\(990\) 0 0
\(991\) −60.0000 −1.90596 −0.952981 0.303029i \(-0.902002\pi\)
−0.952981 + 0.303029i \(0.902002\pi\)
\(992\) −8.00000 −0.254000
\(993\) 0 0
\(994\) 24.0000 0.761234
\(995\) 24.0000 0.760851
\(996\) 0 0
\(997\) −56.0000 −1.77354 −0.886769 0.462213i \(-0.847056\pi\)
−0.886769 + 0.462213i \(0.847056\pi\)
\(998\) −12.0000 −0.379853
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1710.2.a.m.1.1 yes 1
3.2 odd 2 1710.2.a.h.1.1 1
5.4 even 2 8550.2.a.p.1.1 1
15.14 odd 2 8550.2.a.bg.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1710.2.a.h.1.1 1 3.2 odd 2
1710.2.a.m.1.1 yes 1 1.1 even 1 trivial
8550.2.a.p.1.1 1 5.4 even 2
8550.2.a.bg.1.1 1 15.14 odd 2