Properties

Label 171.4.y.a.53.14
Level $171$
Weight $4$
Character 171.53
Analytic conductor $10.089$
Analytic rank $0$
Dimension $120$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [171,4,Mod(53,171)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(171, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 11])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("171.53"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 171.y (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0893266110\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(20\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 53.14
Character \(\chi\) \(=\) 171.53
Dual form 171.4.y.a.71.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.30065 + 0.837369i) q^{2} +(-1.53654 - 1.28931i) q^{4} +(10.9536 + 13.0540i) q^{5} +(-16.1646 + 27.9979i) q^{7} +(-12.2486 - 21.2153i) q^{8} +(14.2695 + 39.2050i) q^{10} +(2.26002 - 1.30482i) q^{11} +(-16.7040 - 2.94537i) q^{13} +(-60.6336 + 50.8776i) q^{14} +(-7.62839 - 43.2628i) q^{16} +(-38.8403 + 106.713i) q^{17} +(80.0856 + 21.1019i) q^{19} -34.1808i q^{20} +(6.29213 - 1.10947i) q^{22} +(-21.2515 + 25.3265i) q^{23} +(-28.7197 + 162.878i) q^{25} +(-35.9638 - 20.7637i) q^{26} +(60.9356 - 22.1788i) q^{28} +(84.8179 - 30.8712i) q^{29} +(139.893 + 80.7674i) q^{31} +(-15.3546 + 87.0804i) q^{32} +(-178.716 + 212.986i) q^{34} +(-542.546 + 95.6655i) q^{35} +197.041i q^{37} +(166.579 + 115.609i) q^{38} +(142.778 - 392.278i) q^{40} +(-75.9623 - 430.804i) q^{41} +(394.699 - 331.192i) q^{43} +(-5.15494 - 0.908955i) q^{44} +(-70.0998 + 40.4721i) q^{46} +(-61.1561 - 168.025i) q^{47} +(-351.087 - 608.100i) q^{49} +(-202.463 + 350.676i) q^{50} +(21.8690 + 26.0625i) q^{52} +(-196.492 - 164.877i) q^{53} +(41.7886 + 15.2098i) q^{55} +791.975 q^{56} +220.987 q^{58} +(300.408 + 109.340i) q^{59} +(-119.382 - 100.173i) q^{61} +(254.213 + 302.960i) q^{62} +(-283.965 + 491.841i) q^{64} +(-144.521 - 250.318i) q^{65} +(367.524 + 1009.76i) q^{67} +(197.266 - 113.892i) q^{68} +(-1328.32 - 234.218i) q^{70} +(664.533 - 557.610i) q^{71} +(36.9153 + 209.357i) q^{73} +(-164.996 + 453.322i) q^{74} +(-95.8482 - 135.680i) q^{76} +84.3675i q^{77} +(599.122 - 105.641i) q^{79} +(481.195 - 573.466i) q^{80} +(185.979 - 1054.74i) q^{82} +(-257.034 - 148.399i) q^{83} +(-1818.48 + 661.872i) q^{85} +(1185.40 - 431.449i) q^{86} +(-55.3642 - 31.9645i) q^{88} +(-40.6753 + 230.681i) q^{89} +(352.478 - 420.067i) q^{91} +(65.3076 - 11.5155i) q^{92} -437.777i q^{94} +(601.765 + 1276.58i) q^{95} +(447.484 - 1229.45i) q^{97} +(-298.524 - 1693.01i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q - 36 q^{4} - 180 q^{10} - 156 q^{13} + 180 q^{16} + 924 q^{19} + 432 q^{22} - 360 q^{25} - 624 q^{28} + 324 q^{34} + 1440 q^{40} + 1524 q^{43} + 3888 q^{46} - 3228 q^{49} - 6000 q^{52} - 4464 q^{55}+ \cdots + 5904 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.30065 + 0.837369i 0.813403 + 0.296055i 0.715029 0.699095i \(-0.246414\pi\)
0.0983743 + 0.995149i \(0.468636\pi\)
\(3\) 0 0
\(4\) −1.53654 1.28931i −0.192068 0.161164i
\(5\) 10.9536 + 13.0540i 0.979723 + 1.16759i 0.985854 + 0.167608i \(0.0536042\pi\)
−0.00613038 + 0.999981i \(0.501951\pi\)
\(6\) 0 0
\(7\) −16.1646 + 27.9979i −0.872805 + 1.51174i −0.0137216 + 0.999906i \(0.504368\pi\)
−0.859083 + 0.511836i \(0.828965\pi\)
\(8\) −12.2486 21.2153i −0.541318 0.937591i
\(9\) 0 0
\(10\) 14.2695 + 39.2050i 0.451240 + 1.23977i
\(11\) 2.26002 1.30482i 0.0619473 0.0357653i −0.468706 0.883354i \(-0.655280\pi\)
0.530654 + 0.847589i \(0.321946\pi\)
\(12\) 0 0
\(13\) −16.7040 2.94537i −0.356375 0.0628385i −0.00740521 0.999973i \(-0.502357\pi\)
−0.348969 + 0.937134i \(0.613468\pi\)
\(14\) −60.6336 + 50.8776i −1.15750 + 0.971258i
\(15\) 0 0
\(16\) −7.62839 43.2628i −0.119194 0.675981i
\(17\) −38.8403 + 106.713i −0.554127 + 1.52245i 0.273897 + 0.961759i \(0.411687\pi\)
−0.828024 + 0.560693i \(0.810535\pi\)
\(18\) 0 0
\(19\) 80.0856 + 21.1019i 0.966995 + 0.254795i
\(20\) 34.1808i 0.382153i
\(21\) 0 0
\(22\) 6.29213 1.10947i 0.0609766 0.0107518i
\(23\) −21.2515 + 25.3265i −0.192662 + 0.229606i −0.853724 0.520725i \(-0.825662\pi\)
0.661062 + 0.750331i \(0.270106\pi\)
\(24\) 0 0
\(25\) −28.7197 + 162.878i −0.229758 + 1.30302i
\(26\) −35.9638 20.7637i −0.271273 0.156619i
\(27\) 0 0
\(28\) 60.9356 22.1788i 0.411277 0.149693i
\(29\) 84.8179 30.8712i 0.543113 0.197677i −0.0558708 0.998438i \(-0.517794\pi\)
0.598984 + 0.800761i \(0.295571\pi\)
\(30\) 0 0
\(31\) 139.893 + 80.7674i 0.810502 + 0.467944i 0.847130 0.531385i \(-0.178328\pi\)
−0.0366282 + 0.999329i \(0.511662\pi\)
\(32\) −15.3546 + 87.0804i −0.0848231 + 0.481056i
\(33\) 0 0
\(34\) −178.716 + 212.986i −0.901458 + 1.07432i
\(35\) −542.546 + 95.6655i −2.62020 + 0.462012i
\(36\) 0 0
\(37\) 197.041i 0.875495i 0.899098 + 0.437747i \(0.144224\pi\)
−0.899098 + 0.437747i \(0.855776\pi\)
\(38\) 166.579 + 115.609i 0.711124 + 0.493534i
\(39\) 0 0
\(40\) 142.778 392.278i 0.564378 1.55062i
\(41\) −75.9623 430.804i −0.289349 1.64098i −0.689323 0.724454i \(-0.742092\pi\)
0.399974 0.916527i \(-0.369019\pi\)
\(42\) 0 0
\(43\) 394.699 331.192i 1.39979 1.17457i 0.438602 0.898681i \(-0.355474\pi\)
0.961191 0.275884i \(-0.0889707\pi\)
\(44\) −5.15494 0.908955i −0.0176622 0.00311432i
\(45\) 0 0
\(46\) −70.0998 + 40.4721i −0.224688 + 0.129724i
\(47\) −61.1561 168.025i −0.189799 0.521467i 0.807896 0.589324i \(-0.200606\pi\)
−0.997695 + 0.0678571i \(0.978384\pi\)
\(48\) 0 0
\(49\) −351.087 608.100i −1.02358 1.77289i
\(50\) −202.463 + 350.676i −0.572651 + 0.991860i
\(51\) 0 0
\(52\) 21.8690 + 26.0625i 0.0583209 + 0.0695041i
\(53\) −196.492 164.877i −0.509251 0.427313i 0.351614 0.936145i \(-0.385633\pi\)
−0.860866 + 0.508832i \(0.830077\pi\)
\(54\) 0 0
\(55\) 41.7886 + 15.2098i 0.102450 + 0.0372889i
\(56\) 791.975 1.88986
\(57\) 0 0
\(58\) 220.987 0.500293
\(59\) 300.408 + 109.340i 0.662878 + 0.241268i 0.651479 0.758667i \(-0.274149\pi\)
0.0113998 + 0.999935i \(0.496371\pi\)
\(60\) 0 0
\(61\) −119.382 100.173i −0.250578 0.210260i 0.508843 0.860859i \(-0.330073\pi\)
−0.759421 + 0.650599i \(0.774518\pi\)
\(62\) 254.213 + 302.960i 0.520728 + 0.620580i
\(63\) 0 0
\(64\) −283.965 + 491.841i −0.554619 + 0.960628i
\(65\) −144.521 250.318i −0.275779 0.477663i
\(66\) 0 0
\(67\) 367.524 + 1009.76i 0.670153 + 1.84123i 0.523467 + 0.852046i \(0.324638\pi\)
0.146686 + 0.989183i \(0.453139\pi\)
\(68\) 197.266 113.892i 0.351795 0.203109i
\(69\) 0 0
\(70\) −1328.32 234.218i −2.26806 0.399920i
\(71\) 664.533 557.610i 1.11078 0.932058i 0.112681 0.993631i \(-0.464056\pi\)
0.998103 + 0.0615736i \(0.0196119\pi\)
\(72\) 0 0
\(73\) 36.9153 + 209.357i 0.0591864 + 0.335663i 0.999995 0.00327651i \(-0.00104295\pi\)
−0.940808 + 0.338939i \(0.889932\pi\)
\(74\) −164.996 + 453.322i −0.259194 + 0.712130i
\(75\) 0 0
\(76\) −95.8482 135.680i −0.144665 0.204783i
\(77\) 84.3675i 0.124864i
\(78\) 0 0
\(79\) 599.122 105.641i 0.853246 0.150450i 0.270115 0.962828i \(-0.412938\pi\)
0.583132 + 0.812378i \(0.301827\pi\)
\(80\) 481.195 573.466i 0.672491 0.801443i
\(81\) 0 0
\(82\) 185.979 1054.74i 0.250462 1.42044i
\(83\) −257.034 148.399i −0.339918 0.196251i 0.320318 0.947310i \(-0.396210\pi\)
−0.660236 + 0.751059i \(0.729544\pi\)
\(84\) 0 0
\(85\) −1818.48 + 661.872i −2.32049 + 0.844589i
\(86\) 1185.40 431.449i 1.48633 0.540980i
\(87\) 0 0
\(88\) −55.3642 31.9645i −0.0670664 0.0387208i
\(89\) −40.6753 + 230.681i −0.0484447 + 0.274743i −0.999402 0.0345787i \(-0.988991\pi\)
0.950957 + 0.309322i \(0.100102\pi\)
\(90\) 0 0
\(91\) 352.478 420.067i 0.406041 0.483901i
\(92\) 65.3076 11.5155i 0.0740086 0.0130497i
\(93\) 0 0
\(94\) 437.777i 0.480354i
\(95\) 601.765 + 1276.58i 0.649892 + 1.37868i
\(96\) 0 0
\(97\) 447.484 1229.45i 0.468404 1.28693i −0.450617 0.892718i \(-0.648796\pi\)
0.919020 0.394211i \(-0.128982\pi\)
\(98\) −298.524 1693.01i −0.307709 1.74511i
\(99\) 0 0
\(100\) 254.129 213.240i 0.254129 0.213240i
\(101\) −576.547 101.661i −0.568006 0.100155i −0.117732 0.993045i \(-0.537562\pi\)
−0.450274 + 0.892891i \(0.648674\pi\)
\(102\) 0 0
\(103\) 346.380 199.983i 0.331358 0.191309i −0.325086 0.945684i \(-0.605393\pi\)
0.656444 + 0.754375i \(0.272060\pi\)
\(104\) 142.115 + 390.457i 0.133995 + 0.368149i
\(105\) 0 0
\(106\) −313.998 543.861i −0.287719 0.498343i
\(107\) −733.666 + 1270.75i −0.662862 + 1.14811i 0.316999 + 0.948426i \(0.397325\pi\)
−0.979860 + 0.199684i \(0.936008\pi\)
\(108\) 0 0
\(109\) 619.156 + 737.882i 0.544077 + 0.648406i 0.966097 0.258181i \(-0.0831230\pi\)
−0.422019 + 0.906587i \(0.638679\pi\)
\(110\) 83.4048 + 69.9849i 0.0722939 + 0.0606618i
\(111\) 0 0
\(112\) 1334.57 + 485.745i 1.12594 + 0.409809i
\(113\) 432.290 0.359880 0.179940 0.983678i \(-0.442410\pi\)
0.179940 + 0.983678i \(0.442410\pi\)
\(114\) 0 0
\(115\) −563.394 −0.456841
\(116\) −170.129 61.9219i −0.136173 0.0495630i
\(117\) 0 0
\(118\) 599.577 + 503.105i 0.467759 + 0.392496i
\(119\) −2359.90 2812.41i −1.81791 2.16650i
\(120\) 0 0
\(121\) −662.095 + 1146.78i −0.497442 + 0.861594i
\(122\) −190.774 330.430i −0.141573 0.245211i
\(123\) 0 0
\(124\) −110.818 304.469i −0.0802558 0.220501i
\(125\) −596.071 + 344.142i −0.426514 + 0.246248i
\(126\) 0 0
\(127\) −748.419 131.966i −0.522925 0.0922057i −0.0940460 0.995568i \(-0.529980\pi\)
−0.428879 + 0.903362i \(0.641091\pi\)
\(128\) −523.264 + 439.071i −0.361332 + 0.303193i
\(129\) 0 0
\(130\) −122.884 696.912i −0.0829051 0.470178i
\(131\) 502.382 1380.28i 0.335063 0.920579i −0.651709 0.758469i \(-0.725948\pi\)
0.986773 0.162110i \(-0.0518300\pi\)
\(132\) 0 0
\(133\) −1885.36 + 1901.12i −1.22918 + 1.23946i
\(134\) 2630.87i 1.69606i
\(135\) 0 0
\(136\) 2739.68 483.080i 1.72740 0.304586i
\(137\) −1678.77 + 2000.68i −1.04691 + 1.24766i −0.0788689 + 0.996885i \(0.525131\pi\)
−0.968045 + 0.250778i \(0.919314\pi\)
\(138\) 0 0
\(139\) −73.4203 + 416.387i −0.0448017 + 0.254083i −0.998980 0.0451558i \(-0.985622\pi\)
0.954178 + 0.299239i \(0.0967327\pi\)
\(140\) 956.989 + 552.518i 0.577717 + 0.333545i
\(141\) 0 0
\(142\) 1995.78 726.406i 1.17945 0.429286i
\(143\) −41.5946 + 15.1392i −0.0243239 + 0.00885317i
\(144\) 0 0
\(145\) 1332.06 + 769.064i 0.762906 + 0.440464i
\(146\) −90.3798 + 512.569i −0.0512321 + 0.290552i
\(147\) 0 0
\(148\) 254.047 302.762i 0.141098 0.168155i
\(149\) 500.175 88.1944i 0.275006 0.0484910i −0.0344441 0.999407i \(-0.510966\pi\)
0.309450 + 0.950916i \(0.399855\pi\)
\(150\) 0 0
\(151\) 168.171i 0.0906326i 0.998973 + 0.0453163i \(0.0144296\pi\)
−0.998973 + 0.0453163i \(0.985570\pi\)
\(152\) −533.258 1957.51i −0.284559 1.04457i
\(153\) 0 0
\(154\) −70.6467 + 194.100i −0.0369667 + 0.101565i
\(155\) 477.999 + 2710.87i 0.247702 + 1.40479i
\(156\) 0 0
\(157\) 481.482 404.011i 0.244754 0.205373i −0.512155 0.858893i \(-0.671153\pi\)
0.756910 + 0.653520i \(0.226708\pi\)
\(158\) 1466.83 + 258.642i 0.738575 + 0.130231i
\(159\) 0 0
\(160\) −1304.94 + 753.408i −0.644779 + 0.372263i
\(161\) −365.567 1004.39i −0.178949 0.491657i
\(162\) 0 0
\(163\) 1821.90 + 3155.62i 0.875473 + 1.51636i 0.856258 + 0.516548i \(0.172783\pi\)
0.0192146 + 0.999815i \(0.493883\pi\)
\(164\) −438.722 + 759.888i −0.208893 + 0.361813i
\(165\) 0 0
\(166\) −467.081 556.646i −0.218389 0.260266i
\(167\) 566.487 + 475.339i 0.262491 + 0.220256i 0.764529 0.644589i \(-0.222972\pi\)
−0.502038 + 0.864846i \(0.667416\pi\)
\(168\) 0 0
\(169\) −1794.15 653.019i −0.816638 0.297232i
\(170\) −4737.91 −2.13754
\(171\) 0 0
\(172\) −1033.48 −0.458154
\(173\) −1983.64 721.987i −0.871755 0.317293i −0.132877 0.991132i \(-0.542422\pi\)
−0.738878 + 0.673840i \(0.764644\pi\)
\(174\) 0 0
\(175\) −4095.98 3436.94i −1.76930 1.48462i
\(176\) −73.6905 87.8209i −0.0315604 0.0376122i
\(177\) 0 0
\(178\) −286.745 + 496.657i −0.120744 + 0.209135i
\(179\) −536.327 928.945i −0.223949 0.387892i 0.732054 0.681246i \(-0.238562\pi\)
−0.956004 + 0.293355i \(0.905228\pi\)
\(180\) 0 0
\(181\) 1139.78 + 3131.51i 0.468061 + 1.28599i 0.919291 + 0.393578i \(0.128763\pi\)
−0.451231 + 0.892407i \(0.649015\pi\)
\(182\) 1162.68 671.273i 0.473536 0.273396i
\(183\) 0 0
\(184\) 797.609 + 140.640i 0.319568 + 0.0563485i
\(185\) −2572.18 + 2158.31i −1.02222 + 0.857743i
\(186\) 0 0
\(187\) 51.4615 + 291.853i 0.0201243 + 0.114130i
\(188\) −122.668 + 337.027i −0.0475877 + 0.130746i
\(189\) 0 0
\(190\) 315.479 + 3440.87i 0.120459 + 1.31383i
\(191\) 192.870i 0.0730660i −0.999332 0.0365330i \(-0.988369\pi\)
0.999332 0.0365330i \(-0.0116314\pi\)
\(192\) 0 0
\(193\) −400.593 + 70.6354i −0.149406 + 0.0263443i −0.247851 0.968798i \(-0.579724\pi\)
0.0984449 + 0.995143i \(0.468613\pi\)
\(194\) 2059.01 2453.83i 0.762002 0.908118i
\(195\) 0 0
\(196\) −244.571 + 1387.03i −0.0891295 + 0.505479i
\(197\) 2815.06 + 1625.28i 1.01810 + 0.587798i 0.913552 0.406722i \(-0.133328\pi\)
0.104544 + 0.994520i \(0.466662\pi\)
\(198\) 0 0
\(199\) 1928.78 702.019i 0.687074 0.250074i 0.0251920 0.999683i \(-0.491980\pi\)
0.661882 + 0.749608i \(0.269758\pi\)
\(200\) 3807.27 1385.73i 1.34607 0.489930i
\(201\) 0 0
\(202\) −1241.31 716.668i −0.432366 0.249627i
\(203\) −506.717 + 2873.74i −0.175195 + 0.993581i
\(204\) 0 0
\(205\) 4791.66 5710.48i 1.63251 1.94555i
\(206\) 964.359 170.043i 0.326165 0.0575118i
\(207\) 0 0
\(208\) 745.132i 0.248392i
\(209\) 208.529 56.8068i 0.0690156 0.0188010i
\(210\) 0 0
\(211\) −300.913 + 826.752i −0.0981787 + 0.269744i −0.979053 0.203607i \(-0.934734\pi\)
0.880874 + 0.473351i \(0.156956\pi\)
\(212\) 89.3415 + 506.681i 0.0289434 + 0.164146i
\(213\) 0 0
\(214\) −2751.99 + 2309.20i −0.879077 + 0.737633i
\(215\) 8646.79 + 1524.66i 2.74282 + 0.483633i
\(216\) 0 0
\(217\) −4522.63 + 2611.14i −1.41482 + 0.816847i
\(218\) 806.584 + 2216.07i 0.250591 + 0.688492i
\(219\) 0 0
\(220\) −44.5998 77.2492i −0.0136678 0.0236734i
\(221\) 963.100 1668.14i 0.293145 0.507743i
\(222\) 0 0
\(223\) −2886.49 3439.99i −0.866788 1.03300i −0.999126 0.0417931i \(-0.986693\pi\)
0.132338 0.991205i \(-0.457751\pi\)
\(224\) −2189.86 1837.51i −0.653199 0.548099i
\(225\) 0 0
\(226\) 994.548 + 361.986i 0.292727 + 0.106544i
\(227\) −2040.31 −0.596564 −0.298282 0.954478i \(-0.596414\pi\)
−0.298282 + 0.954478i \(0.596414\pi\)
\(228\) 0 0
\(229\) 6298.92 1.81766 0.908831 0.417165i \(-0.136976\pi\)
0.908831 + 0.417165i \(0.136976\pi\)
\(230\) −1296.17 471.768i −0.371596 0.135250i
\(231\) 0 0
\(232\) −1693.84 1421.30i −0.479337 0.402212i
\(233\) −2507.59 2988.43i −0.705055 0.840252i 0.288033 0.957620i \(-0.406999\pi\)
−0.993088 + 0.117369i \(0.962554\pi\)
\(234\) 0 0
\(235\) 1523.52 2638.82i 0.422909 0.732501i
\(236\) −320.618 555.326i −0.0884340 0.153172i
\(237\) 0 0
\(238\) −3074.27 8446.49i −0.837291 2.30044i
\(239\) 3786.59 2186.19i 1.02483 0.591686i 0.109330 0.994005i \(-0.465129\pi\)
0.915499 + 0.402320i \(0.131796\pi\)
\(240\) 0 0
\(241\) 4029.56 + 710.520i 1.07704 + 0.189911i 0.683906 0.729570i \(-0.260280\pi\)
0.393134 + 0.919481i \(0.371391\pi\)
\(242\) −2483.53 + 2083.93i −0.659699 + 0.553554i
\(243\) 0 0
\(244\) 54.2807 + 307.841i 0.0142417 + 0.0807685i
\(245\) 4092.48 11244.0i 1.06718 2.93205i
\(246\) 0 0
\(247\) −1275.60 588.369i −0.328602 0.151567i
\(248\) 3957.16i 1.01323i
\(249\) 0 0
\(250\) −1659.52 + 292.619i −0.419830 + 0.0740274i
\(251\) −2037.95 + 2428.73i −0.512487 + 0.610758i −0.958787 0.284125i \(-0.908297\pi\)
0.446300 + 0.894883i \(0.352741\pi\)
\(252\) 0 0
\(253\) −14.9821 + 84.9676i −0.00372299 + 0.0211141i
\(254\) −1611.35 930.311i −0.398051 0.229815i
\(255\) 0 0
\(256\) 2697.92 981.963i 0.658672 0.239737i
\(257\) −6424.96 + 2338.49i −1.55945 + 0.567593i −0.970610 0.240659i \(-0.922637\pi\)
−0.588838 + 0.808251i \(0.700414\pi\)
\(258\) 0 0
\(259\) −5516.72 3185.08i −1.32352 0.764136i
\(260\) −100.675 + 570.958i −0.0240139 + 0.136190i
\(261\) 0 0
\(262\) 2311.61 2754.87i 0.545083 0.649605i
\(263\) 2411.70 425.248i 0.565445 0.0997032i 0.116384 0.993204i \(-0.462870\pi\)
0.449061 + 0.893501i \(0.351759\pi\)
\(264\) 0 0
\(265\) 4371.02i 1.01324i
\(266\) −5929.49 + 2795.08i −1.36677 + 0.644277i
\(267\) 0 0
\(268\) 737.186 2025.40i 0.168025 0.461646i
\(269\) −914.845 5188.35i −0.207357 1.17598i −0.893687 0.448691i \(-0.851890\pi\)
0.686330 0.727290i \(-0.259221\pi\)
\(270\) 0 0
\(271\) 1602.35 1344.53i 0.359172 0.301381i −0.445289 0.895387i \(-0.646899\pi\)
0.804461 + 0.594006i \(0.202454\pi\)
\(272\) 4912.99 + 866.292i 1.09520 + 0.193113i
\(273\) 0 0
\(274\) −5537.58 + 3197.12i −1.22094 + 0.704909i
\(275\) 147.619 + 405.580i 0.0323700 + 0.0889360i
\(276\) 0 0
\(277\) −2549.88 4416.52i −0.553095 0.957989i −0.998049 0.0624355i \(-0.980113\pi\)
0.444954 0.895554i \(-0.353220\pi\)
\(278\) −517.584 + 896.482i −0.111664 + 0.193408i
\(279\) 0 0
\(280\) 8675.01 + 10338.5i 1.85154 + 2.20658i
\(281\) 4828.42 + 4051.53i 1.02505 + 0.860121i 0.990254 0.139274i \(-0.0444768\pi\)
0.0347978 + 0.999394i \(0.488921\pi\)
\(282\) 0 0
\(283\) −817.471 297.535i −0.171709 0.0624970i 0.254735 0.967011i \(-0.418012\pi\)
−0.426444 + 0.904514i \(0.640234\pi\)
\(284\) −1740.02 −0.363560
\(285\) 0 0
\(286\) −108.372 −0.0224061
\(287\) 13289.5 + 4836.97i 2.73329 + 0.994835i
\(288\) 0 0
\(289\) −6115.50 5131.51i −1.24476 1.04448i
\(290\) 2420.61 + 2884.77i 0.490149 + 0.584137i
\(291\) 0 0
\(292\) 213.205 369.282i 0.0427290 0.0740089i
\(293\) −1570.46 2720.11i −0.313130 0.542357i 0.665908 0.746034i \(-0.268044\pi\)
−0.979038 + 0.203677i \(0.934711\pi\)
\(294\) 0 0
\(295\) 1863.24 + 5119.21i 0.367736 + 1.01035i
\(296\) 4180.27 2413.48i 0.820855 0.473921i
\(297\) 0 0
\(298\) 1224.58 + 215.926i 0.238047 + 0.0419741i
\(299\) 429.581 360.462i 0.0830881 0.0697192i
\(300\) 0 0
\(301\) 2892.52 + 16404.3i 0.553895 + 3.14129i
\(302\) −140.821 + 386.902i −0.0268322 + 0.0737209i
\(303\) 0 0
\(304\) 302.001 3625.70i 0.0569768 0.684040i
\(305\) 2655.67i 0.498569i
\(306\) 0 0
\(307\) 6872.64 1211.83i 1.27766 0.225286i 0.506675 0.862137i \(-0.330875\pi\)
0.770987 + 0.636851i \(0.219763\pi\)
\(308\) 108.776 129.634i 0.0201237 0.0239825i
\(309\) 0 0
\(310\) −1170.29 + 6637.02i −0.214412 + 1.21599i
\(311\) −2030.32 1172.20i −0.370189 0.213728i 0.303352 0.952878i \(-0.401894\pi\)
−0.673541 + 0.739150i \(0.735227\pi\)
\(312\) 0 0
\(313\) −7889.33 + 2871.48i −1.42470 + 0.518548i −0.935408 0.353571i \(-0.884967\pi\)
−0.489292 + 0.872120i \(0.662745\pi\)
\(314\) 1446.03 526.311i 0.259886 0.0945906i
\(315\) 0 0
\(316\) −1056.78 610.134i −0.188129 0.108616i
\(317\) 1032.78 5857.18i 0.182986 1.03777i −0.745529 0.666473i \(-0.767803\pi\)
0.928515 0.371294i \(-0.121086\pi\)
\(318\) 0 0
\(319\) 151.408 180.441i 0.0265744 0.0316702i
\(320\) −9530.96 + 1680.57i −1.66499 + 0.293583i
\(321\) 0 0
\(322\) 2616.86i 0.452894i
\(323\) −5362.40 + 7726.57i −0.923751 + 1.33101i
\(324\) 0 0
\(325\) 959.471 2636.12i 0.163760 0.449926i
\(326\) 1549.14 + 8785.58i 0.263186 + 1.49260i
\(327\) 0 0
\(328\) −8209.17 + 6888.31i −1.38194 + 1.15958i
\(329\) 5692.90 + 1003.81i 0.953981 + 0.168213i
\(330\) 0 0
\(331\) −2300.18 + 1328.01i −0.381961 + 0.220525i −0.678671 0.734442i \(-0.737444\pi\)
0.296710 + 0.954968i \(0.404110\pi\)
\(332\) 203.612 + 559.419i 0.0336586 + 0.0924762i
\(333\) 0 0
\(334\) 905.255 + 1567.95i 0.148303 + 0.256869i
\(335\) −9155.78 + 15858.3i −1.49323 + 2.58636i
\(336\) 0 0
\(337\) −6279.14 7483.19i −1.01498 1.20960i −0.977637 0.210298i \(-0.932557\pi\)
−0.0373380 0.999303i \(-0.511888\pi\)
\(338\) −3580.91 3004.74i −0.576259 0.483539i
\(339\) 0 0
\(340\) 3647.53 + 1327.59i 0.581810 + 0.211761i
\(341\) 421.548 0.0669446
\(342\) 0 0
\(343\) 11611.8 1.82792
\(344\) −11860.9 4317.00i −1.85899 0.676619i
\(345\) 0 0
\(346\) −3959.10 3322.08i −0.615152 0.516174i
\(347\) −936.152 1115.66i −0.144828 0.172599i 0.688754 0.724995i \(-0.258158\pi\)
−0.833582 + 0.552396i \(0.813714\pi\)
\(348\) 0 0
\(349\) −3585.66 + 6210.54i −0.549959 + 0.952557i 0.448317 + 0.893874i \(0.352023\pi\)
−0.998277 + 0.0586830i \(0.981310\pi\)
\(350\) −6545.44 11337.0i −0.999624 1.73140i
\(351\) 0 0
\(352\) 78.9227 + 216.838i 0.0119505 + 0.0328339i
\(353\) 3806.11 2197.46i 0.573878 0.331329i −0.184819 0.982773i \(-0.559170\pi\)
0.758697 + 0.651444i \(0.225836\pi\)
\(354\) 0 0
\(355\) 14558.1 + 2566.99i 2.17652 + 0.383779i
\(356\) 359.920 302.009i 0.0535835 0.0449619i
\(357\) 0 0
\(358\) −456.031 2586.28i −0.0673240 0.381814i
\(359\) −1689.39 + 4641.56i −0.248363 + 0.682373i 0.751383 + 0.659866i \(0.229387\pi\)
−0.999747 + 0.0225069i \(0.992835\pi\)
\(360\) 0 0
\(361\) 5968.42 + 3379.92i 0.870159 + 0.492771i
\(362\) 8158.93i 1.18460i
\(363\) 0 0
\(364\) −1083.20 + 190.997i −0.155975 + 0.0275026i
\(365\) −2328.60 + 2775.12i −0.333930 + 0.397962i
\(366\) 0 0
\(367\) 1214.96 6890.38i 0.172808 0.980041i −0.767836 0.640646i \(-0.778667\pi\)
0.940644 0.339395i \(-0.110222\pi\)
\(368\) 1257.81 + 726.196i 0.178173 + 0.102868i
\(369\) 0 0
\(370\) −7724.99 + 2811.67i −1.08541 + 0.395058i
\(371\) 7792.41 2836.21i 1.09046 0.396896i
\(372\) 0 0
\(373\) 4373.56 + 2525.08i 0.607116 + 0.350519i 0.771836 0.635822i \(-0.219339\pi\)
−0.164720 + 0.986340i \(0.552672\pi\)
\(374\) −125.993 + 714.543i −0.0174197 + 0.0987919i
\(375\) 0 0
\(376\) −2815.61 + 3355.52i −0.386181 + 0.460233i
\(377\) −1507.73 + 265.853i −0.205973 + 0.0363187i
\(378\) 0 0
\(379\) 3835.52i 0.519835i −0.965631 0.259917i \(-0.916305\pi\)
0.965631 0.259917i \(-0.0836954\pi\)
\(380\) 721.279 2737.39i 0.0973706 0.369540i
\(381\) 0 0
\(382\) 161.504 443.728i 0.0216315 0.0594322i
\(383\) −1414.56 8022.38i −0.188723 1.07030i −0.921078 0.389377i \(-0.872690\pi\)
0.732356 0.680922i \(-0.238421\pi\)
\(384\) 0 0
\(385\) −1101.34 + 924.131i −0.145790 + 0.122333i
\(386\) −980.774 172.937i −0.129327 0.0228038i
\(387\) 0 0
\(388\) −2272.73 + 1312.16i −0.297372 + 0.171688i
\(389\) −2353.66 6466.62i −0.306774 0.842855i −0.993281 0.115731i \(-0.963079\pi\)
0.686506 0.727124i \(-0.259143\pi\)
\(390\) 0 0
\(391\) −1877.25 3251.49i −0.242805 0.420550i
\(392\) −8600.66 + 14896.8i −1.10816 + 1.91939i
\(393\) 0 0
\(394\) 5115.52 + 6096.44i 0.654102 + 0.779529i
\(395\) 7941.61 + 6663.80i 1.01161 + 0.848841i
\(396\) 0 0
\(397\) −121.007 44.0431i −0.0152977 0.00556791i 0.334360 0.942445i \(-0.391480\pi\)
−0.349658 + 0.936878i \(0.613702\pi\)
\(398\) 5025.30 0.632904
\(399\) 0 0
\(400\) 7265.62 0.908202
\(401\) −2279.37 829.624i −0.283857 0.103315i 0.196168 0.980570i \(-0.437150\pi\)
−0.480025 + 0.877255i \(0.659372\pi\)
\(402\) 0 0
\(403\) −2098.89 1761.18i −0.259437 0.217694i
\(404\) 754.818 + 899.557i 0.0929544 + 0.110779i
\(405\) 0 0
\(406\) −3572.16 + 6187.16i −0.436658 + 0.756314i
\(407\) 257.103 + 445.315i 0.0313123 + 0.0542345i
\(408\) 0 0
\(409\) −3272.99 8992.46i −0.395694 1.08716i −0.964360 0.264592i \(-0.914763\pi\)
0.568666 0.822568i \(-0.307460\pi\)
\(410\) 15805.7 9125.44i 1.90388 1.09920i
\(411\) 0 0
\(412\) −790.069 139.310i −0.0944755 0.0166586i
\(413\) −7917.25 + 6643.36i −0.943298 + 0.791521i
\(414\) 0 0
\(415\) −878.256 4980.84i −0.103884 0.589156i
\(416\) 512.969 1409.37i 0.0604576 0.166106i
\(417\) 0 0
\(418\) 527.321 + 43.9229i 0.0617036 + 0.00513957i
\(419\) 2423.96i 0.282621i 0.989965 + 0.141310i \(0.0451315\pi\)
−0.989965 + 0.141310i \(0.954868\pi\)
\(420\) 0 0
\(421\) 7855.37 1385.11i 0.909376 0.160348i 0.300656 0.953733i \(-0.402794\pi\)
0.608720 + 0.793385i \(0.291683\pi\)
\(422\) −1384.59 + 1650.09i −0.159718 + 0.190344i
\(423\) 0 0
\(424\) −1091.14 + 6188.15i −0.124977 + 0.708781i
\(425\) −16265.7 9390.98i −1.85647 1.07183i
\(426\) 0 0
\(427\) 4734.39 1723.18i 0.536564 0.195293i
\(428\) 2765.70 1006.63i 0.312349 0.113686i
\(429\) 0 0
\(430\) 18616.5 + 10748.3i 2.08784 + 1.20541i
\(431\) 849.727 4819.04i 0.0949650 0.538573i −0.899793 0.436317i \(-0.856283\pi\)
0.994758 0.102257i \(-0.0326063\pi\)
\(432\) 0 0
\(433\) −6248.92 + 7447.17i −0.693542 + 0.826531i −0.991779 0.127960i \(-0.959157\pi\)
0.298237 + 0.954492i \(0.403601\pi\)
\(434\) −12591.5 + 2220.22i −1.39265 + 0.245562i
\(435\) 0 0
\(436\) 1932.08i 0.212224i
\(437\) −2236.37 + 1579.84i −0.244806 + 0.172939i
\(438\) 0 0
\(439\) 2819.73 7747.15i 0.306557 0.842258i −0.686765 0.726880i \(-0.740970\pi\)
0.993322 0.115379i \(-0.0368081\pi\)
\(440\) −189.173 1072.85i −0.0204965 0.116242i
\(441\) 0 0
\(442\) 3612.60 3031.34i 0.388765 0.326213i
\(443\) 6967.14 + 1228.49i 0.747220 + 0.131755i 0.534277 0.845309i \(-0.320584\pi\)
0.212943 + 0.977065i \(0.431695\pi\)
\(444\) 0 0
\(445\) −3456.87 + 1995.82i −0.368250 + 0.212609i
\(446\) −3760.27 10331.3i −0.399224 1.09686i
\(447\) 0 0
\(448\) −9180.33 15900.8i −0.968147 1.67688i
\(449\) −1736.16 + 3007.12i −0.182482 + 0.316069i −0.942725 0.333570i \(-0.891747\pi\)
0.760243 + 0.649639i \(0.225080\pi\)
\(450\) 0 0
\(451\) −733.798 874.506i −0.0766146 0.0913057i
\(452\) −664.233 557.357i −0.0691214 0.0579997i
\(453\) 0 0
\(454\) −4694.04 1708.49i −0.485247 0.176616i
\(455\) 9344.49 0.962805
\(456\) 0 0
\(457\) −1998.52 −0.204566 −0.102283 0.994755i \(-0.532615\pi\)
−0.102283 + 0.994755i \(0.532615\pi\)
\(458\) 14491.6 + 5274.52i 1.47849 + 0.538127i
\(459\) 0 0
\(460\) 865.680 + 726.392i 0.0877447 + 0.0736265i
\(461\) −10807.1 12879.4i −1.09184 1.30120i −0.950323 0.311265i \(-0.899247\pi\)
−0.141514 0.989936i \(-0.545197\pi\)
\(462\) 0 0
\(463\) 1588.00 2750.49i 0.159396 0.276083i −0.775255 0.631649i \(-0.782379\pi\)
0.934651 + 0.355566i \(0.115712\pi\)
\(464\) −1982.60 3433.96i −0.198362 0.343572i
\(465\) 0 0
\(466\) −3266.68 8975.12i −0.324734 0.892198i
\(467\) −4214.42 + 2433.20i −0.417602 + 0.241102i −0.694051 0.719926i \(-0.744176\pi\)
0.276449 + 0.961029i \(0.410842\pi\)
\(468\) 0 0
\(469\) −34212.1 6032.52i −3.36838 0.593936i
\(470\) 5714.76 4795.25i 0.560856 0.470614i
\(471\) 0 0
\(472\) −1359.92 7712.50i −0.132618 0.752111i
\(473\) 459.881 1263.51i 0.0447047 0.122825i
\(474\) 0 0
\(475\) −5737.06 + 12438.1i −0.554178 + 1.20147i
\(476\) 7364.05i 0.709098i
\(477\) 0 0
\(478\) 10542.3 1858.89i 1.00877 0.177874i
\(479\) 6383.28 7607.30i 0.608893 0.725650i −0.370225 0.928942i \(-0.620720\pi\)
0.979118 + 0.203292i \(0.0651640\pi\)
\(480\) 0 0
\(481\) 580.359 3291.38i 0.0550147 0.312004i
\(482\) 8675.64 + 5008.88i 0.819843 + 0.473337i
\(483\) 0 0
\(484\) 2495.90 908.434i 0.234401 0.0853150i
\(485\) 20950.9 7625.51i 1.96151 0.713931i
\(486\) 0 0
\(487\) 16637.4 + 9605.60i 1.54807 + 0.893781i 0.998289 + 0.0584752i \(0.0186239\pi\)
0.549785 + 0.835306i \(0.314709\pi\)
\(488\) −662.936 + 3759.70i −0.0614953 + 0.348757i
\(489\) 0 0
\(490\) 18830.8 22441.6i 1.73610 2.06900i
\(491\) 10979.8 1936.04i 1.00919 0.177947i 0.355472 0.934687i \(-0.384320\pi\)
0.653716 + 0.756740i \(0.273209\pi\)
\(492\) 0 0
\(493\) 10250.2i 0.936402i
\(494\) −2442.03 2421.78i −0.222413 0.220569i
\(495\) 0 0
\(496\) 2427.06 6668.29i 0.219714 0.603660i
\(497\) 4869.98 + 27619.0i 0.439534 + 2.49272i
\(498\) 0 0
\(499\) −5839.90 + 4900.26i −0.523908 + 0.439611i −0.865992 0.500059i \(-0.833312\pi\)
0.342084 + 0.939669i \(0.388867\pi\)
\(500\) 1359.60 + 239.733i 0.121606 + 0.0214424i
\(501\) 0 0
\(502\) −6722.35 + 3881.15i −0.597676 + 0.345068i
\(503\) −5034.21 13831.4i −0.446251 1.22607i −0.935315 0.353817i \(-0.884883\pi\)
0.489063 0.872248i \(-0.337339\pi\)
\(504\) 0 0
\(505\) −4988.20 8639.82i −0.439549 0.761321i
\(506\) −105.618 + 182.935i −0.00927922 + 0.0160721i
\(507\) 0 0
\(508\) 979.833 + 1167.72i 0.0855769 + 0.101987i
\(509\) 11873.6 + 9963.11i 1.03396 + 0.867597i 0.991317 0.131493i \(-0.0419771\pi\)
0.0426450 + 0.999090i \(0.486422\pi\)
\(510\) 0 0
\(511\) −6458.27 2350.62i −0.559094 0.203494i
\(512\) 12493.8 1.07843
\(513\) 0 0
\(514\) −16739.8 −1.43650
\(515\) 6404.70 + 2331.12i 0.548010 + 0.199459i
\(516\) 0 0
\(517\) −357.456 299.941i −0.0304080 0.0255153i
\(518\) −10025.0 11947.3i −0.850331 1.01339i
\(519\) 0 0
\(520\) −3540.37 + 6132.10i −0.298568 + 0.517136i
\(521\) −7461.16 12923.1i −0.627408 1.08670i −0.988070 0.154005i \(-0.950783\pi\)
0.360663 0.932696i \(-0.382551\pi\)
\(522\) 0 0
\(523\) 4857.34 + 13345.4i 0.406112 + 1.11578i 0.959216 + 0.282673i \(0.0912210\pi\)
−0.553104 + 0.833112i \(0.686557\pi\)
\(524\) −2551.55 + 1473.14i −0.212719 + 0.122814i
\(525\) 0 0
\(526\) 5904.58 + 1041.14i 0.489452 + 0.0863036i
\(527\) −14052.4 + 11791.4i −1.16154 + 0.974650i
\(528\) 0 0
\(529\) 1922.97 + 10905.7i 0.158048 + 0.896335i
\(530\) 3660.16 10056.2i 0.299976 0.824176i
\(531\) 0 0
\(532\) 5348.08 490.344i 0.435844 0.0399607i
\(533\) 7419.90i 0.602986i
\(534\) 0 0
\(535\) −24624.7 + 4342.00i −1.98994 + 0.350880i
\(536\) 16920.7 20165.3i 1.36355 1.62502i
\(537\) 0 0
\(538\) 2239.82 12702.6i 0.179490 1.01794i
\(539\) −1586.92 916.210i −0.126816 0.0732170i
\(540\) 0 0
\(541\) −10891.7 + 3964.26i −0.865567 + 0.315041i −0.736371 0.676579i \(-0.763462\pi\)
−0.129196 + 0.991619i \(0.541240\pi\)
\(542\) 4812.31 1751.54i 0.381377 0.138810i
\(543\) 0 0
\(544\) −8696.23 5020.77i −0.685382 0.395705i
\(545\) −2850.32 + 16165.0i −0.224026 + 1.27052i
\(546\) 0 0
\(547\) 6787.60 8089.15i 0.530561 0.632298i −0.432483 0.901642i \(-0.642362\pi\)
0.963044 + 0.269344i \(0.0868068\pi\)
\(548\) 5159.02 909.674i 0.402157 0.0709112i
\(549\) 0 0
\(550\) 1056.71i 0.0819241i
\(551\) 7444.13 682.522i 0.575555 0.0527703i
\(552\) 0 0
\(553\) −6726.81 + 18481.8i −0.517275 + 1.42120i
\(554\) −2168.13 12296.1i −0.166272 0.942978i
\(555\) 0 0
\(556\) 649.668 545.136i 0.0495540 0.0415808i
\(557\) −7815.31 1378.05i −0.594516 0.104829i −0.131709 0.991288i \(-0.542046\pi\)
−0.462807 + 0.886459i \(0.653158\pi\)
\(558\) 0 0
\(559\) −7568.56 + 4369.71i −0.572659 + 0.330625i
\(560\) 8277.51 + 22742.3i 0.624622 + 1.71614i
\(561\) 0 0
\(562\) 7715.89 + 13364.3i 0.579138 + 1.00310i
\(563\) −1775.92 + 3075.98i −0.132941 + 0.230261i −0.924809 0.380431i \(-0.875776\pi\)
0.791868 + 0.610693i \(0.209109\pi\)
\(564\) 0 0
\(565\) 4735.15 + 5643.13i 0.352582 + 0.420191i
\(566\) −1631.57 1369.05i −0.121166 0.101670i
\(567\) 0 0
\(568\) −19969.5 7268.29i −1.47518 0.536920i
\(569\) −13506.7 −0.995134 −0.497567 0.867425i \(-0.665773\pi\)
−0.497567 + 0.867425i \(0.665773\pi\)
\(570\) 0 0
\(571\) 4998.36 0.366331 0.183166 0.983082i \(-0.441366\pi\)
0.183166 + 0.983082i \(0.441366\pi\)
\(572\) 83.4312 + 30.3665i 0.00609866 + 0.00221973i
\(573\) 0 0
\(574\) 26524.1 + 22256.4i 1.92874 + 1.61840i
\(575\) −3514.78 4188.76i −0.254916 0.303797i
\(576\) 0 0
\(577\) 2403.19 4162.45i 0.173390 0.300321i −0.766213 0.642587i \(-0.777861\pi\)
0.939603 + 0.342266i \(0.111194\pi\)
\(578\) −9772.67 16926.8i −0.703269 1.21810i
\(579\) 0 0
\(580\) −1055.20 2899.14i −0.0755429 0.207552i
\(581\) 8309.69 4797.60i 0.593363 0.342578i
\(582\) 0 0
\(583\) −659.211 116.237i −0.0468297 0.00825734i
\(584\) 3989.40 3347.50i 0.282676 0.237193i
\(585\) 0 0
\(586\) −1335.34 7573.08i −0.0941336 0.533858i
\(587\) 2865.68 7873.39i 0.201498 0.553611i −0.797249 0.603650i \(-0.793712\pi\)
0.998747 + 0.0500391i \(0.0159346\pi\)
\(588\) 0 0
\(589\) 9499.09 + 9420.32i 0.664522 + 0.659011i
\(590\) 13337.7i 0.930688i
\(591\) 0 0
\(592\) 8524.53 1503.10i 0.591817 0.104353i
\(593\) 6750.49 8044.92i 0.467470 0.557109i −0.479870 0.877340i \(-0.659316\pi\)
0.947339 + 0.320231i \(0.103761\pi\)
\(594\) 0 0
\(595\) 10863.9 61612.4i 0.748533 4.24514i
\(596\) −882.252 509.368i −0.0606350 0.0350076i
\(597\) 0 0
\(598\) 1290.16 469.579i 0.0882248 0.0321112i
\(599\) −11532.6 + 4197.52i −0.786659 + 0.286320i −0.703947 0.710253i \(-0.748581\pi\)
−0.0827125 + 0.996573i \(0.526358\pi\)
\(600\) 0 0
\(601\) 4123.91 + 2380.94i 0.279897 + 0.161598i 0.633377 0.773844i \(-0.281668\pi\)
−0.353480 + 0.935442i \(0.615002\pi\)
\(602\) −7081.77 + 40162.7i −0.479454 + 2.71912i
\(603\) 0 0
\(604\) 216.825 258.402i 0.0146067 0.0174076i
\(605\) −22222.5 + 3918.42i −1.49334 + 0.263317i
\(606\) 0 0
\(607\) 18072.8i 1.20849i 0.796799 + 0.604244i \(0.206525\pi\)
−0.796799 + 0.604244i \(0.793475\pi\)
\(608\) −3067.25 + 6649.88i −0.204594 + 0.443566i
\(609\) 0 0
\(610\) 2223.78 6109.78i 0.147604 0.405537i
\(611\) 526.658 + 2986.83i 0.0348712 + 0.197764i
\(612\) 0 0
\(613\) 20316.8 17047.8i 1.33864 1.12325i 0.356668 0.934231i \(-0.383913\pi\)
0.981973 0.189021i \(-0.0605316\pi\)
\(614\) 16826.3 + 2966.93i 1.10595 + 0.195009i
\(615\) 0 0
\(616\) 1789.88 1033.39i 0.117072 0.0675914i
\(617\) 4200.28 + 11540.2i 0.274063 + 0.752982i 0.998006 + 0.0631219i \(0.0201057\pi\)
−0.723943 + 0.689860i \(0.757672\pi\)
\(618\) 0 0
\(619\) −6540.26 11328.1i −0.424677 0.735563i 0.571713 0.820454i \(-0.306279\pi\)
−0.996390 + 0.0848909i \(0.972946\pi\)
\(620\) 2760.69 4781.66i 0.178826 0.309736i
\(621\) 0 0
\(622\) −3689.48 4396.95i −0.237837 0.283443i
\(623\) −5801.08 4867.69i −0.373059 0.313033i
\(624\) 0 0
\(625\) 8405.41 + 3059.32i 0.537946 + 0.195796i
\(626\) −20555.1 −1.31237
\(627\) 0 0
\(628\) −1260.72 −0.0801083
\(629\) −21026.8 7653.13i −1.33290 0.485135i
\(630\) 0 0
\(631\) 3647.90 + 3060.95i 0.230144 + 0.193113i 0.750566 0.660796i \(-0.229781\pi\)
−0.520422 + 0.853909i \(0.674225\pi\)
\(632\) −9579.63 11416.6i −0.602939 0.718554i
\(633\) 0 0
\(634\) 7280.68 12610.5i 0.456077 0.789949i
\(635\) −6475.21 11215.4i −0.404663 0.700897i
\(636\) 0 0
\(637\) 4073.49 + 11191.8i 0.253371 + 0.696131i
\(638\) 499.434 288.348i 0.0309918 0.0178931i
\(639\) 0 0
\(640\) −11463.3 2021.29i −0.708010 0.124841i
\(641\) −40.8048 + 34.2393i −0.00251434 + 0.00210978i −0.644044 0.764989i \(-0.722745\pi\)
0.641530 + 0.767098i \(0.278300\pi\)
\(642\) 0 0
\(643\) 1647.83 + 9345.28i 0.101064 + 0.573160i 0.992720 + 0.120447i \(0.0384328\pi\)
−0.891656 + 0.452713i \(0.850456\pi\)
\(644\) −733.261 + 2014.62i −0.0448673 + 0.123272i
\(645\) 0 0
\(646\) −18807.0 + 13285.8i −1.14544 + 0.809171i
\(647\) 28173.2i 1.71190i 0.517056 + 0.855951i \(0.327028\pi\)
−0.517056 + 0.855951i \(0.672972\pi\)
\(648\) 0 0
\(649\) 821.596 144.870i 0.0496926 0.00876214i
\(650\) 4414.82 5261.37i 0.266405 0.317489i
\(651\) 0 0
\(652\) 1269.16 7197.75i 0.0762332 0.432340i
\(653\) −1929.79 1114.16i −0.115649 0.0667697i 0.441060 0.897478i \(-0.354603\pi\)
−0.556709 + 0.830708i \(0.687936\pi\)
\(654\) 0 0
\(655\) 23521.2 8561.01i 1.40313 0.510697i
\(656\) −18058.3 + 6572.68i −1.07478 + 0.391189i
\(657\) 0 0
\(658\) 12256.8 + 7076.48i 0.726171 + 0.419255i
\(659\) 4062.38 23038.9i 0.240134 1.36187i −0.591394 0.806382i \(-0.701422\pi\)
0.831528 0.555483i \(-0.187467\pi\)
\(660\) 0 0
\(661\) −16275.1 + 19395.9i −0.957680 + 1.14132i 0.0322105 + 0.999481i \(0.489745\pi\)
−0.989890 + 0.141837i \(0.954699\pi\)
\(662\) −6403.93 + 1129.19i −0.375976 + 0.0662947i
\(663\) 0 0
\(664\) 7270.72i 0.424938i
\(665\) −45468.9 3787.31i −2.65144 0.220850i
\(666\) 0 0
\(667\) −1020.64 + 2804.20i −0.0592496 + 0.162787i
\(668\) −257.571 1460.76i −0.0149188 0.0846085i
\(669\) 0 0
\(670\) −34343.5 + 28817.6i −1.98030 + 1.66167i
\(671\) −400.513 70.6212i −0.0230426 0.00406304i
\(672\) 0 0
\(673\) 16420.8 9480.55i 0.940527 0.543014i 0.0504017 0.998729i \(-0.483950\pi\)
0.890126 + 0.455715i \(0.150617\pi\)
\(674\) −8179.93 22474.2i −0.467476 1.28438i
\(675\) 0 0
\(676\) 1914.85 + 3316.62i 0.108947 + 0.188702i
\(677\) 13691.0 23713.6i 0.777237 1.34621i −0.156292 0.987711i \(-0.549954\pi\)
0.933529 0.358502i \(-0.116712\pi\)
\(678\) 0 0
\(679\) 27188.7 + 32402.2i 1.53668 + 1.83134i
\(680\) 36315.6 + 30472.4i 2.04800 + 1.71848i
\(681\) 0 0
\(682\) 969.835 + 352.991i 0.0544529 + 0.0198192i
\(683\) −20863.2 −1.16882 −0.584412 0.811457i \(-0.698675\pi\)
−0.584412 + 0.811457i \(0.698675\pi\)
\(684\) 0 0
\(685\) −44505.7 −2.48244
\(686\) 26714.6 + 9723.32i 1.48683 + 0.541164i
\(687\) 0 0
\(688\) −17339.2 14549.3i −0.960830 0.806232i
\(689\) 2796.60 + 3332.85i 0.154633 + 0.184284i
\(690\) 0 0
\(691\) −1711.52 + 2964.45i −0.0942249 + 0.163202i −0.909285 0.416174i \(-0.863371\pi\)
0.815060 + 0.579377i \(0.196704\pi\)
\(692\) 2117.09 + 3666.90i 0.116300 + 0.201438i
\(693\) 0 0
\(694\) −1219.54 3350.66i −0.0667047 0.183270i
\(695\) −6239.76 + 3602.52i −0.340557 + 0.196621i
\(696\) 0 0
\(697\) 48922.7 + 8626.39i 2.65865 + 0.468792i
\(698\) −13449.9 + 11285.8i −0.729347 + 0.611995i
\(699\) 0 0
\(700\) 1862.37 + 10562.0i 0.100558 + 0.570295i
\(701\) 2400.09 6594.20i 0.129316 0.355292i −0.858090 0.513499i \(-0.828349\pi\)
0.987406 + 0.158207i \(0.0505713\pi\)
\(702\) 0 0
\(703\) −4157.93 + 15780.1i −0.223072 + 0.846599i
\(704\) 1482.09i 0.0793444i
\(705\) 0 0
\(706\) 10596.6 1868.47i 0.564885 0.0996045i
\(707\) 12165.9 14498.8i 0.647166 0.771263i
\(708\) 0 0
\(709\) 439.853 2494.53i 0.0232991 0.132136i −0.970940 0.239325i \(-0.923074\pi\)
0.994239 + 0.107189i \(0.0341850\pi\)
\(710\) 31343.6 + 18096.3i 1.65677 + 0.956536i
\(711\) 0 0
\(712\) 5392.18 1962.59i 0.283821 0.103302i
\(713\) −5018.49 + 1826.58i −0.263596 + 0.0959411i
\(714\) 0 0
\(715\) −653.240 377.148i −0.0341675 0.0197266i
\(716\) −373.612 + 2118.86i −0.0195008 + 0.110594i
\(717\) 0 0
\(718\) −7773.39 + 9263.96i −0.404039 + 0.481515i
\(719\) −8839.76 + 1558.69i −0.458508 + 0.0808474i −0.398132 0.917328i \(-0.630341\pi\)
−0.0603767 + 0.998176i \(0.519230\pi\)
\(720\) 0 0
\(721\) 12930.5i 0.667903i
\(722\) 10901.0 + 12773.8i 0.561903 + 0.658436i
\(723\) 0 0
\(724\) 2286.18 6281.24i 0.117355 0.322431i
\(725\) 2592.28 + 14701.5i 0.132793 + 0.753105i
\(726\) 0 0
\(727\) 10032.2 8418.06i 0.511796 0.429448i −0.349965 0.936763i \(-0.613806\pi\)
0.861761 + 0.507315i \(0.169362\pi\)
\(728\) −13229.2 2332.66i −0.673498 0.118756i
\(729\) 0 0
\(730\) −7681.09 + 4434.68i −0.389438 + 0.224842i
\(731\) 20012.2 + 54983.1i 1.01256 + 2.78198i
\(732\) 0 0
\(733\) −8807.48 15255.0i −0.443808 0.768699i 0.554160 0.832410i \(-0.313040\pi\)
−0.997968 + 0.0637114i \(0.979706\pi\)
\(734\) 8564.99 14835.0i 0.430708 0.746008i
\(735\) 0 0
\(736\) −1879.13 2239.47i −0.0941112 0.112157i
\(737\) 2148.17 + 1802.53i 0.107366 + 0.0900910i
\(738\) 0 0
\(739\) −26825.4 9763.64i −1.33530 0.486010i −0.426971 0.904265i \(-0.640420\pi\)
−0.908330 + 0.418255i \(0.862642\pi\)
\(740\) 6735.01 0.334573
\(741\) 0 0
\(742\) 20302.6 1.00449
\(743\) 8990.70 + 3272.35i 0.443926 + 0.161576i 0.554305 0.832314i \(-0.312984\pi\)
−0.110379 + 0.993890i \(0.535206\pi\)
\(744\) 0 0
\(745\) 6630.03 + 5563.26i 0.326048 + 0.273586i
\(746\) 7947.62 + 9471.60i 0.390058 + 0.464853i
\(747\) 0 0
\(748\) 297.217 514.795i 0.0145285 0.0251641i
\(749\) −23718.8 41082.2i −1.15710 2.00415i
\(750\) 0 0
\(751\) −8575.14 23560.0i −0.416660 1.14476i −0.953583 0.301132i \(-0.902636\pi\)
0.536923 0.843631i \(-0.319587\pi\)
\(752\) −6802.70 + 3927.54i −0.329879 + 0.190456i
\(753\) 0 0
\(754\) −3691.38 650.889i −0.178292 0.0314376i
\(755\) −2195.31 + 1842.08i −0.105822 + 0.0887949i
\(756\) 0 0
\(757\) −4134.93 23450.3i −0.198529 1.12591i −0.907303 0.420478i \(-0.861862\pi\)
0.708774 0.705436i \(-0.249249\pi\)
\(758\) 3211.74 8824.20i 0.153899 0.422835i
\(759\) 0 0
\(760\) 19712.3 28403.0i 0.940840 1.35564i
\(761\) 16594.8i 0.790488i −0.918576 0.395244i \(-0.870660\pi\)
0.918576 0.395244i \(-0.129340\pi\)
\(762\) 0 0
\(763\) −30667.5 + 5407.51i −1.45510 + 0.256573i
\(764\) −248.671 + 296.354i −0.0117756 + 0.0140337i
\(765\) 0 0
\(766\) 3463.28 19641.2i 0.163359 0.926457i
\(767\) −4695.99 2711.23i −0.221072 0.127636i
\(768\) 0 0
\(769\) −55.5825 + 20.2304i −0.00260644 + 0.000948668i −0.343323 0.939217i \(-0.611553\pi\)
0.340717 + 0.940166i \(0.389330\pi\)
\(770\) −3307.63 + 1203.88i −0.154803 + 0.0563439i
\(771\) 0 0
\(772\) 706.601 + 407.956i 0.0329419 + 0.0190190i
\(773\) 543.482 3082.24i 0.0252881 0.143416i −0.969550 0.244895i \(-0.921246\pi\)
0.994838 + 0.101479i \(0.0323576\pi\)
\(774\) 0 0
\(775\) −17172.9 + 20465.8i −0.795959 + 0.948587i
\(776\) −31564.2 + 5565.62i −1.46017 + 0.257467i
\(777\) 0 0
\(778\) 16848.3i 0.776403i
\(779\) 3007.28 36104.1i 0.138314 1.66055i
\(780\) 0 0
\(781\) 774.275 2127.30i 0.0354747 0.0974660i
\(782\) −1596.20 9052.51i −0.0729924 0.413960i
\(783\) 0 0
\(784\) −23629.9 + 19827.8i −1.07643 + 0.903234i
\(785\) 10548.0 + 1859.89i 0.479583 + 0.0845634i
\(786\) 0 0
\(787\) −27158.9 + 15680.2i −1.23013 + 0.710215i −0.967057 0.254561i \(-0.918069\pi\)
−0.263072 + 0.964776i \(0.584736\pi\)
\(788\) −2229.98 6126.81i −0.100812 0.276978i
\(789\) 0 0
\(790\) 12690.8 + 21981.1i 0.571543 + 0.989942i
\(791\) −6987.78 + 12103.2i −0.314105 + 0.544045i
\(792\) 0 0
\(793\) 1699.11 + 2024.92i 0.0760872 + 0.0906772i
\(794\) −241.515 202.656i −0.0107948 0.00905790i
\(795\) 0 0
\(796\) −3868.78 1408.12i −0.172268 0.0627004i
\(797\) 35869.3 1.59417 0.797087 0.603864i \(-0.206373\pi\)
0.797087 + 0.603864i \(0.206373\pi\)
\(798\) 0 0
\(799\) 20305.8 0.899082
\(800\) −13742.5 5001.85i −0.607337 0.221053i
\(801\) 0 0
\(802\) −4549.34 3817.35i −0.200303 0.168074i
\(803\) 356.603 + 424.982i 0.0156715 + 0.0186766i
\(804\) 0 0
\(805\) 9107.02 15773.8i 0.398733 0.690626i
\(806\) −3354.06 5809.41i −0.146578 0.253881i
\(807\) 0 0
\(808\) 4905.15 + 13476.8i 0.213568 + 0.586772i
\(809\) 37114.6 21428.1i 1.61295 0.931239i 0.624272 0.781207i \(-0.285396\pi\)
0.988681 0.150032i \(-0.0479378\pi\)
\(810\) 0 0
\(811\) 5904.43 + 1041.11i 0.255650 + 0.0450781i 0.300004 0.953938i \(-0.403012\pi\)
−0.0443540 + 0.999016i \(0.514123\pi\)
\(812\) 4483.75 3762.31i 0.193779 0.162600i
\(813\) 0 0
\(814\) 218.611 + 1239.81i 0.00941316 + 0.0533847i
\(815\) −21237.2 + 58348.7i −0.912768 + 2.50781i
\(816\) 0 0
\(817\) 38598.5 18194.8i 1.65287 0.779139i
\(818\) 23429.2i 1.00145i
\(819\) 0 0
\(820\) −14725.2 + 2596.45i −0.627106 + 0.110576i
\(821\) −8788.15 + 10473.3i −0.373579 + 0.445214i −0.919777 0.392442i \(-0.871630\pi\)
0.546198 + 0.837656i \(0.316075\pi\)
\(822\) 0 0
\(823\) −5002.89 + 28372.8i −0.211895 + 1.20172i 0.674318 + 0.738441i \(0.264438\pi\)
−0.886214 + 0.463277i \(0.846674\pi\)
\(824\) −8485.36 4899.03i −0.358740 0.207119i
\(825\) 0 0
\(826\) −23777.8 + 8654.40i −1.00162 + 0.364558i
\(827\) 32340.0 11770.8i 1.35982 0.494935i 0.443823 0.896114i \(-0.353622\pi\)
0.916000 + 0.401179i \(0.131400\pi\)
\(828\) 0 0
\(829\) −6194.42 3576.35i −0.259519 0.149833i 0.364596 0.931166i \(-0.381207\pi\)
−0.624115 + 0.781332i \(0.714540\pi\)
\(830\) 2150.24 12194.6i 0.0899227 0.509977i
\(831\) 0 0
\(832\) 6192.02 7379.36i 0.258016 0.307492i
\(833\) 78528.4 13846.7i 3.26633 0.575941i
\(834\) 0 0
\(835\) 12601.6i 0.522272i
\(836\) −393.656 181.573i −0.0162857 0.00751177i
\(837\) 0 0
\(838\) −2029.74 + 5576.68i −0.0836711 + 0.229884i
\(839\) 5460.15 + 30966.1i 0.224679 + 1.27422i 0.863299 + 0.504694i \(0.168394\pi\)
−0.638620 + 0.769522i \(0.720494\pi\)
\(840\) 0 0
\(841\) −12442.0 + 10440.1i −0.510149 + 0.428066i
\(842\) 19232.3 + 3391.18i 0.787161 + 0.138798i
\(843\) 0 0
\(844\) 1528.31 882.370i 0.0623301 0.0359863i
\(845\) −11128.0 30573.9i −0.453035 1.24470i
\(846\) 0 0
\(847\) −21405.0 37074.5i −0.868339 1.50401i
\(848\) −5634.10 + 9758.55i −0.228156 + 0.395177i
\(849\) 0 0
\(850\) −29557.9 35225.7i −1.19274 1.42145i
\(851\) −4990.35 4187.40i −0.201019 0.168675i
\(852\) 0 0
\(853\) −18106.4 6590.20i −0.726790 0.264530i −0.0479848 0.998848i \(-0.515280\pi\)
−0.678806 + 0.734318i \(0.737502\pi\)
\(854\) 12335.1 0.494261
\(855\) 0 0
\(856\) 35945.6 1.43528
\(857\) 22331.1 + 8127.85i 0.890099 + 0.323970i 0.746278 0.665634i \(-0.231839\pi\)
0.143821 + 0.989604i \(0.454061\pi\)
\(858\) 0 0
\(859\) 23588.3 + 19792.9i 0.936928 + 0.786176i 0.977048 0.213019i \(-0.0683296\pi\)
−0.0401201 + 0.999195i \(0.512774\pi\)
\(860\) −11320.4 13491.1i −0.448864 0.534935i
\(861\) 0 0
\(862\) 5990.24 10375.4i 0.236692 0.409963i
\(863\) 18889.7 + 32718.0i 0.745091 + 1.29054i 0.950152 + 0.311787i \(0.100927\pi\)
−0.205061 + 0.978749i \(0.565739\pi\)
\(864\) 0 0
\(865\) −12303.3 33802.9i −0.483611 1.32871i
\(866\) −20612.6 + 11900.7i −0.808828 + 0.466977i
\(867\) 0 0
\(868\) 10315.8 + 1818.95i 0.403388 + 0.0711282i
\(869\) 1216.18 1020.50i 0.0474754 0.0398366i
\(870\) 0 0
\(871\) −3165.01 17949.6i −0.123125 0.698279i
\(872\) 8070.53 22173.6i 0.313420 0.861116i
\(873\) 0 0
\(874\) −6468.03 + 1762.00i −0.250325 + 0.0681928i
\(875\) 22251.6i 0.859705i
\(876\) 0 0
\(877\) 5895.28 1039.50i 0.226989 0.0400243i −0.0589965 0.998258i \(-0.518790\pi\)
0.285986 + 0.958234i \(0.407679\pi\)
\(878\) 12974.4 15462.3i 0.498709 0.594338i
\(879\) 0 0
\(880\) 339.238 1923.92i 0.0129951 0.0736991i
\(881\) −31843.6 18384.9i −1.21775 0.703068i −0.253313 0.967384i \(-0.581520\pi\)
−0.964436 + 0.264316i \(0.914854\pi\)
\(882\) 0 0
\(883\) 10135.0 3688.85i 0.386263 0.140588i −0.141587 0.989926i \(-0.545220\pi\)
0.527850 + 0.849337i \(0.322998\pi\)
\(884\) −3630.60 + 1321.43i −0.138134 + 0.0502766i
\(885\) 0 0
\(886\) 15000.3 + 8660.40i 0.568785 + 0.328388i
\(887\) 7275.65 41262.2i 0.275414 1.56195i −0.462229 0.886761i \(-0.652950\pi\)
0.737643 0.675191i \(-0.235939\pi\)
\(888\) 0 0
\(889\) 15792.6 18820.9i 0.595802 0.710049i
\(890\) −9624.28 + 1697.02i −0.362479 + 0.0639149i
\(891\) 0 0
\(892\) 9007.29i 0.338101i
\(893\) −1352.08 14746.9i −0.0506671 0.552616i
\(894\) 0 0
\(895\) 6251.76 17176.6i 0.233490 0.641507i
\(896\) −3834.70 21747.7i −0.142978 0.810868i
\(897\) 0 0
\(898\) −6512.37 + 5464.53i −0.242005 + 0.203066i
\(899\) 14358.8 + 2531.85i 0.532696 + 0.0939287i
\(900\) 0 0
\(901\) 25226.3 14564.4i 0.932753 0.538525i
\(902\) −955.929 2626.39i −0.0352871 0.0969504i
\(903\) 0 0
\(904\) −5294.96 9171.14i −0.194809 0.337420i
\(905\) −28394.2 + 49180.1i −1.04293 + 1.80641i
\(906\) 0 0
\(907\) 6133.23 + 7309.29i 0.224532 + 0.267587i 0.866536 0.499114i \(-0.166341\pi\)
−0.642004 + 0.766701i \(0.721897\pi\)
\(908\) 3135.03 + 2630.60i 0.114581 + 0.0961449i
\(909\) 0 0
\(910\) 21498.4 + 7824.78i 0.783149 + 0.285043i
\(911\) −28305.2 −1.02941 −0.514705 0.857367i \(-0.672098\pi\)
−0.514705 + 0.857367i \(0.672098\pi\)
\(912\) 0 0
\(913\) −774.535 −0.0280760
\(914\) −4597.89 1673.50i −0.166395 0.0605627i
\(915\) 0 0
\(916\) −9678.58 8121.29i −0.349115 0.292942i
\(917\) 30524.2 + 36377.3i 1.09923 + 1.31002i
\(918\) 0 0
\(919\) 5187.97 8985.82i 0.186219 0.322541i −0.757768 0.652524i \(-0.773710\pi\)
0.943987 + 0.329984i \(0.107043\pi\)
\(920\) 6900.81 + 11952.5i 0.247297 + 0.428330i
\(921\) 0 0
\(922\) −14078.6 38680.6i −0.502877 1.38164i
\(923\) −12742.8 + 7357.04i −0.454424 + 0.262362i
\(924\) 0 0
\(925\) −32093.5 5658.95i −1.14079 0.201152i
\(926\) 5956.61 4998.19i 0.211389 0.177377i
\(927\) 0 0
\(928\) 1385.93 + 7859.99i 0.0490251 + 0.278035i
\(929\) 5190.41 14260.5i 0.183307 0.503631i −0.813670 0.581326i \(-0.802534\pi\)
0.996977 + 0.0776953i \(0.0247561\pi\)
\(930\) 0 0
\(931\) −15284.9 56108.7i −0.538071 1.97517i
\(932\) 7824.93i 0.275015i
\(933\) 0 0
\(934\) −11733.4 + 2068.91i −0.411058 + 0.0724806i
\(935\) −3246.17 + 3868.63i −0.113541 + 0.135313i
\(936\) 0 0
\(937\) −8010.55 + 45430.1i −0.279288 + 1.58392i 0.445714 + 0.895176i \(0.352950\pi\)
−0.725002 + 0.688747i \(0.758161\pi\)
\(938\) −73658.7 42526.9i −2.56401 1.48033i
\(939\) 0 0
\(940\) −5743.23 + 2090.36i −0.199280 + 0.0725321i
\(941\) −24346.8 + 8861.51i −0.843446 + 0.306989i −0.727365 0.686251i \(-0.759255\pi\)
−0.116081 + 0.993240i \(0.537033\pi\)
\(942\) 0 0
\(943\) 12525.1 + 7231.35i 0.432526 + 0.249719i
\(944\) 2438.70 13830.6i 0.0840816 0.476851i
\(945\) 0 0
\(946\) 2116.05 2521.81i 0.0727259 0.0866714i
\(947\) −39550.3 + 6973.79i −1.35714 + 0.239301i −0.804417 0.594064i \(-0.797522\pi\)
−0.552723 + 0.833365i \(0.686411\pi\)
\(948\) 0 0
\(949\) 3605.84i 0.123341i
\(950\) −23614.3 + 23811.7i −0.806471 + 0.813215i
\(951\) 0 0
\(952\) −30760.6 + 84514.0i −1.04722 + 2.87722i
\(953\) 7987.31 + 45298.3i 0.271495 + 1.53972i 0.749881 + 0.661573i \(0.230111\pi\)
−0.478386 + 0.878150i \(0.658778\pi\)
\(954\) 0 0
\(955\) 2517.74 2112.63i 0.0853111 0.0715845i
\(956\) −8636.95 1522.93i −0.292196 0.0515220i
\(957\) 0 0
\(958\) 21055.8 12156.6i 0.710107 0.409981i
\(959\) −28878.2 79342.2i −0.972394 2.67163i
\(960\) 0 0
\(961\) −1848.76 3202.15i −0.0620577 0.107487i
\(962\) 4091.30 7086.34i 0.137119 0.237498i
\(963\) 0 0
\(964\) −5275.51 6287.11i −0.176258 0.210056i
\(965\) −5310.03 4455.65i −0.177136 0.148635i
\(966\) 0 0
\(967\) 30278.8 + 11020.6i 1.00693 + 0.366493i 0.792253 0.610193i \(-0.208908\pi\)
0.214677 + 0.976685i \(0.431130\pi\)
\(968\) 32439.0 1.07710
\(969\) 0 0
\(970\) 54586.1 1.80686
\(971\) 33015.3 + 12016.6i 1.09115 + 0.397148i 0.824049 0.566519i \(-0.191710\pi\)
0.267106 + 0.963667i \(0.413933\pi\)
\(972\) 0 0
\(973\) −10471.1 8786.33i −0.345005 0.289493i
\(974\) 30233.4 + 36030.8i 0.994601 + 1.18532i
\(975\) 0 0
\(976\) −3423.08 + 5928.94i −0.112264 + 0.194448i
\(977\) 25463.9 + 44104.7i 0.833840 + 1.44425i 0.894971 + 0.446123i \(0.147196\pi\)
−0.0611314 + 0.998130i \(0.519471\pi\)
\(978\) 0 0
\(979\) 209.071 + 574.418i 0.00682526 + 0.0187523i
\(980\) −20785.3 + 12000.4i −0.677514 + 0.391163i
\(981\) 0 0
\(982\) 26881.9 + 4740.00i 0.873559 + 0.154032i
\(983\) 34776.7 29181.1i 1.12839 0.946830i 0.129390 0.991594i \(-0.458698\pi\)
0.998998 + 0.0447638i \(0.0142535\pi\)
\(984\) 0 0
\(985\) 9618.75 + 54550.7i 0.311146 + 1.76460i
\(986\) −8583.20 + 23582.2i −0.277226 + 0.761672i
\(987\) 0 0
\(988\) 1201.43 + 2548.71i 0.0386867 + 0.0820700i
\(989\) 17034.7i 0.547696i
\(990\) 0 0
\(991\) −15231.5 + 2685.73i −0.488239 + 0.0860897i −0.412348 0.911026i \(-0.635291\pi\)
−0.0758911 + 0.997116i \(0.524180\pi\)
\(992\) −9181.27 + 10941.8i −0.293856 + 0.350204i
\(993\) 0 0
\(994\) −11923.2 + 67619.7i −0.380463 + 2.15771i
\(995\) 30291.4 + 17488.7i 0.965126 + 0.557216i
\(996\) 0 0
\(997\) −5433.95 + 1977.79i −0.172613 + 0.0628259i −0.426881 0.904308i \(-0.640388\pi\)
0.254268 + 0.967134i \(0.418165\pi\)
\(998\) −17538.9 + 6383.64i −0.556297 + 0.202476i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 171.4.y.a.53.14 yes 120
3.2 odd 2 inner 171.4.y.a.53.7 120
19.14 odd 18 inner 171.4.y.a.71.7 yes 120
57.14 even 18 inner 171.4.y.a.71.14 yes 120
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.4.y.a.53.7 120 3.2 odd 2 inner
171.4.y.a.53.14 yes 120 1.1 even 1 trivial
171.4.y.a.71.7 yes 120 19.14 odd 18 inner
171.4.y.a.71.14 yes 120 57.14 even 18 inner