Properties

Label 171.4.y
Level $171$
Weight $4$
Character orbit 171.y
Rep. character $\chi_{171}(53,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $120$
Newform subspaces $1$
Sturm bound $80$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 171.y (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 57 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(80\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(171, [\chi])\).

Total New Old
Modular forms 384 120 264
Cusp forms 336 120 216
Eisenstein series 48 0 48

Trace form

\( 120 q - 36 q^{4} - 180 q^{10} - 156 q^{13} + 180 q^{16} + 924 q^{19} + 432 q^{22} - 360 q^{25} - 624 q^{28} + 324 q^{34} + 1440 q^{40} + 1524 q^{43} + 3888 q^{46} - 3228 q^{49} - 6000 q^{52} - 4464 q^{55}+ \cdots + 5904 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(171, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
171.4.y.a 171.y 57.j $120$ $10.089$ None 171.4.y.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$

Decomposition of \(S_{4}^{\mathrm{old}}(171, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(171, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 2}\)