Defining parameters
Level: | \( N \) | \(=\) | \( 171 = 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 171.p (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(60\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(171, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 88 | 34 | 54 |
Cusp forms | 72 | 30 | 42 |
Eisenstein series | 16 | 4 | 12 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(171, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
171.3.p.a | $2$ | $4.659$ | \(\Q(\sqrt{-3}) \) | None | \(-3\) | \(0\) | \(-4\) | \(10\) | \(q+(-1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+(-4+4\zeta_{6})q^{5}+\cdots\) |
171.3.p.b | $2$ | $4.659$ | \(\Q(\sqrt{-3}) \) | None | \(3\) | \(0\) | \(4\) | \(10\) | \(q+(1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+(4-4\zeta_{6})q^{5}+\cdots\) |
171.3.p.c | $6$ | $4.659$ | 6.0.92607408.1 | None | \(-3\) | \(0\) | \(-4\) | \(-22\) | \(q+\beta _{4}q^{2}+(1+\beta _{1}+2\beta _{3}-\beta _{4}+\beta _{5})q^{4}+\cdots\) |
171.3.p.d | $6$ | $4.659$ | 6.0.6967728.1 | None | \(3\) | \(0\) | \(2\) | \(0\) | \(q+(1+\beta _{5})q^{2}+(-2\beta _{1}-2\beta _{2}-\beta _{3}+\cdots)q^{4}+\cdots\) |
171.3.p.e | $6$ | $4.659$ | 6.0.6967728.1 | None | \(3\) | \(0\) | \(2\) | \(26\) | \(q-\beta _{3}q^{2}+(-\beta _{1}+\beta _{2}-2\beta _{3}+\beta _{4}+\cdots)q^{4}+\cdots\) |
171.3.p.f | $8$ | $4.659$ | 8.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(-40\) | \(q+\beta _{1}q^{2}+(3\beta _{2}+\beta _{4}+2\beta _{6})q^{4}+(\beta _{1}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(171, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(171, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 2}\)