Properties

Label 171.3.c
Level $171$
Weight $3$
Character orbit 171.c
Rep. character $\chi_{171}(37,\cdot)$
Character field $\Q$
Dimension $15$
Newform subspaces $6$
Sturm bound $60$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 171.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(60\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(171, [\chi])\).

Total New Old
Modular forms 44 17 27
Cusp forms 36 15 21
Eisenstein series 8 2 6

Trace form

\( 15 q - 22 q^{4} + 3 q^{5} + q^{7} + O(q^{10}) \) \( 15 q - 22 q^{4} + 3 q^{5} + q^{7} + 11 q^{11} - 14 q^{16} - 59 q^{17} + 9 q^{19} + 28 q^{20} - 52 q^{23} + 50 q^{25} + 10 q^{26} + 6 q^{28} + 217 q^{35} - 22 q^{38} - 145 q^{43} - 176 q^{44} - 21 q^{47} - 48 q^{49} + 81 q^{55} - 98 q^{58} + 71 q^{61} - 4 q^{62} + 262 q^{64} + 466 q^{68} - 203 q^{73} - 492 q^{74} + 216 q^{76} + 177 q^{77} - 112 q^{80} - 52 q^{82} - 214 q^{83} + 61 q^{85} + 982 q^{92} - 161 q^{95} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(171, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
171.3.c.a 171.c 19.b $1$ $4.659$ \(\Q\) \(\Q(\sqrt{-19}) \) \(0\) \(0\) \(9\) \(-5\) $\mathrm{U}(1)[D_{2}]$ \(q+4q^{4}+9q^{5}-5q^{7}-3q^{11}+2^{4}q^{16}+\cdots\)
171.3.c.b 171.c 19.b $2$ $4.659$ \(\Q(\sqrt{-13}) \) None \(0\) \(0\) \(-8\) \(-10\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}-9q^{4}-4q^{5}-5q^{7}-5\beta q^{8}+\cdots\)
171.3.c.c 171.c 19.b $2$ $4.659$ \(\Q(\sqrt{-3}) \) None \(0\) \(0\) \(-8\) \(-20\) $\mathrm{SU}(2)[C_{2}]$ \(q-\zeta_{6}q^{2}+q^{4}-4q^{5}-10q^{7}-5\zeta_{6}q^{8}+\cdots\)
171.3.c.d 171.c 19.b $2$ $4.659$ \(\Q(\sqrt{19}) \) \(\Q(\sqrt{-19}) \) \(0\) \(0\) \(0\) \(10\) $\mathrm{U}(1)[D_{2}]$ \(q+4q^{4}+\beta q^{5}+5q^{7}-5\beta q^{11}+2^{4}q^{16}+\cdots\)
171.3.c.e 171.c 19.b $4$ $4.659$ \(\Q(\sqrt{-7}, \sqrt{10})\) None \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}-3q^{4}+\beta _{2}q^{5}-2q^{7}-\beta _{1}q^{8}+\cdots\)
171.3.c.f 171.c 19.b $4$ $4.659$ \(\Q(\sqrt{-3}, \sqrt{-19})\) None \(0\) \(0\) \(10\) \(34\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+(-2+\beta _{2})q^{4}+(3-\beta _{2})q^{5}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(171, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(171, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 2}\)