Defining parameters
Level: | \( N \) | \(=\) | \( 171 = 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 171.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(60\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(171, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44 | 17 | 27 |
Cusp forms | 36 | 15 | 21 |
Eisenstein series | 8 | 2 | 6 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(171, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
171.3.c.a | $1$ | $4.659$ | \(\Q\) | \(\Q(\sqrt{-19}) \) | \(0\) | \(0\) | \(9\) | \(-5\) | \(q+4q^{4}+9q^{5}-5q^{7}-3q^{11}+2^{4}q^{16}+\cdots\) |
171.3.c.b | $2$ | $4.659$ | \(\Q(\sqrt{-13}) \) | None | \(0\) | \(0\) | \(-8\) | \(-10\) | \(q+\beta q^{2}-9q^{4}-4q^{5}-5q^{7}-5\beta q^{8}+\cdots\) |
171.3.c.c | $2$ | $4.659$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(-8\) | \(-20\) | \(q-\zeta_{6}q^{2}+q^{4}-4q^{5}-10q^{7}-5\zeta_{6}q^{8}+\cdots\) |
171.3.c.d | $2$ | $4.659$ | \(\Q(\sqrt{19}) \) | \(\Q(\sqrt{-19}) \) | \(0\) | \(0\) | \(0\) | \(10\) | \(q+4q^{4}+\beta q^{5}+5q^{7}-5\beta q^{11}+2^{4}q^{16}+\cdots\) |
171.3.c.e | $4$ | $4.659$ | \(\Q(\sqrt{-7}, \sqrt{10})\) | None | \(0\) | \(0\) | \(0\) | \(-8\) | \(q-\beta _{1}q^{2}-3q^{4}+\beta _{2}q^{5}-2q^{7}-\beta _{1}q^{8}+\cdots\) |
171.3.c.f | $4$ | $4.659$ | \(\Q(\sqrt{-3}, \sqrt{-19})\) | None | \(0\) | \(0\) | \(10\) | \(34\) | \(q-\beta _{1}q^{2}+(-2+\beta _{2})q^{4}+(3-\beta _{2})q^{5}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(171, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(171, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 2}\)