# Properties

 Label 171.2.x.a.14.13 Level $171$ Weight $2$ Character 171.14 Analytic conductor $1.365$ Analytic rank $0$ Dimension $108$ CM no Inner twists $2$

# Learn more

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [171,2,Mod(14,171)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(171, base_ring=CyclotomicField(18))

chi = DirichletCharacter(H, H._module([15, 7]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("171.14");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$171 = 3^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 171.x (of order $$18$$, degree $$6$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.36544187456$$ Analytic rank: $$0$$ Dimension: $$108$$ Relative dimension: $$18$$ over $$\Q(\zeta_{18})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

## Embedding invariants

 Embedding label 14.13 Character $$\chi$$ $$=$$ 171.14 Dual form 171.2.x.a.110.13

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(1.12318 + 0.942457i) q^{2} +(-1.13434 - 1.30892i) q^{3} +(0.0260041 + 0.147477i) q^{4} +(-0.668800 - 1.83751i) q^{5} +(-0.0404630 - 2.53922i) q^{6} +(1.13552 - 1.96677i) q^{7} +(1.35642 - 2.34939i) q^{8} +(-0.426545 + 2.96952i) q^{9} +O(q^{10})$$ $$q+(1.12318 + 0.942457i) q^{2} +(-1.13434 - 1.30892i) q^{3} +(0.0260041 + 0.147477i) q^{4} +(-0.668800 - 1.83751i) q^{5} +(-0.0404630 - 2.53922i) q^{6} +(1.13552 - 1.96677i) q^{7} +(1.35642 - 2.34939i) q^{8} +(-0.426545 + 2.96952i) q^{9} +(0.980596 - 2.69417i) q^{10} +2.71236i q^{11} +(0.163538 - 0.201326i) q^{12} +(-0.159200 + 0.437399i) q^{13} +(3.12899 - 1.13886i) q^{14} +(-1.64651 + 2.95977i) q^{15} +(4.01914 - 1.46285i) q^{16} +(0.305357 + 0.838961i) q^{17} +(-3.27773 + 2.93330i) q^{18} +(4.01881 + 1.68795i) q^{19} +(0.253598 - 0.146415i) q^{20} +(-3.86241 + 0.744688i) q^{21} +(-2.55629 + 3.04646i) q^{22} +(-6.24730 + 1.10157i) q^{23} +(-4.61380 + 0.889560i) q^{24} +(0.901063 - 0.756082i) q^{25} +(-0.591040 + 0.341237i) q^{26} +(4.37071 - 2.81013i) q^{27} +(0.319581 + 0.116318i) q^{28} +(1.09262 + 6.19653i) q^{29} +(-4.63878 + 1.77258i) q^{30} -5.62872i q^{31} +(0.794402 + 0.289139i) q^{32} +(3.55027 - 3.07674i) q^{33} +(-0.447715 + 1.23009i) q^{34} +(-4.37340 - 0.771149i) q^{35} +(-0.449027 + 0.0143143i) q^{36} +6.58174i q^{37} +(2.92301 + 5.68342i) q^{38} +(0.753108 - 0.287779i) q^{39} +(-5.22420 - 0.921168i) q^{40} +(6.32337 + 5.30594i) q^{41} +(-5.04001 - 2.80374i) q^{42} +(1.22288 - 6.93529i) q^{43} +(-0.400010 + 0.0705325i) q^{44} +(5.74181 - 1.20223i) q^{45} +(-8.05501 - 4.65056i) q^{46} +(3.78521 - 0.667435i) q^{47} +(-6.47382 - 3.60137i) q^{48} +(0.921203 + 1.59557i) q^{49} +1.72463 q^{50} +(0.751754 - 1.35135i) q^{51} +(-0.0686460 - 0.0121041i) q^{52} +(-9.68783 + 8.12906i) q^{53} +(7.55752 + 0.962934i) q^{54} +(4.98400 - 1.81403i) q^{55} +(-3.08048 - 5.33554i) q^{56} +(-2.34930 - 7.17501i) q^{57} +(-4.61277 + 7.98954i) q^{58} +(0.779418 - 4.42030i) q^{59} +(-0.479313 - 0.165856i) q^{60} +(-8.05643 - 2.93230i) q^{61} +(5.30483 - 6.32205i) q^{62} +(5.35603 + 4.21086i) q^{63} +(-3.65732 - 6.33467i) q^{64} +0.910200 q^{65} +(6.88727 - 0.109750i) q^{66} +(1.97625 + 2.35520i) q^{67} +(-0.115786 + 0.0668493i) q^{68} +(8.52843 + 6.92767i) q^{69} +(-4.18533 - 4.98788i) q^{70} +(0.0740818 + 0.0621620i) q^{71} +(6.39799 + 5.03004i) q^{72} +(1.14388 - 6.48728i) q^{73} +(-6.20301 + 7.39246i) q^{74} +(-2.01176 - 0.321766i) q^{75} +(-0.144428 + 0.636574i) q^{76} +(5.33460 + 3.07993i) q^{77} +(1.11709 + 0.386546i) q^{78} +(4.08113 + 11.2128i) q^{79} +(-5.37600 - 6.40687i) q^{80} +(-8.63612 - 2.53327i) q^{81} +(2.10164 + 11.9190i) q^{82} +(-3.19959 - 1.84728i) q^{83} +(-0.210263 - 0.550250i) q^{84} +(1.33738 - 1.12219i) q^{85} +(7.90972 - 6.63705i) q^{86} +(6.87137 - 8.45912i) q^{87} +(6.37239 + 3.67910i) q^{88} +(1.41419 + 8.02027i) q^{89} +(7.58212 + 4.06109i) q^{90} +(0.679491 + 0.809785i) q^{91} +(-0.324911 - 0.892685i) q^{92} +(-7.36754 + 6.38488i) q^{93} +(4.88049 + 2.81775i) q^{94} +(0.413851 - 8.51351i) q^{95} +(-0.522662 - 1.36779i) q^{96} +(-2.63287 + 3.13774i) q^{97} +(-0.469083 + 2.66030i) q^{98} +(-8.05442 - 1.15694i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$108 q - 9 q^{2} - 3 q^{4} - 9 q^{5} + 3 q^{7} - 24 q^{9}+O(q^{10})$$ 108 * q - 9 * q^2 - 3 * q^4 - 9 * q^5 + 3 * q^7 - 24 * q^9 $$108 q - 9 q^{2} - 3 q^{4} - 9 q^{5} + 3 q^{7} - 24 q^{9} - 12 q^{10} - 9 q^{12} - 6 q^{13} - 9 q^{14} - 36 q^{15} - 9 q^{16} + 27 q^{17} + 36 q^{18} - 15 q^{19} - 18 q^{20} + 3 q^{21} + 30 q^{22} - 45 q^{23} - 21 q^{24} - 3 q^{25} - 72 q^{26} - 36 q^{28} - 9 q^{29} - 21 q^{30} - 9 q^{32} - 6 q^{33} + 33 q^{34} + 45 q^{35} + 18 q^{36} - 9 q^{38} - 18 q^{39} + 15 q^{40} - 9 q^{41} + 15 q^{42} + 9 q^{43} - 63 q^{44} + 33 q^{45} - 18 q^{46} - 9 q^{47} + 3 q^{48} - 15 q^{49} + 126 q^{50} + 39 q^{51} - 39 q^{52} - 51 q^{54} + 3 q^{55} + 63 q^{56} - 78 q^{57} - 6 q^{58} + 36 q^{59} - 75 q^{60} - 24 q^{61} + 18 q^{62} - 9 q^{63} - 18 q^{65} + 159 q^{66} - 63 q^{67} + 54 q^{68} - 9 q^{69} + 39 q^{70} + 141 q^{72} - 45 q^{73} - 117 q^{74} - 3 q^{76} - 18 q^{77} + 27 q^{78} + 3 q^{79} + 126 q^{80} - 60 q^{81} - 3 q^{82} + 27 q^{83} - 117 q^{84} - 3 q^{85} - 171 q^{86} + 15 q^{87} - 9 q^{88} + 54 q^{89} - 21 q^{90} - 9 q^{91} - 27 q^{92} + 42 q^{93} + 99 q^{95} + 207 q^{96} - 57 q^{97} - 27 q^{98} + 39 q^{99}+O(q^{100})$$ 108 * q - 9 * q^2 - 3 * q^4 - 9 * q^5 + 3 * q^7 - 24 * q^9 - 12 * q^10 - 9 * q^12 - 6 * q^13 - 9 * q^14 - 36 * q^15 - 9 * q^16 + 27 * q^17 + 36 * q^18 - 15 * q^19 - 18 * q^20 + 3 * q^21 + 30 * q^22 - 45 * q^23 - 21 * q^24 - 3 * q^25 - 72 * q^26 - 36 * q^28 - 9 * q^29 - 21 * q^30 - 9 * q^32 - 6 * q^33 + 33 * q^34 + 45 * q^35 + 18 * q^36 - 9 * q^38 - 18 * q^39 + 15 * q^40 - 9 * q^41 + 15 * q^42 + 9 * q^43 - 63 * q^44 + 33 * q^45 - 18 * q^46 - 9 * q^47 + 3 * q^48 - 15 * q^49 + 126 * q^50 + 39 * q^51 - 39 * q^52 - 51 * q^54 + 3 * q^55 + 63 * q^56 - 78 * q^57 - 6 * q^58 + 36 * q^59 - 75 * q^60 - 24 * q^61 + 18 * q^62 - 9 * q^63 - 18 * q^65 + 159 * q^66 - 63 * q^67 + 54 * q^68 - 9 * q^69 + 39 * q^70 + 141 * q^72 - 45 * q^73 - 117 * q^74 - 3 * q^76 - 18 * q^77 + 27 * q^78 + 3 * q^79 + 126 * q^80 - 60 * q^81 - 3 * q^82 + 27 * q^83 - 117 * q^84 - 3 * q^85 - 171 * q^86 + 15 * q^87 - 9 * q^88 + 54 * q^89 - 21 * q^90 - 9 * q^91 - 27 * q^92 + 42 * q^93 + 99 * q^95 + 207 * q^96 - 57 * q^97 - 27 * q^98 + 39 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/171\mathbb{Z}\right)^\times$$.

 $$n$$ $$20$$ $$154$$ $$\chi(n)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{7}{18}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 1.12318 + 0.942457i 0.794206 + 0.666418i 0.946783 0.321874i $$-0.104313\pi$$
−0.152577 + 0.988292i $$0.548757\pi$$
$$3$$ −1.13434 1.30892i −0.654912 0.755706i
$$4$$ 0.0260041 + 0.147477i 0.0130020 + 0.0737383i
$$5$$ −0.668800 1.83751i −0.299096 0.821761i −0.994652 0.103288i $$-0.967064\pi$$
0.695555 0.718473i $$-0.255159\pi$$
$$6$$ −0.0404630 2.53922i −0.0165190 1.03663i
$$7$$ 1.13552 1.96677i 0.429185 0.743370i −0.567616 0.823293i $$-0.692134\pi$$
0.996801 + 0.0799232i $$0.0254675\pi$$
$$8$$ 1.35642 2.34939i 0.479567 0.830634i
$$9$$ −0.426545 + 2.96952i −0.142182 + 0.989841i
$$10$$ 0.980596 2.69417i 0.310092 0.851970i
$$11$$ 2.71236i 0.817808i 0.912577 + 0.408904i $$0.134089\pi$$
−0.912577 + 0.408904i $$0.865911\pi$$
$$12$$ 0.163538 0.201326i 0.0472092 0.0581178i
$$13$$ −0.159200 + 0.437399i −0.0441542 + 0.121313i −0.959810 0.280650i $$-0.909450\pi$$
0.915656 + 0.401963i $$0.131672\pi$$
$$14$$ 3.12899 1.13886i 0.836256 0.304372i
$$15$$ −1.64651 + 2.95977i −0.425127 + 0.764209i
$$16$$ 4.01914 1.46285i 1.00478 0.365712i
$$17$$ 0.305357 + 0.838961i 0.0740599 + 0.203478i 0.971199 0.238271i $$-0.0765806\pi$$
−0.897139 + 0.441749i $$0.854358\pi$$
$$18$$ −3.27773 + 2.93330i −0.772569 + 0.691385i
$$19$$ 4.01881 + 1.68795i 0.921978 + 0.387242i
$$20$$ 0.253598 0.146415i 0.0567063 0.0327394i
$$21$$ −3.86241 + 0.744688i −0.842847 + 0.162504i
$$22$$ −2.55629 + 3.04646i −0.545002 + 0.649508i
$$23$$ −6.24730 + 1.10157i −1.30265 + 0.229693i −0.781572 0.623815i $$-0.785582\pi$$
−0.521080 + 0.853508i $$0.674471\pi$$
$$24$$ −4.61380 + 0.889560i −0.941789 + 0.181581i
$$25$$ 0.901063 0.756082i 0.180213 0.151216i
$$26$$ −0.591040 + 0.341237i −0.115913 + 0.0669221i
$$27$$ 4.37071 2.81013i 0.841144 0.540811i
$$28$$ 0.319581 + 0.116318i 0.0603951 + 0.0219820i
$$29$$ 1.09262 + 6.19653i 0.202894 + 1.15067i 0.900720 + 0.434400i $$0.143040\pi$$
−0.697826 + 0.716267i $$0.745849\pi$$
$$30$$ −4.63878 + 1.77258i −0.846921 + 0.323627i
$$31$$ 5.62872i 1.01095i −0.862842 0.505474i $$-0.831318\pi$$
0.862842 0.505474i $$-0.168682\pi$$
$$32$$ 0.794402 + 0.289139i 0.140432 + 0.0511130i
$$33$$ 3.55027 3.07674i 0.618022 0.535592i
$$34$$ −0.447715 + 1.23009i −0.0767825 + 0.210958i
$$35$$ −4.37340 0.771149i −0.739240 0.130348i
$$36$$ −0.449027 + 0.0143143i −0.0748378 + 0.00238572i
$$37$$ 6.58174i 1.08203i 0.841012 + 0.541016i $$0.181960\pi$$
−0.841012 + 0.541016i $$0.818040\pi$$
$$38$$ 2.92301 + 5.68342i 0.474175 + 0.921973i
$$39$$ 0.753108 0.287779i 0.120594 0.0460815i
$$40$$ −5.22420 0.921168i −0.826019 0.145649i
$$41$$ 6.32337 + 5.30594i 0.987545 + 0.828649i 0.985210 0.171349i $$-0.0548125\pi$$
0.00233446 + 0.999997i $$0.499257\pi$$
$$42$$ −5.04001 2.80374i −0.777690 0.432627i
$$43$$ 1.22288 6.93529i 0.186487 1.05762i −0.737542 0.675301i $$-0.764014\pi$$
0.924030 0.382321i $$-0.124875\pi$$
$$44$$ −0.400010 + 0.0705325i −0.0603037 + 0.0106332i
$$45$$ 5.74181 1.20223i 0.855938 0.179218i
$$46$$ −8.05501 4.65056i −1.18765 0.685688i
$$47$$ 3.78521 0.667435i 0.552130 0.0973553i 0.109379 0.994000i $$-0.465114\pi$$
0.442751 + 0.896645i $$0.354003\pi$$
$$48$$ −6.47382 3.60137i −0.934415 0.519812i
$$49$$ 0.921203 + 1.59557i 0.131600 + 0.227939i
$$50$$ 1.72463 0.243899
$$51$$ 0.751754 1.35135i 0.105267 0.189227i
$$52$$ −0.0686460 0.0121041i −0.00951949 0.00167854i
$$53$$ −9.68783 + 8.12906i −1.33073 + 1.11661i −0.346819 + 0.937932i $$0.612738\pi$$
−0.983907 + 0.178680i $$0.942817\pi$$
$$54$$ 7.55752 + 0.962934i 1.02845 + 0.131039i
$$55$$ 4.98400 1.81403i 0.672042 0.244603i
$$56$$ −3.08048 5.33554i −0.411646 0.712991i
$$57$$ −2.34930 7.17501i −0.311173 0.950353i
$$58$$ −4.61277 + 7.98954i −0.605686 + 1.04908i
$$59$$ 0.779418 4.42030i 0.101472 0.575474i −0.891100 0.453808i $$-0.850065\pi$$
0.992571 0.121666i $$-0.0388236\pi$$
$$60$$ −0.479313 0.165856i −0.0618790 0.0214119i
$$61$$ −8.05643 2.93230i −1.03152 0.375443i −0.229860 0.973224i $$-0.573827\pi$$
−0.801659 + 0.597781i $$0.796049\pi$$
$$62$$ 5.30483 6.32205i 0.673714 0.802901i
$$63$$ 5.35603 + 4.21086i 0.674796 + 0.530518i
$$64$$ −3.65732 6.33467i −0.457166 0.791834i
$$65$$ 0.910200 0.112896
$$66$$ 6.88727 0.109750i 0.847765 0.0135093i
$$67$$ 1.97625 + 2.35520i 0.241437 + 0.287733i 0.873132 0.487483i $$-0.162085\pi$$
−0.631695 + 0.775217i $$0.717641\pi$$
$$68$$ −0.115786 + 0.0668493i −0.0140412 + 0.00810667i
$$69$$ 8.52843 + 6.92767i 1.02670 + 0.833993i
$$70$$ −4.18533 4.98788i −0.500243 0.596166i
$$71$$ 0.0740818 + 0.0621620i 0.00879190 + 0.00737728i 0.647173 0.762343i $$-0.275951\pi$$
−0.638381 + 0.769720i $$0.720396\pi$$
$$72$$ 6.39799 + 5.03004i 0.754010 + 0.592796i
$$73$$ 1.14388 6.48728i 0.133881 0.759279i −0.841751 0.539866i $$-0.818475\pi$$
0.975632 0.219413i $$-0.0704141\pi$$
$$74$$ −6.20301 + 7.39246i −0.721085 + 0.859356i
$$75$$ −2.01176 0.321766i −0.232298 0.0371543i
$$76$$ −0.144428 + 0.636574i −0.0165670 + 0.0730200i
$$77$$ 5.33460 + 3.07993i 0.607934 + 0.350991i
$$78$$ 1.11709 + 0.386546i 0.126486 + 0.0437677i
$$79$$ 4.08113 + 11.2128i 0.459163 + 1.26154i 0.926109 + 0.377255i $$0.123132\pi$$
−0.466946 + 0.884286i $$0.654646\pi$$
$$80$$ −5.37600 6.40687i −0.601055 0.716309i
$$81$$ −8.63612 2.53327i −0.959569 0.281474i
$$82$$ 2.10164 + 11.9190i 0.232088 + 1.31624i
$$83$$ −3.19959 1.84728i −0.351200 0.202766i 0.314013 0.949419i $$-0.398326\pi$$
−0.665214 + 0.746653i $$0.731660\pi$$
$$84$$ −0.210263 0.550250i −0.0229415 0.0600372i
$$85$$ 1.33738 1.12219i 0.145059 0.121719i
$$86$$ 7.90972 6.63705i 0.852927 0.715691i
$$87$$ 6.87137 8.45912i 0.736688 0.906913i
$$88$$ 6.37239 + 3.67910i 0.679299 + 0.392194i
$$89$$ 1.41419 + 8.02027i 0.149904 + 0.850147i 0.963298 + 0.268434i $$0.0865062\pi$$
−0.813394 + 0.581713i $$0.802383\pi$$
$$90$$ 7.58212 + 4.06109i 0.799225 + 0.428076i
$$91$$ 0.679491 + 0.809785i 0.0712300 + 0.0848886i
$$92$$ −0.324911 0.892685i −0.0338743 0.0930689i
$$93$$ −7.36754 + 6.38488i −0.763979 + 0.662081i
$$94$$ 4.88049 + 2.81775i 0.503384 + 0.290629i
$$95$$ 0.413851 8.51351i 0.0424602 0.873468i
$$96$$ −0.522662 1.36779i −0.0533440 0.139599i
$$97$$ −2.63287 + 3.13774i −0.267328 + 0.318589i −0.882963 0.469442i $$-0.844455\pi$$
0.615635 + 0.788031i $$0.288899\pi$$
$$98$$ −0.469083 + 2.66030i −0.0473846 + 0.268731i
$$99$$ −8.05442 1.15694i −0.809500 0.116277i
$$100$$ 0.134936 + 0.113224i 0.0134936 + 0.0113224i
$$101$$ −4.70578 5.60812i −0.468242 0.558029i 0.479304 0.877649i $$-0.340889\pi$$
−0.947546 + 0.319620i $$0.896445\pi$$
$$102$$ 2.11795 0.809313i 0.209708 0.0801340i
$$103$$ 13.1970 7.61930i 1.30034 0.750752i 0.319878 0.947459i $$-0.396358\pi$$
0.980462 + 0.196707i $$0.0630248\pi$$
$$104$$ 0.811679 + 0.967321i 0.0795916 + 0.0948536i
$$105$$ 3.95155 + 6.59918i 0.385632 + 0.644014i
$$106$$ −18.5424 −1.80100
$$107$$ −6.36486 11.0243i −0.615314 1.06576i −0.990329 0.138737i $$-0.955696\pi$$
0.375015 0.927019i $$-0.377637\pi$$
$$108$$ 0.528085 + 0.571503i 0.0508150 + 0.0549929i
$$109$$ −12.0769 + 14.3927i −1.15676 + 1.37857i −0.244144 + 0.969739i $$0.578507\pi$$
−0.912611 + 0.408829i $$0.865937\pi$$
$$110$$ 7.30756 + 2.65973i 0.696748 + 0.253596i
$$111$$ 8.61498 7.46594i 0.817698 0.708635i
$$112$$ 1.68671 9.56582i 0.159379 0.903885i
$$113$$ 9.41654 16.3099i 0.885834 1.53431i 0.0410789 0.999156i $$-0.486921\pi$$
0.844755 0.535153i $$-0.179746\pi$$
$$114$$ 4.12346 10.2729i 0.386197 0.962147i
$$115$$ 6.20234 + 10.7428i 0.578371 + 1.00177i
$$116$$ −0.885431 + 0.322270i −0.0822102 + 0.0299221i
$$117$$ −1.23096 0.659320i −0.113802 0.0609541i
$$118$$ 5.04136 4.23021i 0.464095 0.389422i
$$119$$ 1.99678 + 0.352087i 0.183045 + 0.0322757i
$$120$$ 4.72029 + 7.88299i 0.430901 + 0.719615i
$$121$$ 3.64309 0.331190
$$122$$ −6.28523 10.8863i −0.569038 0.985602i
$$123$$ −0.227803 14.2955i −0.0205403 1.28898i
$$124$$ 0.830104 0.146370i 0.0745455 0.0131444i
$$125$$ −10.4592 6.03865i −0.935503 0.540113i
$$126$$ 2.04721 + 9.77736i 0.182380 + 0.871037i
$$127$$ −2.54311 + 0.448419i −0.225664 + 0.0397907i −0.285337 0.958427i $$-0.592105\pi$$
0.0596725 + 0.998218i $$0.480994\pi$$
$$128$$ 2.15593 12.2269i 0.190559 1.08072i
$$129$$ −10.4649 + 6.26633i −0.921383 + 0.551719i
$$130$$ 1.02232 + 0.857825i 0.0896630 + 0.0752362i
$$131$$ −15.8699 2.79830i −1.38656 0.244488i −0.569952 0.821678i $$-0.693038\pi$$
−0.816610 + 0.577189i $$0.804149\pi$$
$$132$$ 0.546069 + 0.443573i 0.0475292 + 0.0386081i
$$133$$ 7.88324 5.98739i 0.683564 0.519172i
$$134$$ 4.50783i 0.389418i
$$135$$ −8.08679 6.15183i −0.696000 0.529465i
$$136$$ 2.38524 + 0.420582i 0.204532 + 0.0360646i
$$137$$ −0.968410 + 2.66068i −0.0827369 + 0.227318i −0.974162 0.225850i $$-0.927484\pi$$
0.891425 + 0.453168i $$0.149706\pi$$
$$138$$ 3.04990 + 15.8187i 0.259625 + 1.34658i
$$139$$ −8.56504 3.11742i −0.726477 0.264416i −0.0478042 0.998857i $$-0.515222\pi$$
−0.678673 + 0.734441i $$0.737445\pi$$
$$140$$ 0.665027i 0.0562051i
$$141$$ −5.16733 4.19744i −0.435168 0.353488i
$$142$$ 0.0246219 + 0.139638i 0.00206623 + 0.0117182i
$$143$$ −1.18639 0.431809i −0.0992106 0.0361097i
$$144$$ 2.62961 + 12.5589i 0.219134 + 1.04657i
$$145$$ 10.6555 6.15194i 0.884888 0.510890i
$$146$$ 7.39877 6.20830i 0.612326 0.513803i
$$147$$ 1.04352 3.01570i 0.0860679 0.248731i
$$148$$ −0.970653 + 0.171152i −0.0797872 + 0.0140686i
$$149$$ −5.53240 + 6.59326i −0.453232 + 0.540141i −0.943475 0.331445i $$-0.892464\pi$$
0.490242 + 0.871586i $$0.336908\pi$$
$$150$$ −1.95631 2.25740i −0.159732 0.184316i
$$151$$ −20.2971 + 11.7185i −1.65175 + 0.953641i −0.675404 + 0.737448i $$0.736031\pi$$
−0.976351 + 0.216194i $$0.930636\pi$$
$$152$$ 9.41684 7.15217i 0.763807 0.580118i
$$153$$ −2.62156 + 0.548909i −0.211941 + 0.0443767i
$$154$$ 3.08899 + 8.48694i 0.248918 + 0.683897i
$$155$$ −10.3428 + 3.76449i −0.830757 + 0.302371i
$$156$$ 0.0620246 + 0.103582i 0.00496594 + 0.00829323i
$$157$$ −2.97923 + 1.08435i −0.237769 + 0.0865408i −0.458156 0.888872i $$-0.651490\pi$$
0.220388 + 0.975412i $$0.429268\pi$$
$$158$$ −5.98377 + 16.4403i −0.476043 + 1.30792i
$$159$$ 21.6296 + 3.45949i 1.71534 + 0.274355i
$$160$$ 1.65310i 0.130689i
$$161$$ −4.92738 + 13.5379i −0.388332 + 1.06693i
$$162$$ −7.31239 10.9845i −0.574516 0.863022i
$$163$$ −6.44122 + 11.1565i −0.504516 + 0.873847i 0.495471 + 0.868625i $$0.334996\pi$$
−0.999986 + 0.00522210i $$0.998338\pi$$
$$164$$ −0.618068 + 1.07053i −0.0482630 + 0.0835940i
$$165$$ −8.02797 4.46593i −0.624977 0.347673i
$$166$$ −1.85272 5.09030i −0.143799 0.395084i
$$167$$ 0.352626 + 1.99984i 0.0272870 + 0.154752i 0.995407 0.0957352i $$-0.0305202\pi$$
−0.968120 + 0.250488i $$0.919409\pi$$
$$168$$ −3.48949 + 10.0844i −0.269220 + 0.778029i
$$169$$ 9.79260 + 8.21697i 0.753277 + 0.632075i
$$170$$ 2.55973 0.196322
$$171$$ −6.72661 + 11.2140i −0.514397 + 0.857552i
$$172$$ 1.05459 0.0804119
$$173$$ 4.79895 + 4.02680i 0.364858 + 0.306152i 0.806723 0.590929i $$-0.201239\pi$$
−0.441866 + 0.897081i $$0.645683\pi$$
$$174$$ 15.6901 3.02512i 1.18947 0.229334i
$$175$$ −0.463869 2.63073i −0.0350652 0.198864i
$$176$$ 3.96777 + 10.9014i 0.299082 + 0.821721i
$$177$$ −6.66994 + 3.99392i −0.501344 + 0.300202i
$$178$$ −5.97038 + 10.3410i −0.447499 + 0.775090i
$$179$$ 6.00593 10.4026i 0.448904 0.777525i −0.549411 0.835553i $$-0.685148\pi$$
0.998315 + 0.0580272i $$0.0184810\pi$$
$$180$$ 0.326612 + 0.815519i 0.0243442 + 0.0607852i
$$181$$ −3.01433 + 8.28181i −0.224054 + 0.615582i −0.999882 0.0153617i $$-0.995110\pi$$
0.775828 + 0.630944i $$0.217332\pi$$
$$182$$ 1.54992i 0.114888i
$$183$$ 5.30058 + 13.8714i 0.391830 + 1.02541i
$$184$$ −5.88595 + 16.1715i −0.433918 + 1.19218i
$$185$$ 12.0940 4.40187i 0.889171 0.323632i
$$186$$ −14.2925 + 0.227755i −1.04798 + 0.0166998i
$$187$$ −2.27557 + 0.828238i −0.166406 + 0.0605668i
$$188$$ 0.196862 + 0.540874i 0.0143576 + 0.0394473i
$$189$$ −0.563876 11.7872i −0.0410159 0.857389i
$$190$$ 8.48845 9.17214i 0.615817 0.665417i
$$191$$ 9.00053 5.19646i 0.651256 0.376003i −0.137681 0.990477i $$-0.543965\pi$$
0.788937 + 0.614474i $$0.210632\pi$$
$$192$$ −4.14293 + 11.9728i −0.298990 + 0.864064i
$$193$$ −3.50557 + 4.17778i −0.252337 + 0.300723i −0.877311 0.479922i $$-0.840665\pi$$
0.624974 + 0.780645i $$0.285109\pi$$
$$194$$ −5.91437 + 1.04286i −0.424627 + 0.0748731i
$$195$$ −1.03248 1.19138i −0.0739372 0.0853165i
$$196$$ −0.211354 + 0.177347i −0.0150967 + 0.0126677i
$$197$$ −12.3473 + 7.12871i −0.879708 + 0.507900i −0.870562 0.492058i $$-0.836245\pi$$
−0.00914591 + 0.999958i $$0.502911\pi$$
$$198$$ −7.95617 8.89040i −0.565420 0.631813i
$$199$$ −25.4888 9.27717i −1.80685 0.657641i −0.997527 0.0702813i $$-0.977610\pi$$
−0.809326 0.587360i $$-0.800167\pi$$
$$200$$ −0.554110 3.14251i −0.0391815 0.222209i
$$201$$ 0.841032 5.25835i 0.0593219 0.370895i
$$202$$ 10.7339i 0.755235i
$$203$$ 13.4279 + 4.88734i 0.942451 + 0.343024i
$$204$$ 0.218842 + 0.0757254i 0.0153220 + 0.00530184i
$$205$$ 5.52066 15.1679i 0.385580 1.05937i
$$206$$ 22.0034 + 3.87980i 1.53305 + 0.270318i
$$207$$ −0.606375 19.0214i −0.0421459 1.32208i
$$208$$ 1.99085i 0.138041i
$$209$$ −4.57833 + 10.9005i −0.316690 + 0.754001i
$$210$$ −1.78115 + 11.1362i −0.122911 + 0.768472i
$$211$$ 9.50070 + 1.67523i 0.654055 + 0.115328i 0.490822 0.871260i $$-0.336697\pi$$
0.163233 + 0.986588i $$0.447808\pi$$
$$212$$ −1.45077 1.21734i −0.0996392 0.0836072i
$$213$$ −0.00266884 0.167480i −0.000182866 0.0114755i
$$214$$ 3.24103 18.3808i 0.221552 1.25649i
$$215$$ −13.5615 + 2.39127i −0.924890 + 0.163083i
$$216$$ −0.673572 14.0802i −0.0458308 0.958038i
$$217$$ −11.0704 6.39150i −0.751508 0.433884i
$$218$$ −27.1289 + 4.78357i −1.83740 + 0.323984i
$$219$$ −9.78889 + 5.86153i −0.661472 + 0.396086i
$$220$$ 0.397131 + 0.687851i 0.0267746 + 0.0463749i
$$221$$ −0.415574 −0.0279545
$$222$$ 16.7125 0.266317i 1.12167 0.0178741i
$$223$$ 19.7149 + 3.47627i 1.32021 + 0.232788i 0.788969 0.614433i $$-0.210615\pi$$
0.531240 + 0.847221i $$0.321726\pi$$
$$224$$ 1.47073 1.23409i 0.0982670 0.0824558i
$$225$$ 1.86086 + 2.99823i 0.124057 + 0.199882i
$$226$$ 25.9479 9.44425i 1.72603 0.628222i
$$227$$ −0.910422 1.57690i −0.0604268 0.104662i 0.834229 0.551417i $$-0.185913\pi$$
−0.894656 + 0.446755i $$0.852580\pi$$
$$228$$ 0.997054 0.533047i 0.0660315 0.0353019i
$$229$$ 9.64083 16.6984i 0.637084 1.10346i −0.348985 0.937128i $$-0.613474\pi$$
0.986069 0.166334i $$-0.0531930\pi$$
$$230$$ −3.15827 + 17.9115i −0.208250 + 1.18105i
$$231$$ −2.01986 10.4763i −0.132897 0.689287i
$$232$$ 16.0401 + 5.83812i 1.05308 + 0.383291i
$$233$$ 15.6068 18.5995i 1.02244 1.21849i 0.0468456 0.998902i $$-0.485083\pi$$
0.975592 0.219591i $$-0.0704724\pi$$
$$234$$ −0.761206 1.90066i −0.0497616 0.124250i
$$235$$ −3.75797 6.50899i −0.245143 0.424600i
$$236$$ 0.672158 0.0437538
$$237$$ 10.0473 18.0610i 0.652642 1.17319i
$$238$$ 1.91091 + 2.27734i 0.123866 + 0.147618i
$$239$$ 6.41255 3.70229i 0.414794 0.239481i −0.278054 0.960566i $$-0.589689\pi$$
0.692847 + 0.721084i $$0.256356\pi$$
$$240$$ −2.28787 + 14.3043i −0.147681 + 0.923340i
$$241$$ −8.95380 10.6707i −0.576765 0.687361i 0.396240 0.918147i $$-0.370315\pi$$
−0.973005 + 0.230786i $$0.925870\pi$$
$$242$$ 4.09183 + 3.43346i 0.263033 + 0.220711i
$$243$$ 6.48045 + 14.1776i 0.415721 + 0.909492i
$$244$$ 0.222945 1.26439i 0.0142726 0.0809440i
$$245$$ 2.31578 2.75984i 0.147950 0.176320i
$$246$$ 13.2171 16.2711i 0.842689 1.03741i
$$247$$ −1.37810 + 1.48910i −0.0876867 + 0.0947493i
$$248$$ −13.2240 7.63491i −0.839728 0.484817i
$$249$$ 1.21147 + 6.28345i 0.0767741 + 0.398198i
$$250$$ −6.05641 16.6399i −0.383041 1.05240i
$$251$$ 17.0830 + 20.3588i 1.07827 + 1.28503i 0.956264 + 0.292505i $$0.0944889\pi$$
0.122008 + 0.992529i $$0.461067\pi$$
$$252$$ −0.481724 + 0.899388i −0.0303458 + 0.0566561i
$$253$$ −2.98785 16.9449i −0.187845 1.06532i
$$254$$ −3.27898 1.89312i −0.205741 0.118785i
$$255$$ −2.98590 0.477572i −0.186985 0.0299067i
$$256$$ 2.73814 2.29757i 0.171134 0.143598i
$$257$$ −17.0463 + 14.3036i −1.06332 + 0.892231i −0.994431 0.105393i $$-0.966390\pi$$
−0.0688893 + 0.997624i $$0.521946\pi$$
$$258$$ −17.6597 2.82453i −1.09944 0.175848i
$$259$$ 12.9448 + 7.47368i 0.804350 + 0.464392i
$$260$$ 0.0236689 + 0.134233i 0.00146788 + 0.00832479i
$$261$$ −18.8668 + 0.601447i −1.16782 + 0.0372286i
$$262$$ −15.1875 18.0997i −0.938285 1.11820i
$$263$$ −2.08595 5.73110i −0.128625 0.353395i 0.858618 0.512617i $$-0.171324\pi$$
−0.987243 + 0.159222i $$0.949102\pi$$
$$264$$ −2.41281 12.5143i −0.148498 0.770202i
$$265$$ 21.4165 + 12.3648i 1.31560 + 0.759564i
$$266$$ 14.4971 + 0.704720i 0.888876 + 0.0432092i
$$267$$ 8.89372 10.9488i 0.544287 0.670054i
$$268$$ −0.295946 + 0.352695i −0.0180778 + 0.0215443i
$$269$$ −1.57345 + 8.92350i −0.0959352 + 0.544075i 0.898522 + 0.438929i $$0.144642\pi$$
−0.994457 + 0.105146i $$0.966469\pi$$
$$270$$ −3.28506 14.5310i −0.199923 0.884331i
$$271$$ −15.2169 12.7685i −0.924362 0.775632i 0.0504344 0.998727i $$-0.483939\pi$$
−0.974797 + 0.223095i $$0.928384\pi$$
$$272$$ 2.45454 + 2.92521i 0.148828 + 0.177367i
$$273$$ 0.289171 1.80797i 0.0175014 0.109423i
$$274$$ −3.59528 + 2.07573i −0.217199 + 0.125400i
$$275$$ 2.05077 + 2.44401i 0.123666 + 0.147379i
$$276$$ −0.799894 + 1.43789i −0.0481480 + 0.0865509i
$$277$$ −1.32213 −0.0794388 −0.0397194 0.999211i $$-0.512646\pi$$
−0.0397194 + 0.999211i $$0.512646\pi$$
$$278$$ −6.68202 11.5736i −0.400761 0.694138i
$$279$$ 16.7146 + 2.40090i 1.00068 + 0.143738i
$$280$$ −7.74390 + 9.22882i −0.462787 + 0.551528i
$$281$$ 29.9168 + 10.8888i 1.78468 + 0.649572i 0.999542 + 0.0302563i $$0.00963236\pi$$
0.785142 + 0.619316i $$0.212590\pi$$
$$282$$ −1.84792 9.58446i −0.110042 0.570746i
$$283$$ −4.41305 + 25.0277i −0.262329 + 1.48774i 0.514206 + 0.857667i $$0.328087\pi$$
−0.776535 + 0.630074i $$0.783024\pi$$
$$284$$ −0.00724101 + 0.0125418i −0.000429675 + 0.000744219i
$$285$$ −11.6130 + 9.11552i −0.687892 + 0.539957i
$$286$$ −0.925559 1.60312i −0.0547295 0.0947942i
$$287$$ 17.6159 6.41165i 1.03983 0.378468i
$$288$$ −1.19745 + 2.23566i −0.0705605 + 0.131738i
$$289$$ 12.4121 10.4150i 0.730126 0.612649i
$$290$$ 17.7659 + 3.13261i 1.04325 + 0.183953i
$$291$$ 7.09362 0.113039i 0.415836 0.00662644i
$$292$$ 0.986467 0.0577286
$$293$$ 4.47837 + 7.75676i 0.261629 + 0.453155i 0.966675 0.256007i $$-0.0824070\pi$$
−0.705046 + 0.709162i $$0.749074\pi$$
$$294$$ 4.01422 2.40370i 0.234114 0.140186i
$$295$$ −8.64363 + 1.52410i −0.503251 + 0.0887368i
$$296$$ 15.4631 + 8.92761i 0.898773 + 0.518907i
$$297$$ 7.62210 + 11.8550i 0.442279 + 0.687895i
$$298$$ −12.4277 + 2.19134i −0.719919 + 0.126941i
$$299$$ 0.512748 2.90794i 0.0296530 0.168170i
$$300$$ −0.00486113 0.305055i −0.000280657 0.0176124i
$$301$$ −12.2515 10.2803i −0.706167 0.592544i
$$302$$ −33.8415 5.96716i −1.94736 0.343372i
$$303$$ −2.00264 + 12.5210i −0.115049 + 0.719313i
$$304$$ 18.6214 + 0.905204i 1.06801 + 0.0519170i
$$305$$ 16.7649i 0.959956i
$$306$$ −3.46180 1.85419i −0.197898 0.105997i
$$307$$ 20.3797 + 3.59349i 1.16313 + 0.205091i 0.721701 0.692205i $$-0.243360\pi$$
0.441429 + 0.897296i $$0.354472\pi$$
$$308$$ −0.315496 + 0.866819i −0.0179771 + 0.0493916i
$$309$$ −24.9430 8.63096i −1.41896 0.490998i
$$310$$ −15.1647 5.51950i −0.861297 0.313487i
$$311$$ 4.53739i 0.257292i 0.991691 + 0.128646i $$0.0410631\pi$$
−0.991691 + 0.128646i $$0.958937\pi$$
$$312$$ 0.345426 2.15969i 0.0195559 0.122269i
$$313$$ 0.265781 + 1.50732i 0.0150228 + 0.0851988i 0.991397 0.130886i $$-0.0417823\pi$$
−0.976375 + 0.216085i $$0.930671\pi$$
$$314$$ −4.36816 1.58988i −0.246510 0.0897222i
$$315$$ 4.15540 12.6580i 0.234130 0.713197i
$$316$$ −1.54750 + 0.893450i −0.0870538 + 0.0502605i
$$317$$ 11.4064 9.57111i 0.640648 0.537567i −0.263569 0.964640i $$-0.584900\pi$$
0.904217 + 0.427073i $$0.140455\pi$$
$$318$$ 21.0334 + 24.2706i 1.17950 + 1.36103i
$$319$$ −16.8072 + 2.96357i −0.941025 + 0.165928i
$$320$$ −9.19402 + 10.9570i −0.513961 + 0.612515i
$$321$$ −7.20996 + 20.8363i −0.402421 + 1.16297i
$$322$$ −18.2932 + 10.5616i −1.01944 + 0.588574i
$$323$$ −0.188954 + 3.88705i −0.0105137 + 0.216281i
$$324$$ 0.149023 1.33950i 0.00827907 0.0744167i
$$325$$ 0.187260 + 0.514493i 0.0103873 + 0.0285389i
$$326$$ −17.7492 + 6.46017i −0.983036 + 0.357796i
$$327$$ 32.5381 0.518504i 1.79936 0.0286733i
$$328$$ 21.0429 7.65898i 1.16190 0.422896i
$$329$$ 2.98548 8.20253i 0.164595 0.452220i
$$330$$ −4.80788 12.5821i −0.264665 0.692619i
$$331$$ 2.90821i 0.159849i 0.996801 + 0.0799247i $$0.0254680\pi$$
−0.996801 + 0.0799247i $$0.974532\pi$$
$$332$$ 0.189229 0.519901i 0.0103853 0.0285333i
$$333$$ −19.5446 2.80741i −1.07104 0.153845i
$$334$$ −1.48870 + 2.57851i −0.0814582 + 0.141090i
$$335$$ 3.00600 5.20654i 0.164235 0.284464i
$$336$$ −14.4342 + 8.64312i −0.787450 + 0.471521i
$$337$$ −6.81327 18.7193i −0.371142 1.01971i −0.974921 0.222553i $$-0.928561\pi$$
0.603778 0.797152i $$-0.293661\pi$$
$$338$$ 3.25468 + 18.4582i 0.177031 + 1.00399i
$$339$$ −32.0300 + 6.17550i −1.73963 + 0.335407i
$$340$$ 0.200274 + 0.168050i 0.0108614 + 0.00911380i
$$341$$ 15.2671 0.826761
$$342$$ −18.1238 + 6.25571i −0.980025 + 0.338270i
$$343$$ 20.0814 1.08429
$$344$$ −14.6350 12.2802i −0.789064 0.662103i
$$345$$ 7.02586 20.3043i 0.378260 1.09315i
$$346$$ 1.59499 + 9.04562i 0.0857470 + 0.486295i
$$347$$ −3.02871 8.32130i −0.162590 0.446711i 0.831467 0.555574i $$-0.187501\pi$$
−0.994057 + 0.108863i $$0.965279\pi$$
$$348$$ 1.42621 + 0.793394i 0.0764526 + 0.0425304i
$$349$$ −10.4769 + 18.1465i −0.560814 + 0.971357i 0.436612 + 0.899650i $$0.356178\pi$$
−0.997426 + 0.0717077i $$0.977155\pi$$
$$350$$ 1.95834 3.39195i 0.104678 0.181307i
$$351$$ 0.533332 + 2.35912i 0.0284671 + 0.125921i
$$352$$ −0.784249 + 2.15471i −0.0418006 + 0.114846i
$$353$$ 24.0456i 1.27982i −0.768452 0.639908i $$-0.778973\pi$$
0.768452 0.639908i $$-0.221027\pi$$
$$354$$ −11.2556 1.80025i −0.598230 0.0956823i
$$355$$ 0.0646776 0.177700i 0.00343273 0.00943135i
$$356$$ −1.14603 + 0.417120i −0.0607393 + 0.0221073i
$$357$$ −1.80418 3.01302i −0.0954872 0.159466i
$$358$$ 16.5497 6.02360i 0.874679 0.318357i
$$359$$ −3.98335 10.9442i −0.210233 0.577611i 0.789095 0.614272i $$-0.210550\pi$$
−0.999328 + 0.0366610i $$0.988328\pi$$
$$360$$ 4.96379 15.1205i 0.261615 0.796919i
$$361$$ 13.3016 + 13.5671i 0.700087 + 0.714058i
$$362$$ −11.1909 + 6.46106i −0.588180 + 0.339586i
$$363$$ −4.13250 4.76851i −0.216900 0.250282i
$$364$$ −0.101755 + 0.121267i −0.00533340 + 0.00635610i
$$365$$ −12.6855 + 2.23679i −0.663989 + 0.117079i
$$366$$ −7.11976 + 20.5757i −0.372156 + 1.07551i
$$367$$ 0.395531 0.331890i 0.0206466 0.0173245i −0.632406 0.774637i $$-0.717933\pi$$
0.653053 + 0.757313i $$0.273488\pi$$
$$368$$ −23.4973 + 13.5662i −1.22488 + 0.707187i
$$369$$ −18.4533 + 16.5142i −0.960641 + 0.859693i
$$370$$ 17.7323 + 6.45403i 0.921859 + 0.335529i
$$371$$ 4.98731 + 28.2844i 0.258928 + 1.46846i
$$372$$ −1.13321 0.920507i −0.0587540 0.0477260i
$$373$$ 22.7368i 1.17726i 0.808401 + 0.588632i $$0.200333\pi$$
−0.808401 + 0.588632i $$0.799667\pi$$
$$374$$ −3.33644 1.21437i −0.172523 0.0627933i
$$375$$ 3.96023 + 20.5402i 0.204505 + 1.06069i
$$376$$ 3.56627 9.79825i 0.183916 0.505306i
$$377$$ −2.88430 0.508581i −0.148549 0.0261932i
$$378$$ 10.4756 13.7705i 0.538805 0.708278i
$$379$$ 23.3822i 1.20106i 0.799602 + 0.600531i $$0.205044\pi$$
−0.799602 + 0.600531i $$0.794956\pi$$
$$380$$ 1.26630 0.160353i 0.0649601 0.00822593i
$$381$$ 3.47169 + 2.82007i 0.177860 + 0.144476i
$$382$$ 15.0066 + 2.64607i 0.767806 + 0.135385i
$$383$$ −8.11491 6.80921i −0.414652 0.347935i 0.411472 0.911422i $$-0.365015\pi$$
−0.826124 + 0.563488i $$0.809459\pi$$
$$384$$ −18.4496 + 11.0475i −0.941503 + 0.563767i
$$385$$ 2.09164 11.8623i 0.106600 0.604556i
$$386$$ −7.87476 + 1.38853i −0.400815 + 0.0706744i
$$387$$ 20.0729 + 6.58958i 1.02036 + 0.334967i
$$388$$ −0.531208 0.306693i −0.0269680 0.0155700i
$$389$$ 17.7078 3.12236i 0.897821 0.158310i 0.294352 0.955697i $$-0.404896\pi$$
0.603468 + 0.797387i $$0.293785\pi$$
$$390$$ −0.0368295 2.31119i −0.00186493 0.117032i
$$391$$ −2.83183 4.90487i −0.143212 0.248050i
$$392$$ 4.99815 0.252445
$$393$$ 14.3392 + 23.9467i 0.723315 + 1.20795i
$$394$$ −20.5867 3.62999i −1.03714 0.182876i
$$395$$ 17.8742 14.9983i 0.899350 0.754645i
$$396$$ −0.0388257 1.21792i −0.00195106 0.0612029i
$$397$$ 19.3342 7.03708i 0.970356 0.353181i 0.192273 0.981342i $$-0.438414\pi$$
0.778084 + 0.628161i $$0.216192\pi$$
$$398$$ −19.8851 34.4420i −0.996750 1.72642i
$$399$$ −16.7793 3.52680i −0.840015 0.176561i
$$400$$ 2.51547 4.35691i 0.125773 0.217846i
$$401$$ 0.711634 4.03588i 0.0355373 0.201542i −0.961870 0.273508i $$-0.911816\pi$$
0.997407 + 0.0719657i $$0.0229272\pi$$
$$402$$ 5.90040 5.11342i 0.294285 0.255034i
$$403$$ 2.46200 + 0.896094i 0.122641 + 0.0446376i
$$404$$ 0.704697 0.839826i 0.0350600 0.0417829i
$$405$$ 1.12092 + 17.5632i 0.0556990 + 0.872724i
$$406$$ 10.4757 + 18.1445i 0.519903 + 0.900498i
$$407$$ −17.8521 −0.884894
$$408$$ −2.15516 3.59917i −0.106696 0.178185i
$$409$$ −13.5081 16.0983i −0.667932 0.796010i 0.320569 0.947225i $$-0.396126\pi$$
−0.988501 + 0.151215i $$0.951682\pi$$
$$410$$ 20.4958 11.8332i 1.01221 0.584402i
$$411$$ 4.58113 1.75055i 0.225971 0.0863483i
$$412$$ 1.46684 + 1.74812i 0.0722662 + 0.0861235i
$$413$$ −7.80868 6.55226i −0.384240 0.322416i
$$414$$ 17.2458 21.9358i 0.847583 1.07809i
$$415$$ −1.25452 + 7.11475i −0.0615821 + 0.349249i
$$416$$ −0.252938 + 0.301440i −0.0124013 + 0.0147793i
$$417$$ 5.63521 + 14.7472i 0.275958 + 0.722172i
$$418$$ −15.4155 + 7.92827i −0.753997 + 0.387784i
$$419$$ −22.6417 13.0722i −1.10612 0.638620i −0.168300 0.985736i $$-0.553828\pi$$
−0.937822 + 0.347116i $$0.887161\pi$$
$$420$$ −0.870468 + 0.754367i −0.0424745 + 0.0368093i
$$421$$ −9.36101 25.7192i −0.456228 1.25348i −0.928273 0.371901i $$-0.878706\pi$$
0.472045 0.881574i $$-0.343516\pi$$
$$422$$ 9.09213 + 10.8356i 0.442598 + 0.527468i
$$423$$ 0.367399 + 11.5250i 0.0178636 + 0.560362i
$$424$$ 5.95754 + 33.7869i 0.289324 + 1.64084i
$$425$$ 0.909468 + 0.525082i 0.0441157 + 0.0254702i
$$426$$ 0.154845 0.190625i 0.00750228 0.00923581i
$$427$$ −14.9154 + 12.5155i −0.721806 + 0.605667i
$$428$$ 1.46031 1.22534i 0.0705866 0.0592292i
$$429$$ 0.780561 + 2.04270i 0.0376859 + 0.0986226i
$$430$$ −17.4857 10.0954i −0.843234 0.486841i
$$431$$ −3.13120 17.7579i −0.150825 0.855369i −0.962504 0.271267i $$-0.912558\pi$$
0.811680 0.584103i $$-0.198554\pi$$
$$432$$ 13.4557 17.6880i 0.647388 0.851014i
$$433$$ −1.22643 1.46160i −0.0589385 0.0702401i 0.735770 0.677232i $$-0.236821\pi$$
−0.794708 + 0.606992i $$0.792376\pi$$
$$434$$ −6.41031 17.6122i −0.307705 0.845411i
$$435$$ −20.1393 6.96877i −0.965606 0.334127i
$$436$$ −2.43663 1.40679i −0.116693 0.0673729i
$$437$$ −26.9661 6.11814i −1.28996 0.292671i
$$438$$ −16.5189 2.64207i −0.789303 0.126243i
$$439$$ 0.0935301 0.111465i 0.00446395 0.00531993i −0.763808 0.645444i $$-0.776672\pi$$
0.768272 + 0.640124i $$0.221117\pi$$
$$440$$ 2.49854 14.1699i 0.119113 0.675525i
$$441$$ −5.13102 + 2.05495i −0.244334 + 0.0978548i
$$442$$ −0.466763 0.391661i −0.0222016 0.0186294i
$$443$$ −16.4525 19.6073i −0.781681 0.931572i 0.217327 0.976099i $$-0.430266\pi$$
−0.999008 + 0.0445273i $$0.985822\pi$$
$$444$$ 1.32507 + 1.07636i 0.0628853 + 0.0510819i
$$445$$ 13.7915 7.96255i 0.653782 0.377461i
$$446$$ 18.8671 + 22.4849i 0.893383 + 1.06469i
$$447$$ 14.9057 0.237526i 0.705015 0.0112346i
$$448$$ −16.6118 −0.784834
$$449$$ 1.53301 + 2.65525i 0.0723472 + 0.125309i 0.899930 0.436035i $$-0.143618\pi$$
−0.827582 + 0.561344i $$0.810284\pi$$
$$450$$ −0.735631 + 5.12132i −0.0346780 + 0.241421i
$$451$$ −14.3916 + 17.1513i −0.677675 + 0.807622i
$$452$$ 2.65020 + 0.964594i 0.124655 + 0.0453707i
$$453$$ 38.3625 + 13.2745i 1.80243 + 0.623690i
$$454$$ 0.463593 2.62917i 0.0217575 0.123393i
$$455$$ 1.03355 1.79016i 0.0484535 0.0839238i
$$456$$ −20.0435 4.21290i −0.938624 0.197287i
$$457$$ 4.14662 + 7.18215i 0.193971 + 0.335967i 0.946563 0.322520i $$-0.104530\pi$$
−0.752592 + 0.658487i $$0.771197\pi$$
$$458$$ 26.5659 9.66920i 1.24134 0.451812i
$$459$$ 3.69222 + 2.80876i 0.172338 + 0.131102i
$$460$$ −1.42302 + 1.19406i −0.0663486 + 0.0556731i
$$461$$ 27.5981 + 4.86629i 1.28537 + 0.226646i 0.774259 0.632869i $$-0.218123\pi$$
0.511112 + 0.859514i $$0.329234\pi$$
$$462$$ 7.60476 13.6703i 0.353805 0.636001i
$$463$$ −7.27486 −0.338092 −0.169046 0.985608i $$-0.554069\pi$$
−0.169046 + 0.985608i $$0.554069\pi$$
$$464$$ 13.4560 + 23.3064i 0.624677 + 1.08197i
$$465$$ 16.6597 + 9.26775i 0.772576 + 0.429781i
$$466$$ 35.0585 6.18175i 1.62405 0.286364i
$$467$$ −5.43529 3.13807i −0.251515 0.145212i 0.368943 0.929452i $$-0.379720\pi$$
−0.620458 + 0.784240i $$0.713053\pi$$
$$468$$ 0.0652241 0.198683i 0.00301499 0.00918412i
$$469$$ 6.87621 1.21246i 0.317514 0.0559862i
$$470$$ 1.91358 10.8525i 0.0882670 0.500587i
$$471$$ 4.79880 + 2.66956i 0.221117 + 0.123007i
$$472$$ −9.32778 7.82693i −0.429346 0.360264i
$$473$$ 18.8110 + 3.31689i 0.864932 + 0.152511i
$$474$$ 28.3066 10.8166i 1.30017 0.496822i
$$475$$ 4.89743 1.51760i 0.224709 0.0696322i
$$476$$ 0.303634i 0.0139171i
$$477$$ −20.0071 32.2356i −0.916063 1.47597i
$$478$$ 10.6917 + 1.88523i 0.489026 + 0.0862285i
$$479$$ −3.54073 + 9.72807i −0.161780 + 0.444487i −0.993923 0.110074i $$-0.964891\pi$$
0.832143 + 0.554560i $$0.187114\pi$$
$$480$$ −2.16377 + 1.87518i −0.0987623 + 0.0855897i
$$481$$ −2.87885 1.04782i −0.131264 0.0477763i
$$482$$ 20.4237i 0.930273i
$$483$$ 23.3093 8.90700i 1.06061 0.405283i
$$484$$ 0.0947352 + 0.537270i 0.00430615 + 0.0244214i
$$485$$ 7.52650 + 2.73942i 0.341761 + 0.124391i
$$486$$ −6.08307 + 22.0315i −0.275934 + 0.999368i
$$487$$ −15.8074 + 9.12641i −0.716302 + 0.413557i −0.813390 0.581719i $$-0.802381\pi$$
0.0970880 + 0.995276i $$0.469047\pi$$
$$488$$ −17.8170 + 14.9502i −0.806538 + 0.676766i
$$489$$ 21.9095 4.22425i 0.990784 0.191027i
$$490$$ 5.20206 0.917264i 0.235005 0.0414378i
$$491$$ −3.45546 + 4.11806i −0.155943 + 0.185845i −0.838359 0.545118i $$-0.816485\pi$$
0.682416 + 0.730964i $$0.260929\pi$$
$$492$$ 2.10233 0.405338i 0.0947804 0.0182740i
$$493$$ −4.86501 + 2.80881i −0.219109 + 0.126503i
$$494$$ −2.95127 + 0.373721i −0.132784 + 0.0168145i
$$495$$ 3.26089 + 15.5739i 0.146566 + 0.699993i
$$496$$ −8.23395 22.6226i −0.369715 1.01578i
$$497$$ 0.206380 0.0751161i 0.00925740 0.00336942i
$$498$$ −4.56119 + 8.19919i −0.204392 + 0.367415i
$$499$$ −31.6146 + 11.5068i −1.41527 + 0.515115i −0.932671 0.360729i $$-0.882528\pi$$
−0.482595 + 0.875844i $$0.660306\pi$$
$$500$$ 0.618576 1.69952i 0.0276635 0.0760050i
$$501$$ 2.21763 2.73006i 0.0990766 0.121970i
$$502$$ 38.9665i 1.73916i
$$503$$ 1.29040 3.54533i 0.0575359 0.158079i −0.907595 0.419847i $$-0.862084\pi$$
0.965131 + 0.261769i $$0.0843058\pi$$
$$504$$ 17.1580 6.87169i 0.764276 0.306089i
$$505$$ −7.15778 + 12.3976i −0.318517 + 0.551687i
$$506$$ 12.6140 21.8481i 0.560761 0.971266i
$$507$$ −0.352784 22.1386i −0.0156677 0.983209i
$$508$$ −0.132262 0.363388i −0.00586820 0.0161227i
$$509$$ −5.16749 29.3063i −0.229045 1.29898i −0.854800 0.518958i $$-0.826320\pi$$
0.625755 0.780020i $$-0.284791\pi$$
$$510$$ −2.90361 3.35048i −0.128574 0.148362i
$$511$$ −11.4601 9.61618i −0.506966 0.425395i
$$512$$ −19.5903 −0.865776
$$513$$ 22.3084 3.91584i 0.984941 0.172889i
$$514$$ −32.6265 −1.43909
$$515$$ −22.8267 19.1539i −1.00587 0.844021i
$$516$$ −1.19627 1.38038i −0.0526627 0.0607677i
$$517$$ 1.81032 + 10.2669i 0.0796180 + 0.451536i
$$518$$ 7.49567 + 20.5942i 0.329341 + 0.904856i
$$519$$ −0.172885 10.8492i −0.00758880 0.476227i
$$520$$ 1.23461 2.13841i 0.0541414 0.0937756i
$$521$$ −13.9379 + 24.1411i −0.610630 + 1.05764i 0.380505 + 0.924779i $$0.375750\pi$$
−0.991134 + 0.132863i $$0.957583\pi$$
$$522$$ −21.7576 17.1056i −0.952303 0.748692i
$$523$$ 13.1044 36.0039i 0.573013 1.57434i −0.226704 0.973964i $$-0.572795\pi$$
0.799717 0.600377i $$-0.204983\pi$$
$$524$$ 2.41321i 0.105422i
$$525$$ −2.91723 + 3.59131i −0.127318 + 0.156738i
$$526$$ 3.05843 8.40296i 0.133354 0.366386i
$$527$$ 4.72227 1.71877i 0.205705 0.0748707i
$$528$$ 9.76821 17.5593i 0.425107 0.764172i
$$529$$ 16.2024 5.89719i 0.704452 0.256400i
$$530$$ 12.4012 + 34.0720i 0.538673 + 1.47999i
$$531$$ 12.7937 + 4.19995i 0.555200 + 0.182262i
$$532$$ 1.08800 + 1.00690i 0.0471706 + 0.0436545i
$$533$$ −3.32750 + 1.92113i −0.144130 + 0.0832135i
$$534$$ 20.3080 3.91546i 0.878812 0.169438i
$$535$$ −16.0004 + 19.0685i −0.691757 + 0.824404i
$$536$$ 8.21390 1.44833i 0.354787 0.0625584i
$$537$$ −20.4289 + 3.93878i −0.881573 + 0.169971i
$$538$$ −10.1773 + 8.53976i −0.438774 + 0.368175i
$$539$$ −4.32777 + 2.49864i −0.186410 + 0.107624i
$$540$$ 0.696960 1.35258i 0.0299924 0.0582060i
$$541$$ 6.81285 + 2.47967i 0.292907 + 0.106610i 0.484294 0.874905i $$-0.339076\pi$$
−0.191387 + 0.981515i $$0.561299\pi$$
$$542$$ −5.05752 28.6826i −0.217239 1.23202i
$$543$$ 14.2595 5.44887i 0.611934 0.233833i
$$544$$ 0.754762i 0.0323602i
$$545$$ 34.5237 + 12.5656i 1.47883 + 0.538252i
$$546$$ 2.02873 1.75814i 0.0868214 0.0752414i
$$547$$ 4.35099 11.9543i 0.186035 0.511127i −0.811255 0.584692i $$-0.801215\pi$$
0.997290 + 0.0735648i $$0.0234376\pi$$
$$548$$ −0.417571 0.0736291i −0.0178378 0.00314528i
$$549$$ 12.1440 22.6730i 0.518291 0.967659i
$$550$$ 4.67782i 0.199463i
$$551$$ −6.06842 + 26.7470i −0.258524 + 1.13946i
$$552$$ 27.8439 10.6398i 1.18512 0.452859i
$$553$$ 26.6873 + 4.70568i 1.13486 + 0.200106i
$$554$$ −1.48498 1.24605i −0.0630908 0.0529394i
$$555$$ −19.4804 10.8369i −0.826899 0.460001i
$$556$$ 0.237020 1.34421i 0.0100519 0.0570071i
$$557$$ 5.42329 0.956273i 0.229792 0.0405186i −0.0575662 0.998342i $$-0.518334\pi$$
0.287358 + 0.957823i $$0.407223\pi$$
$$558$$ 16.5107 + 18.4494i 0.698954 + 0.781027i
$$559$$ 2.83881 + 1.63899i 0.120069 + 0.0693218i
$$560$$ −18.7054 + 3.29826i −0.790447 + 0.139377i
$$561$$ 3.66536 + 2.03903i 0.154752 + 0.0860879i
$$562$$ 23.3396 + 40.4253i 0.984520 + 1.70524i
$$563$$ 8.15535 0.343707 0.171854 0.985123i $$-0.445024\pi$$
0.171854 + 0.985123i $$0.445024\pi$$
$$564$$ 0.484652 0.871211i 0.0204075 0.0366846i
$$565$$ −36.2675 6.39494i −1.52578 0.269037i
$$566$$ −28.5442 + 23.9514i −1.19980 + 1.00675i
$$567$$ −14.7888 + 14.1087i −0.621072 + 0.592510i
$$568$$ 0.246529 0.0897292i 0.0103441 0.00376495i
$$569$$ 8.46027 + 14.6536i 0.354673 + 0.614311i 0.987062 0.160339i $$-0.0512589\pi$$
−0.632389 + 0.774651i $$0.717926\pi$$
$$570$$ −21.6344 0.706374i −0.906165 0.0295867i
$$571$$ 15.4888 26.8273i 0.648185 1.12269i −0.335371 0.942086i $$-0.608862\pi$$
0.983556 0.180603i $$-0.0578049\pi$$
$$572$$ 0.0328308 0.186193i 0.00137273 0.00778511i
$$573$$ −17.0114 5.88643i −0.710662 0.245909i
$$574$$ 25.8284 + 9.40079i 1.07806 + 0.392381i
$$575$$ −4.79634 + 5.71605i −0.200021 + 0.238376i
$$576$$ 20.3710 8.15848i 0.848790 0.339937i
$$577$$ −11.2310 19.4527i −0.467554 0.809827i 0.531759 0.846896i $$-0.321531\pi$$
−0.999313 + 0.0370686i $$0.988198\pi$$
$$578$$ 23.7567 0.988150
$$579$$ 9.44490 0.150507i 0.392516 0.00625485i
$$580$$ 1.18435 + 1.41146i 0.0491775 + 0.0586075i
$$581$$ −7.26637 + 4.19524i −0.301460 + 0.174048i
$$582$$ 8.07393 + 6.55847i 0.334675 + 0.271857i
$$583$$ −22.0489 26.2769i −0.913174 1.08828i
$$584$$ −13.6896 11.4869i −0.566478 0.475332i
$$585$$ −0.388241 + 2.70286i −0.0160518 + 0.111749i
$$586$$ −2.28042 + 12.9329i −0.0942031 + 0.534252i
$$587$$ −15.6884 + 18.6967i −0.647530 + 0.771697i −0.985539 0.169446i $$-0.945802\pi$$
0.338009 + 0.941143i $$0.390247\pi$$
$$588$$ 0.471881 + 0.0754737i 0.0194600 + 0.00311248i
$$589$$ 9.50100 22.6207i 0.391482 0.932071i
$$590$$ −11.1447 6.43441i −0.458821 0.264900i
$$591$$ 23.3369 + 8.07524i 0.959954 + 0.332171i
$$592$$ 9.62808 + 26.4529i 0.395712 + 1.08721i
$$593$$ −1.45747 1.73695i −0.0598512 0.0713279i 0.735288 0.677755i $$-0.237047\pi$$
−0.795139 + 0.606427i $$0.792602\pi$$
$$594$$ −2.61183 + 20.4987i −0.107165 + 0.841073i
$$595$$ −0.688484 3.90459i −0.0282251 0.160073i
$$596$$ −1.11622 0.644448i −0.0457220 0.0263976i
$$597$$ 16.7699 + 43.8863i 0.686346 + 1.79615i
$$598$$ 3.31651 2.78288i 0.135622 0.113801i
$$599$$ −1.68898 + 1.41722i −0.0690098 + 0.0579061i −0.676640 0.736314i $$-0.736565\pi$$
0.607630 + 0.794220i $$0.292120\pi$$
$$600$$ −3.48475 + 4.28996i −0.142264 + 0.175137i
$$601$$ −39.6141 22.8712i −1.61589 0.932937i −0.987967 0.154664i $$-0.950570\pi$$
−0.627927 0.778272i $$-0.716096\pi$$
$$602$$ −4.07194 23.0931i −0.165960 0.941205i
$$603$$ −7.83678 + 4.86391i −0.319138 + 0.198074i
$$604$$ −2.25602 2.68862i −0.0917960 0.109398i
$$605$$ −2.43650 6.69422i −0.0990577 0.272159i
$$606$$ −14.0498 + 12.1759i −0.570735 + 0.494612i
$$607$$ −33.0308 19.0703i −1.34068 0.774041i −0.353772 0.935332i $$-0.615101\pi$$
−0.986907 + 0.161290i $$0.948434\pi$$
$$608$$ 2.70450 + 2.50290i 0.109682 + 0.101506i
$$609$$ −8.83462 23.1199i −0.357997 0.936866i
$$610$$ −15.8002 + 18.8300i −0.639732 + 0.762403i
$$611$$ −0.310671 + 1.76190i −0.0125684 + 0.0712790i
$$612$$ −0.149122 0.372345i −0.00602792 0.0150511i
$$613$$ −18.9780 15.9244i −0.766513 0.643181i 0.173300 0.984869i $$-0.444557\pi$$
−0.939813 + 0.341688i $$0.889001\pi$$
$$614$$ 19.5033 + 23.2431i 0.787089 + 0.938016i
$$615$$ −26.1159 + 9.97944i −1.05309 + 0.402410i
$$616$$ 14.4719 8.35537i 0.583090 0.336647i
$$617$$ −7.03648 8.38575i −0.283278 0.337598i 0.605577 0.795787i $$-0.292943\pi$$
−0.888855 + 0.458190i $$0.848498\pi$$
$$618$$ −19.8810 33.2018i −0.799732 1.33557i
$$619$$ 37.3953 1.50304 0.751521 0.659709i $$-0.229320\pi$$
0.751521 + 0.659709i $$0.229320\pi$$
$$620$$ −0.824129 1.42743i −0.0330978 0.0573271i
$$621$$ −24.2096 + 22.3704i −0.971499 + 0.897693i
$$622$$ −4.27630 + 5.09629i −0.171464 + 0.204343i
$$623$$ 17.3799 + 6.32576i 0.696310 + 0.253436i
$$624$$ 2.60587 2.25831i 0.104318 0.0904046i
$$625$$ −3.07968 + 17.4657i −0.123187 + 0.698629i
$$626$$ −1.12207 + 1.94347i −0.0448468 + 0.0776769i
$$627$$ 19.4612 6.37216i 0.777207 0.254480i
$$628$$ −0.237389 0.411169i −0.00947284 0.0164074i
$$629$$ −5.52182 + 2.00978i −0.220170 + 0.0801352i
$$630$$ 16.5969 10.3009i 0.661235 0.410397i
$$631$$ −8.34756 + 7.00444i −0.332311 + 0.278842i −0.793641 0.608387i $$-0.791817\pi$$
0.461330 + 0.887229i $$0.347373\pi$$
$$632$$ 31.8790 + 5.62113i 1.26808 + 0.223596i
$$633$$ −8.58428 14.3359i −0.341194 0.569802i
$$634$$ 21.8318 0.867051
$$635$$ 2.52481 + 4.37309i 0.100194 + 0.173541i
$$636$$ 0.0522647 + 3.27982i 0.00207243 + 0.130053i
$$637$$ −0.844558 + 0.148918i −0.0334626 + 0.00590036i
$$638$$ −21.6705 12.5115i −0.857945 0.495335i
$$639$$ −0.216191 + 0.193473i −0.00855237 + 0.00765366i
$$640$$ −23.9090 + 4.21580i −0.945086 + 0.166644i
$$641$$ 7.71231 43.7387i 0.304618 1.72757i −0.320680 0.947188i $$-0.603911\pi$$
0.625297 0.780386i $$-0.284978\pi$$
$$642$$ −27.7354 + 16.6078i −1.09463 + 0.655458i
$$643$$ 6.17659 + 5.18277i 0.243581 + 0.204389i 0.756402 0.654107i $$-0.226955\pi$$
−0.512821 + 0.858495i $$0.671400\pi$$
$$644$$ −2.12465 0.374633i −0.0837230 0.0147626i
$$645$$ 18.5134 + 15.0385i 0.728964 + 0.592139i
$$646$$ −3.87561 + 4.18776i −0.152484 + 0.164765i
$$647$$ 1.23433i 0.0485264i −0.999706 0.0242632i $$-0.992276\pi$$
0.999706 0.0242632i $$-0.00772397\pi$$
$$648$$ −17.6658 + 16.8534i −0.693980 + 0.662065i
$$649$$ 11.9894 + 2.11406i 0.470627 + 0.0829842i
$$650$$ −0.274561 + 0.754351i −0.0107692 + 0.0295881i
$$651$$ 4.19164 + 21.7404i 0.164283 + 0.852074i
$$652$$ −1.81282 0.659814i −0.0709957 0.0258403i
$$653$$ 27.8887i 1.09137i −0.837991 0.545684i $$-0.816270\pi$$
0.837991 0.545684i $$-0.183730\pi$$
$$654$$ 37.0348 + 30.0834i 1.44817 + 1.17636i
$$655$$ 5.47190 + 31.0327i 0.213805 + 1.21255i
$$656$$ 33.1763 + 12.0752i 1.29532 + 0.471457i
$$657$$ 18.7762 + 6.16390i 0.732530 + 0.240477i
$$658$$ 11.0838 6.39921i 0.432090 0.249467i
$$659$$ −25.2736 + 21.2071i −0.984520 + 0.826111i −0.984765 0.173889i $$-0.944367\pi$$
0.000244779 1.00000i $$0.499922\pi$$
$$660$$ 0.449860 1.30007i 0.0175108 0.0506051i
$$661$$ 7.85254 1.38462i 0.305429 0.0538553i −0.0188334 0.999823i $$-0.505995\pi$$
0.324262 + 0.945967i $$0.394884\pi$$
$$662$$ −2.74086 + 3.26643i −0.106527 + 0.126953i
$$663$$ 0.471402 + 0.543953i 0.0183077 + 0.0211254i
$$664$$ −8.67997 + 5.01138i −0.336848 + 0.194479i
$$665$$ −16.2742 10.4812i −0.631087 0.406443i
$$666$$ −19.3062 21.5732i −0.748100 0.835944i
$$667$$ −13.6518 37.5080i −0.528600 1.45232i
$$668$$ −0.285760 + 0.104008i −0.0110564 + 0.00402419i
$$669$$ −17.8133 29.7485i −0.688701 1.15015i
$$670$$ 8.28320 3.01484i 0.320008 0.116473i
$$671$$ 7.95346 21.8520i 0.307040 0.843585i
$$672$$ −3.28362 0.525190i −0.126669 0.0202597i
$$673$$ 9.57507i 0.369092i 0.982824 + 0.184546i $$0.0590815\pi$$
−0.982824 + 0.184546i $$0.940919\pi$$
$$674$$ 9.98964 27.4463i 0.384786 1.05719i
$$675$$ 1.81360 5.83673i 0.0698054 0.224656i
$$676$$ −0.957162 + 1.65785i −0.0368139 + 0.0637636i
$$677$$ −3.70655 + 6.41993i −0.142454 + 0.246738i −0.928420 0.371532i $$-0.878833\pi$$
0.785966 + 0.618270i $$0.212166\pi$$
$$678$$ −41.7955 23.2507i −1.60514 0.892937i
$$679$$ 3.18154 + 8.74122i 0.122096 + 0.335457i
$$680$$ −0.822422 4.66419i −0.0315384 0.178863i
$$681$$ −1.03130 + 2.98041i −0.0395197 + 0.114209i
$$682$$ 17.1477 + 14.3886i 0.656619 + 0.550968i
$$683$$ −6.63543 −0.253898 −0.126949 0.991909i $$-0.540518\pi$$
−0.126949 + 0.991909i $$0.540518\pi$$
$$684$$ −1.82871 0.700408i −0.0699226 0.0267808i
$$685$$ 5.53671 0.211547
$$686$$ 22.5550 + 18.9259i 0.861153 + 0.722593i
$$687$$ −32.7929 + 6.32260i −1.25113 + 0.241222i
$$688$$ −5.23035 29.6628i −0.199405 1.13088i
$$689$$ −2.01334 5.53160i −0.0767021 0.210737i
$$690$$ 27.0272 16.1838i 1.02891 0.616105i
$$691$$ −12.2080 + 21.1449i −0.464416 + 0.804391i −0.999175 0.0406130i $$-0.987069\pi$$
0.534759 + 0.845004i $$0.320402\pi$$
$$692$$ −0.469066 + 0.812446i −0.0178312 + 0.0308846i
$$693$$ −11.4214 + 14.5275i −0.433862 + 0.551853i
$$694$$ 4.44070 12.2007i 0.168567 0.463133i
$$695$$ 17.8233i 0.676076i
$$696$$ −10.5533 27.6176i −0.400022 1.04684i
$$697$$ −2.52059 + 6.92526i −0.0954742 + 0.262313i
$$698$$ −28.8696 + 10.5077i −1.09273 + 0.397722i
$$699$$ −42.0487 + 0.670057i −1.59043 + 0.0253439i
$$700$$ 0.375908 0.136819i 0.0142080 0.00517129i
$$701$$ 4.48329 + 12.3177i 0.169332 + 0.465235i 0.995112 0.0987578i $$-0.0314869\pi$$
−0.825780 + 0.563993i $$0.809265\pi$$
$$702$$ −1.62435 + 3.15235i −0.0613070 + 0.118978i
$$703$$ −11.1097 + 26.4508i −0.419009 + 0.997610i
$$704$$ 17.1819 9.91999i 0.647568 0.373874i
$$705$$ −4.25694 + 12.3023i −0.160326 + 0.463331i
$$706$$ 22.6619 27.0074i 0.852892 1.01644i
$$707$$ −16.3734 + 2.88707i −0.615785 + 0.108579i
$$708$$ −0.762456 0.879801i −0.0286548 0.0330650i
$$709$$ 24.8893 20.8846i 0.934736 0.784336i −0.0419258 0.999121i $$-0.513349\pi$$
0.976662 + 0.214784i $$0.0689049\pi$$
$$710$$ 0.240119 0.138633i 0.00901152 0.00520280i
$$711$$ −35.0375 + 7.33624i −1.31401 + 0.275131i
$$712$$ 20.7610 + 7.55637i 0.778050 + 0.283187i
$$713$$ 6.20042 + 35.1643i 0.232207 + 1.31691i
$$714$$ 0.813228 5.08451i 0.0304343 0.190283i
$$715$$ 2.46879i 0.0923276i
$$716$$ 1.69032 + 0.615224i 0.0631700 + 0.0229920i
$$717$$ −12.1200 4.19387i −0.452630 0.156623i
$$718$$ 5.84040 16.0464i 0.217962 0.598845i
$$719$$ −11.5426 2.03526i −0.430465 0.0759026i −0.0457821 0.998951i $$-0.514578\pi$$
−0.384683 + 0.923049i $$0.625689\pi$$
$$720$$ 21.3184 13.2313i 0.794491 0.493102i
$$721$$ 34.6074i 1.28885i
$$722$$ 2.15369 + 27.7745i 0.0801522 + 1.03366i
$$723$$ −3.81047 + 23.8240i −0.141713 + 0.886025i
$$724$$ −1.29976 0.229182i −0.0483051 0.00851750i
$$725$$ 5.66960 + 4.75736i 0.210564 + 0.176684i
$$726$$ −0.147411 9.25059i −0.00547092 0.343322i
$$727$$ 0.250773 1.42221i 0.00930066 0.0527467i −0.979804 0.199959i $$-0.935919\pi$$
0.989105 + 0.147213i $$0.0470301\pi$$
$$728$$ 2.82417 0.497978i 0.104671 0.0184563i
$$729$$ 11.2063 24.5646i 0.415048 0.909800i
$$730$$ −16.3561 9.44322i −0.605368 0.349509i
$$731$$ 6.19185 1.09179i 0.229014 0.0403813i
$$732$$ −1.90788 + 1.14243i −0.0705171 + 0.0422253i
$$733$$ −22.1621 38.3858i −0.818575 1.41781i −0.906732 0.421707i $$-0.861431\pi$$
0.0881571 0.996107i $$-0.471902\pi$$
$$734$$ 0.757043 0.0279430
$$735$$ −6.23929 + 0.0994247i −0.230140 + 0.00366734i
$$736$$ −5.28137 0.931249i −0.194674 0.0343263i
$$737$$ −6.38816 + 5.36030i −0.235311 + 0.197449i
$$738$$ −36.2902 + 1.15688i −1.33586 + 0.0425854i
$$739$$ 47.6440 17.3410i 1.75261 0.637899i 0.752819 0.658228i $$-0.228694\pi$$
0.999793 + 0.0203293i $$0.00647148\pi$$
$$740$$ 0.963667 + 1.66912i 0.0354251 + 0.0613581i
$$741$$ 3.51236 + 0.114680i 0.129030 + 0.00421288i
$$742$$ −21.0552 + 36.4688i −0.772962 + 1.33881i
$$743$$ −1.48490 + 8.42127i −0.0544756 + 0.308947i −0.999855 0.0170254i $$-0.994580\pi$$
0.945379 + 0.325972i $$0.105692\pi$$
$$744$$ 5.00708 + 25.9698i 0.183568 + 0.952099i
$$745$$ 15.8153 + 5.75629i 0.579427 + 0.210894i
$$746$$ −21.4284 + 25.5374i −0.784550 + 0.934991i
$$747$$ 6.85032 8.71330i 0.250640 0.318803i
$$748$$ −0.181320 0.314055i −0.00662970 0.0114830i
$$749$$ −28.9096 −1.05633
$$750$$ −14.9102 + 26.8026i −0.544444 + 0.978693i
$$751$$ 22.4840 + 26.7953i 0.820451 + 0.977776i 0.999982 0.00597659i $$-0.00190242\pi$$
−0.179531 + 0.983752i $$0.557458\pi$$
$$752$$ 14.2369 8.21969i 0.519167 0.299741i
$$753$$ 7.27004 45.4541i 0.264935 1.65644i
$$754$$ −2.76027 3.28956i −0.100523 0.119799i
$$755$$ 35.1077 + 29.4588i 1.27770 + 1.07212i
$$756$$ 1.72367 0.389673i 0.0626891 0.0141723i
$$757$$ −6.66965 + 37.8255i −0.242412 + 1.37479i 0.584013 + 0.811744i $$0.301482\pi$$
−0.826426 + 0.563046i $$0.809630\pi$$
$$758$$ −22.0367 + 26.2623i −0.800409 + 0.953890i
$$759$$ −18.7903 + 23.1322i −0.682046 + 0.839645i
$$760$$ −19.4402 12.5202i −0.705170 0.454155i
$$761$$ 9.57956 + 5.53076i 0.347259 + 0.200490i 0.663477 0.748196i $$-0.269080\pi$$
−0.316219 + 0.948686i $$0.602413\pi$$
$$762$$ 1.24153 + 6.43936i 0.0449760 + 0.233273i
$$763$$ 14.5936 + 40.0956i 0.528324 + 1.45156i
$$764$$ 1.00041 + 1.19224i 0.0361934 + 0.0431337i
$$765$$ 2.76193 + 4.45004i 0.0998576 + 0.160892i
$$766$$ −2.69708 15.2959i −0.0974495 0.552663i
$$767$$ 1.80935 + 1.04463i 0.0653319 + 0.0377194i
$$768$$ −6.11333 0.977780i −0.220596 0.0352826i