Properties

Label 171.2.x.a.110.16
Level $171$
Weight $2$
Character 171.110
Analytic conductor $1.365$
Analytic rank $0$
Dimension $108$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,2,Mod(14,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([15, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.14");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 171.x (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.36544187456\)
Analytic rank: \(0\)
Dimension: \(108\)
Relative dimension: \(18\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 110.16
Character \(\chi\) \(=\) 171.110
Dual form 171.2.x.a.14.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.42288 - 1.19394i) q^{2} +(-1.62073 - 0.610926i) q^{3} +(0.251804 - 1.42805i) q^{4} +(0.629748 - 1.73022i) q^{5} +(-3.03552 + 1.06578i) q^{6} +(-1.66649 - 2.88644i) q^{7} +(0.510719 + 0.884592i) q^{8} +(2.25354 + 1.98029i) q^{9} +O(q^{10})\) \(q+(1.42288 - 1.19394i) q^{2} +(-1.62073 - 0.610926i) q^{3} +(0.251804 - 1.42805i) q^{4} +(0.629748 - 1.73022i) q^{5} +(-3.03552 + 1.06578i) q^{6} +(-1.66649 - 2.88644i) q^{7} +(0.510719 + 0.884592i) q^{8} +(2.25354 + 1.98029i) q^{9} +(-1.16972 - 3.21378i) q^{10} -2.01233i q^{11} +(-1.28054 + 2.16066i) q^{12} +(-0.355101 - 0.975632i) q^{13} +(-5.81744 - 2.11738i) q^{14} +(-2.07769 + 2.41949i) q^{15} +(4.50811 + 1.64082i) q^{16} +(-2.49671 + 6.85966i) q^{17} +(5.57087 + 0.127133i) q^{18} +(4.33498 - 0.456034i) q^{19} +(-2.31227 - 1.33499i) q^{20} +(0.937526 + 5.69624i) q^{21} +(-2.40260 - 2.86331i) q^{22} +(5.68790 + 1.00293i) q^{23} +(-0.287319 - 1.74570i) q^{24} +(1.23315 + 1.03473i) q^{25} +(-1.67011 - 0.964239i) q^{26} +(-2.44257 - 4.58627i) q^{27} +(-4.54161 + 1.65301i) q^{28} +(-0.250256 + 1.41927i) q^{29} +(-0.0675790 + 5.92328i) q^{30} -3.08283i q^{31} +(6.45386 - 2.34901i) q^{32} +(-1.22938 + 3.26144i) q^{33} +(4.63749 + 12.7414i) q^{34} +(-6.04364 + 1.06566i) q^{35} +(3.39541 - 2.71953i) q^{36} +2.56367i q^{37} +(5.62368 - 5.82458i) q^{38} +(-0.0205155 + 1.79818i) q^{39} +(1.85216 - 0.326586i) q^{40} +(-6.61929 + 5.55425i) q^{41} +(8.13495 + 6.98572i) q^{42} +(-0.553471 - 3.13889i) q^{43} +(-2.87371 - 0.506713i) q^{44} +(4.84550 - 2.65203i) q^{45} +(9.29064 - 5.36395i) q^{46} +(-8.65752 - 1.52655i) q^{47} +(-6.30401 - 5.41344i) q^{48} +(-2.05435 + 3.55824i) q^{49} +2.99003 q^{50} +(8.23725 - 9.59236i) q^{51} +(-1.48267 + 0.261435i) q^{52} +(-4.17870 - 3.50634i) q^{53} +(-8.95121 - 3.60944i) q^{54} +(-3.48177 - 1.26726i) q^{55} +(1.70221 - 2.94832i) q^{56} +(-7.30444 - 1.90924i) q^{57} +(1.33844 + 2.31825i) q^{58} +(1.40063 + 7.94334i) q^{59} +(2.93199 + 3.57629i) q^{60} +(10.4732 - 3.81194i) q^{61} +(-3.68071 - 4.38650i) q^{62} +(1.96050 - 9.80483i) q^{63} +(1.58107 - 2.73850i) q^{64} -1.91168 q^{65} +(2.14470 + 6.10846i) q^{66} +(-5.53209 + 6.59289i) q^{67} +(9.16728 + 5.29273i) q^{68} +(-8.60584 - 5.10036i) q^{69} +(-7.32705 + 8.73204i) q^{70} +(4.33638 - 3.63865i) q^{71} +(-0.600825 + 3.00484i) q^{72} +(-2.19677 - 12.4585i) q^{73} +(3.06087 + 3.64780i) q^{74} +(-1.36645 - 2.43038i) q^{75} +(0.440324 - 6.30541i) q^{76} +(-5.80846 + 3.35352i) q^{77} +(2.11772 + 2.58309i) q^{78} +(-3.44685 + 9.47013i) q^{79} +(5.67794 - 6.76671i) q^{80} +(1.15688 + 8.92534i) q^{81} +(-2.78704 + 15.8061i) q^{82} +(-7.44260 + 4.29699i) q^{83} +(8.37060 + 0.0955007i) q^{84} +(10.2964 + 8.63972i) q^{85} +(-4.53517 - 3.80546i) q^{86} +(1.27267 - 2.14737i) q^{87} +(1.78009 - 1.02773i) q^{88} +(-1.35261 + 7.67105i) q^{89} +(3.72821 - 9.55876i) q^{90} +(-2.22433 + 2.65085i) q^{91} +(2.86447 - 7.87007i) q^{92} +(-1.88338 + 4.99643i) q^{93} +(-14.1412 + 8.16445i) q^{94} +(1.94091 - 7.78765i) q^{95} +(-11.8950 - 0.135711i) q^{96} +(-10.2106 - 12.1685i) q^{97} +(1.32522 + 7.51572i) q^{98} +(3.98500 - 4.53486i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 108 q - 9 q^{2} - 3 q^{4} - 9 q^{5} + 3 q^{7} - 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 108 q - 9 q^{2} - 3 q^{4} - 9 q^{5} + 3 q^{7} - 24 q^{9} - 12 q^{10} - 9 q^{12} - 6 q^{13} - 9 q^{14} - 36 q^{15} - 9 q^{16} + 27 q^{17} + 36 q^{18} - 15 q^{19} - 18 q^{20} + 3 q^{21} + 30 q^{22} - 45 q^{23} - 21 q^{24} - 3 q^{25} - 72 q^{26} - 36 q^{28} - 9 q^{29} - 21 q^{30} - 9 q^{32} - 6 q^{33} + 33 q^{34} + 45 q^{35} + 18 q^{36} - 9 q^{38} - 18 q^{39} + 15 q^{40} - 9 q^{41} + 15 q^{42} + 9 q^{43} - 63 q^{44} + 33 q^{45} - 18 q^{46} - 9 q^{47} + 3 q^{48} - 15 q^{49} + 126 q^{50} + 39 q^{51} - 39 q^{52} - 51 q^{54} + 3 q^{55} + 63 q^{56} - 78 q^{57} - 6 q^{58} + 36 q^{59} - 75 q^{60} - 24 q^{61} + 18 q^{62} - 9 q^{63} - 18 q^{65} + 159 q^{66} - 63 q^{67} + 54 q^{68} - 9 q^{69} + 39 q^{70} + 141 q^{72} - 45 q^{73} - 117 q^{74} - 3 q^{76} - 18 q^{77} + 27 q^{78} + 3 q^{79} + 126 q^{80} - 60 q^{81} - 3 q^{82} + 27 q^{83} - 117 q^{84} - 3 q^{85} - 171 q^{86} + 15 q^{87} - 9 q^{88} + 54 q^{89} - 21 q^{90} - 9 q^{91} - 27 q^{92} + 42 q^{93} + 99 q^{95} + 207 q^{96} - 57 q^{97} - 27 q^{98} + 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.42288 1.19394i 1.00613 0.844243i 0.0183074 0.999832i \(-0.494172\pi\)
0.987822 + 0.155590i \(0.0497278\pi\)
\(3\) −1.62073 0.610926i −0.935730 0.352718i
\(4\) 0.251804 1.42805i 0.125902 0.714026i
\(5\) 0.629748 1.73022i 0.281632 0.773778i −0.715536 0.698576i \(-0.753818\pi\)
0.997168 0.0752020i \(-0.0239602\pi\)
\(6\) −3.03552 + 1.06578i −1.23924 + 0.435103i
\(7\) −1.66649 2.88644i −0.629872 1.09097i −0.987577 0.157136i \(-0.949774\pi\)
0.357705 0.933835i \(-0.383560\pi\)
\(8\) 0.510719 + 0.884592i 0.180567 + 0.312750i
\(9\) 2.25354 + 1.98029i 0.751180 + 0.660098i
\(10\) −1.16972 3.21378i −0.369898 1.01629i
\(11\) 2.01233i 0.606740i −0.952873 0.303370i \(-0.901888\pi\)
0.952873 0.303370i \(-0.0981118\pi\)
\(12\) −1.28054 + 2.16066i −0.369660 + 0.623728i
\(13\) −0.355101 0.975632i −0.0984873 0.270592i 0.880658 0.473752i \(-0.157101\pi\)
−0.979145 + 0.203161i \(0.934879\pi\)
\(14\) −5.81744 2.11738i −1.55478 0.565893i
\(15\) −2.07769 + 2.41949i −0.536457 + 0.624710i
\(16\) 4.50811 + 1.64082i 1.12703 + 0.410204i
\(17\) −2.49671 + 6.85966i −0.605542 + 1.66371i 0.134307 + 0.990940i \(0.457119\pi\)
−0.739849 + 0.672773i \(0.765103\pi\)
\(18\) 5.57087 + 0.127133i 1.31307 + 0.0299656i
\(19\) 4.33498 0.456034i 0.994512 0.104621i
\(20\) −2.31227 1.33499i −0.517039 0.298513i
\(21\) 0.937526 + 5.69624i 0.204585 + 1.24302i
\(22\) −2.40260 2.86331i −0.512236 0.610459i
\(23\) 5.68790 + 1.00293i 1.18601 + 0.209125i 0.731642 0.681689i \(-0.238754\pi\)
0.454367 + 0.890815i \(0.349866\pi\)
\(24\) −0.287319 1.74570i −0.0586487 0.356339i
\(25\) 1.23315 + 1.03473i 0.246629 + 0.206947i
\(26\) −1.67011 0.964239i −0.327536 0.189103i
\(27\) −2.44257 4.58627i −0.470073 0.882628i
\(28\) −4.54161 + 1.65301i −0.858284 + 0.312390i
\(29\) −0.250256 + 1.41927i −0.0464715 + 0.263553i −0.999187 0.0403102i \(-0.987165\pi\)
0.952716 + 0.303863i \(0.0982765\pi\)
\(30\) −0.0675790 + 5.92328i −0.0123382 + 1.08144i
\(31\) 3.08283i 0.553692i −0.960914 0.276846i \(-0.910711\pi\)
0.960914 0.276846i \(-0.0892892\pi\)
\(32\) 6.45386 2.34901i 1.14089 0.415251i
\(33\) −1.22938 + 3.26144i −0.214008 + 0.567745i
\(34\) 4.63749 + 12.7414i 0.795324 + 2.18513i
\(35\) −6.04364 + 1.06566i −1.02156 + 0.180129i
\(36\) 3.39541 2.71953i 0.565902 0.453254i
\(37\) 2.56367i 0.421465i 0.977544 + 0.210733i \(0.0675849\pi\)
−0.977544 + 0.210733i \(0.932415\pi\)
\(38\) 5.62368 5.82458i 0.912282 0.944872i
\(39\) −0.0205155 + 1.79818i −0.00328511 + 0.287939i
\(40\) 1.85216 0.326586i 0.292853 0.0516378i
\(41\) −6.61929 + 5.55425i −1.03376 + 0.867428i −0.991294 0.131670i \(-0.957966\pi\)
−0.0424664 + 0.999098i \(0.513522\pi\)
\(42\) 8.13495 + 6.98572i 1.25525 + 1.07792i
\(43\) −0.553471 3.13889i −0.0844035 0.478676i −0.997484 0.0708960i \(-0.977414\pi\)
0.913080 0.407780i \(-0.133697\pi\)
\(44\) −2.87371 0.506713i −0.433228 0.0763898i
\(45\) 4.84550 2.65203i 0.722325 0.395341i
\(46\) 9.29064 5.36395i 1.36983 0.790872i
\(47\) −8.65752 1.52655i −1.26283 0.222671i −0.498155 0.867088i \(-0.665989\pi\)
−0.764674 + 0.644417i \(0.777100\pi\)
\(48\) −6.30401 5.41344i −0.909905 0.781363i
\(49\) −2.05435 + 3.55824i −0.293479 + 0.508320i
\(50\) 2.99003 0.422854
\(51\) 8.23725 9.59236i 1.15345 1.34320i
\(52\) −1.48267 + 0.261435i −0.205609 + 0.0362544i
\(53\) −4.17870 3.50634i −0.573988 0.481633i 0.308978 0.951069i \(-0.400013\pi\)
−0.882967 + 0.469436i \(0.844457\pi\)
\(54\) −8.95121 3.60944i −1.21811 0.491182i
\(55\) −3.48177 1.26726i −0.469482 0.170877i
\(56\) 1.70221 2.94832i 0.227468 0.393986i
\(57\) −7.30444 1.90924i −0.967496 0.252885i
\(58\) 1.33844 + 2.31825i 0.175746 + 0.304401i
\(59\) 1.40063 + 7.94334i 0.182346 + 1.03414i 0.929318 + 0.369280i \(0.120396\pi\)
−0.746972 + 0.664855i \(0.768493\pi\)
\(60\) 2.93199 + 3.57629i 0.378518 + 0.461697i
\(61\) 10.4732 3.81194i 1.34096 0.488069i 0.430845 0.902426i \(-0.358216\pi\)
0.910115 + 0.414357i \(0.135993\pi\)
\(62\) −3.68071 4.38650i −0.467450 0.557086i
\(63\) 1.96050 9.80483i 0.247000 1.23529i
\(64\) 1.58107 2.73850i 0.197634 0.342312i
\(65\) −1.91168 −0.237115
\(66\) 2.14470 + 6.10846i 0.263994 + 0.751899i
\(67\) −5.53209 + 6.59289i −0.675852 + 0.805449i −0.989568 0.144068i \(-0.953982\pi\)
0.313716 + 0.949517i \(0.398426\pi\)
\(68\) 9.16728 + 5.29273i 1.11170 + 0.641838i
\(69\) −8.60584 5.10036i −1.03602 0.614012i
\(70\) −7.32705 + 8.73204i −0.875750 + 1.04368i
\(71\) 4.33638 3.63865i 0.514633 0.431829i −0.348123 0.937449i \(-0.613181\pi\)
0.862756 + 0.505620i \(0.168736\pi\)
\(72\) −0.600825 + 3.00484i −0.0708079 + 0.354123i
\(73\) −2.19677 12.4585i −0.257112 1.45816i −0.790592 0.612343i \(-0.790227\pi\)
0.533480 0.845813i \(-0.320884\pi\)
\(74\) 3.06087 + 3.64780i 0.355819 + 0.424048i
\(75\) −1.36645 2.43038i −0.157784 0.280637i
\(76\) 0.440324 6.30541i 0.0505087 0.723280i
\(77\) −5.80846 + 3.35352i −0.661936 + 0.382169i
\(78\) 2.11772 + 2.58309i 0.239785 + 0.292477i
\(79\) −3.44685 + 9.47013i −0.387800 + 1.06547i 0.580189 + 0.814482i \(0.302979\pi\)
−0.967989 + 0.250991i \(0.919244\pi\)
\(80\) 5.67794 6.76671i 0.634813 0.756541i
\(81\) 1.15688 + 8.92534i 0.128542 + 0.991704i
\(82\) −2.78704 + 15.8061i −0.307777 + 1.74549i
\(83\) −7.44260 + 4.29699i −0.816932 + 0.471656i −0.849357 0.527818i \(-0.823010\pi\)
0.0324254 + 0.999474i \(0.489677\pi\)
\(84\) 8.37060 + 0.0955007i 0.913308 + 0.0104200i
\(85\) 10.2964 + 8.63972i 1.11680 + 0.937109i
\(86\) −4.53517 3.80546i −0.489039 0.410353i
\(87\) 1.27267 2.14737i 0.136445 0.230223i
\(88\) 1.78009 1.02773i 0.189758 0.109557i
\(89\) −1.35261 + 7.67105i −0.143377 + 0.813130i 0.825280 + 0.564724i \(0.191018\pi\)
−0.968656 + 0.248405i \(0.920094\pi\)
\(90\) 3.72821 9.55876i 0.392988 1.00758i
\(91\) −2.22433 + 2.65085i −0.233173 + 0.277885i
\(92\) 2.86447 7.87007i 0.298642 0.820512i
\(93\) −1.88338 + 4.99643i −0.195297 + 0.518106i
\(94\) −14.1412 + 8.16445i −1.45856 + 0.842098i
\(95\) 1.94091 7.78765i 0.199133 0.798996i
\(96\) −11.8950 0.135711i −1.21403 0.0138510i
\(97\) −10.2106 12.1685i −1.03673 1.23552i −0.971347 0.237664i \(-0.923618\pi\)
−0.0653807 0.997860i \(-0.520826\pi\)
\(98\) 1.32522 + 7.51572i 0.133868 + 0.759202i
\(99\) 3.98500 4.53486i 0.400508 0.455771i
\(100\) 1.78816 1.50045i 0.178816 0.150045i
\(101\) 3.65665 4.35782i 0.363850 0.433620i −0.552798 0.833315i \(-0.686440\pi\)
0.916648 + 0.399696i \(0.130884\pi\)
\(102\) 0.267925 23.4836i 0.0265286 2.32522i
\(103\) −3.51204 2.02767i −0.346051 0.199793i 0.316894 0.948461i \(-0.397360\pi\)
−0.662945 + 0.748668i \(0.730694\pi\)
\(104\) 0.681679 0.812393i 0.0668441 0.0796617i
\(105\) 10.4461 + 1.96507i 1.01944 + 0.191771i
\(106\) −10.1322 −0.984122
\(107\) −1.89059 + 3.27459i −0.182770 + 0.316567i −0.942823 0.333295i \(-0.891840\pi\)
0.760053 + 0.649861i \(0.225173\pi\)
\(108\) −7.16448 + 2.33328i −0.689403 + 0.224520i
\(109\) −4.65575 5.54851i −0.445940 0.531451i 0.495510 0.868602i \(-0.334981\pi\)
−0.941450 + 0.337151i \(0.890537\pi\)
\(110\) −6.46718 + 2.35386i −0.616621 + 0.224432i
\(111\) 1.56621 4.15502i 0.148658 0.394377i
\(112\) −2.77658 15.7468i −0.262362 1.48793i
\(113\) 7.23693 + 12.5347i 0.680793 + 1.17917i 0.974739 + 0.223346i \(0.0716981\pi\)
−0.293946 + 0.955822i \(0.594969\pi\)
\(114\) −12.6729 + 6.00443i −1.18692 + 0.562367i
\(115\) 5.31723 9.20972i 0.495834 0.858810i
\(116\) 1.96378 + 0.714759i 0.182333 + 0.0663637i
\(117\) 1.13180 2.90183i 0.104635 0.268274i
\(118\) 11.4768 + 9.63017i 1.05652 + 0.886529i
\(119\) 23.9607 4.22492i 2.19648 0.387298i
\(120\) −3.20138 0.602225i −0.292244 0.0549754i
\(121\) 6.95053 0.631867
\(122\) 10.3509 17.9283i 0.937129 1.62316i
\(123\) 14.1213 4.95804i 1.27328 0.447052i
\(124\) −4.40244 0.776269i −0.395351 0.0697110i
\(125\) 10.5398 6.08514i 0.942707 0.544272i
\(126\) −8.91681 16.2918i −0.794373 1.45139i
\(127\) −1.28938 0.227353i −0.114414 0.0201743i 0.116148 0.993232i \(-0.462945\pi\)
−0.230562 + 0.973058i \(0.574056\pi\)
\(128\) 1.36533 + 7.74316i 0.120679 + 0.684406i
\(129\) −1.02060 + 5.42542i −0.0898589 + 0.477682i
\(130\) −2.72009 + 2.28243i −0.238568 + 0.200182i
\(131\) 5.10663 0.900436i 0.446168 0.0786715i 0.0539498 0.998544i \(-0.482819\pi\)
0.392218 + 0.919872i \(0.371708\pi\)
\(132\) 4.34795 + 2.57687i 0.378440 + 0.224288i
\(133\) −8.54049 11.7527i −0.740555 1.01909i
\(134\) 15.9859i 1.38097i
\(135\) −9.47345 + 1.33799i −0.815345 + 0.115155i
\(136\) −7.34312 + 1.29479i −0.629667 + 0.111027i
\(137\) 4.70095 + 12.9158i 0.401629 + 1.10347i 0.961480 + 0.274874i \(0.0886362\pi\)
−0.559851 + 0.828593i \(0.689142\pi\)
\(138\) −18.3346 + 3.01764i −1.56075 + 0.256878i
\(139\) −4.91514 + 1.78896i −0.416896 + 0.151738i −0.541947 0.840412i \(-0.682313\pi\)
0.125051 + 0.992150i \(0.460091\pi\)
\(140\) 8.89897i 0.752100i
\(141\) 13.0989 + 7.76323i 1.10313 + 0.653782i
\(142\) 1.82582 10.3547i 0.153219 0.868951i
\(143\) −1.96329 + 0.714580i −0.164179 + 0.0597561i
\(144\) 6.90990 + 12.6250i 0.575825 + 1.05208i
\(145\) 2.29806 + 1.32678i 0.190843 + 0.110183i
\(146\) −18.0004 15.1041i −1.48973 1.25003i
\(147\) 5.50337 4.51189i 0.453910 0.372135i
\(148\) 3.66106 + 0.645544i 0.300937 + 0.0530634i
\(149\) 1.95002 + 2.32394i 0.159752 + 0.190385i 0.839983 0.542613i \(-0.182565\pi\)
−0.680231 + 0.732998i \(0.738121\pi\)
\(150\) −4.84603 1.82669i −0.395677 0.149148i
\(151\) −15.6433 9.03169i −1.27304 0.734988i −0.297478 0.954729i \(-0.596146\pi\)
−0.975558 + 0.219740i \(0.929479\pi\)
\(152\) 2.61736 + 3.60178i 0.212296 + 0.292143i
\(153\) −19.2106 + 10.5143i −1.55308 + 0.850030i
\(154\) −4.26086 + 11.7066i −0.343350 + 0.943345i
\(155\) −5.33397 1.94141i −0.428435 0.155937i
\(156\) 2.56273 + 0.482086i 0.205182 + 0.0385977i
\(157\) 21.8184 + 7.94124i 1.74130 + 0.633780i 0.999328 0.0366550i \(-0.0116703\pi\)
0.741968 + 0.670435i \(0.233892\pi\)
\(158\) 6.40231 + 17.5902i 0.509340 + 1.39940i
\(159\) 4.63043 + 8.23572i 0.367217 + 0.653135i
\(160\) 12.6459i 0.999744i
\(161\) −6.58391 18.0891i −0.518884 1.42562i
\(162\) 12.3024 + 11.3185i 0.966569 + 0.889262i
\(163\) −1.87789 3.25259i −0.147087 0.254763i 0.783062 0.621943i \(-0.213657\pi\)
−0.930150 + 0.367180i \(0.880323\pi\)
\(164\) 6.26499 + 10.8513i 0.489214 + 0.847343i
\(165\) 4.86881 + 4.18099i 0.379036 + 0.325490i
\(166\) −5.45960 + 15.0001i −0.423747 + 1.16424i
\(167\) −0.900611 + 5.10762i −0.0696914 + 0.395239i 0.929930 + 0.367736i \(0.119867\pi\)
−0.999622 + 0.0275037i \(0.991244\pi\)
\(168\) −4.56003 + 3.73851i −0.351814 + 0.288432i
\(169\) 9.13282 7.66334i 0.702524 0.589488i
\(170\) 24.9659 1.91480
\(171\) 10.6721 + 7.55684i 0.816118 + 0.577886i
\(172\) −4.62186 −0.352414
\(173\) 0.795445 0.667458i 0.0604766 0.0507459i −0.612048 0.790820i \(-0.709654\pi\)
0.672525 + 0.740074i \(0.265210\pi\)
\(174\) −0.752977 4.57495i −0.0570830 0.346826i
\(175\) 0.931671 5.28377i 0.0704277 0.399415i
\(176\) 3.30186 9.07179i 0.248887 0.683812i
\(177\) 2.58276 13.7297i 0.194132 1.03199i
\(178\) 7.23416 + 12.5299i 0.542223 + 0.939158i
\(179\) 5.29472 + 9.17073i 0.395746 + 0.685453i 0.993196 0.116454i \(-0.0371527\pi\)
−0.597450 + 0.801906i \(0.703819\pi\)
\(180\) −2.56712 7.58743i −0.191342 0.565533i
\(181\) 8.27035 + 22.7226i 0.614730 + 1.68896i 0.719528 + 0.694464i \(0.244358\pi\)
−0.104798 + 0.994494i \(0.533419\pi\)
\(182\) 6.42756i 0.476443i
\(183\) −19.3031 0.220230i −1.42693 0.0162799i
\(184\) 2.01774 + 5.54368i 0.148749 + 0.408686i
\(185\) 4.43572 + 1.61447i 0.326120 + 0.118698i
\(186\) 3.28561 + 9.35797i 0.240913 + 0.686160i
\(187\) 13.8039 + 5.02421i 1.00944 + 0.367406i
\(188\) −4.36000 + 11.9790i −0.317986 + 0.873658i
\(189\) −9.16747 + 14.6933i −0.666835 + 1.06878i
\(190\) −6.53630 13.3982i −0.474193 0.972009i
\(191\) −9.40161 5.42802i −0.680277 0.392758i 0.119683 0.992812i \(-0.461812\pi\)
−0.799959 + 0.600054i \(0.795146\pi\)
\(192\) −4.23551 + 3.47245i −0.305672 + 0.250602i
\(193\) 1.57956 + 1.88245i 0.113699 + 0.135502i 0.819892 0.572518i \(-0.194033\pi\)
−0.706193 + 0.708020i \(0.749589\pi\)
\(194\) −29.0569 5.12352i −2.08616 0.367847i
\(195\) 3.09832 + 1.16790i 0.221875 + 0.0836347i
\(196\) 4.56406 + 3.82970i 0.326004 + 0.273550i
\(197\) −14.2423 8.22281i −1.01472 0.585851i −0.102153 0.994769i \(-0.532573\pi\)
−0.912571 + 0.408918i \(0.865906\pi\)
\(198\) 0.255834 11.2104i 0.0181813 0.796690i
\(199\) −12.8946 + 4.69326i −0.914077 + 0.332697i −0.755879 0.654711i \(-0.772790\pi\)
−0.158197 + 0.987408i \(0.550568\pi\)
\(200\) −0.285524 + 1.61929i −0.0201896 + 0.114501i
\(201\) 12.9938 7.30560i 0.916512 0.515297i
\(202\) 10.5665i 0.743455i
\(203\) 4.51370 1.64285i 0.316799 0.115306i
\(204\) −11.6242 14.1786i −0.813859 0.992702i
\(205\) 5.44158 + 14.9506i 0.380056 + 1.04420i
\(206\) −7.41813 + 1.30802i −0.516846 + 0.0911338i
\(207\) 10.8318 + 13.5238i 0.752862 + 0.939972i
\(208\) 4.98091i 0.345364i
\(209\) −0.917691 8.72340i −0.0634780 0.603410i
\(210\) 17.2098 9.67600i 1.18759 0.667708i
\(211\) 7.95554 1.40278i 0.547682 0.0965712i 0.107041 0.994255i \(-0.465862\pi\)
0.440641 + 0.897683i \(0.354751\pi\)
\(212\) −6.05946 + 5.08449i −0.416165 + 0.349204i
\(213\) −9.25105 + 3.24807i −0.633871 + 0.222554i
\(214\) 1.21958 + 6.91660i 0.0833690 + 0.472809i
\(215\) −5.77951 1.01908i −0.394159 0.0695010i
\(216\) 2.80951 4.50297i 0.191163 0.306388i
\(217\) −8.89839 + 5.13749i −0.604062 + 0.348755i
\(218\) −13.2492 2.33618i −0.897346 0.158226i
\(219\) −4.05084 + 21.5339i −0.273731 + 1.45513i
\(220\) −2.68644 + 4.65305i −0.181120 + 0.313709i
\(221\) 7.57909 0.509825
\(222\) −2.73231 7.78207i −0.183381 0.522298i
\(223\) −15.5123 + 2.73524i −1.03878 + 0.183165i −0.666925 0.745125i \(-0.732390\pi\)
−0.371857 + 0.928290i \(0.621279\pi\)
\(224\) −17.5355 14.7141i −1.17164 0.983125i
\(225\) 0.729870 + 4.77380i 0.0486580 + 0.318253i
\(226\) 25.2630 + 9.19498i 1.68047 + 0.611641i
\(227\) 13.8297 23.9537i 0.917909 1.58986i 0.115323 0.993328i \(-0.463210\pi\)
0.802586 0.596537i \(-0.203457\pi\)
\(228\) −4.56578 + 9.95037i −0.302376 + 0.658979i
\(229\) −4.51331 7.81728i −0.298248 0.516580i 0.677487 0.735534i \(-0.263069\pi\)
−0.975735 + 0.218954i \(0.929735\pi\)
\(230\) −3.43005 19.4528i −0.226171 1.28268i
\(231\) 11.4627 1.88661i 0.754191 0.124130i
\(232\) −1.38329 + 0.503476i −0.0908174 + 0.0330548i
\(233\) −13.7138 16.3435i −0.898420 1.07070i −0.997140 0.0755804i \(-0.975919\pi\)
0.0987193 0.995115i \(-0.468525\pi\)
\(234\) −1.85419 5.48026i −0.121212 0.358256i
\(235\) −8.09333 + 14.0181i −0.527951 + 0.914437i
\(236\) 11.6962 0.761358
\(237\) 11.3720 13.2428i 0.738688 0.860210i
\(238\) 29.0490 34.6192i 1.88297 2.24403i
\(239\) −7.11510 4.10790i −0.460237 0.265718i 0.251907 0.967752i \(-0.418942\pi\)
−0.712144 + 0.702033i \(0.752276\pi\)
\(240\) −13.3364 + 7.49822i −0.860860 + 0.484008i
\(241\) −15.7245 + 18.7397i −1.01290 + 1.20713i −0.0347155 + 0.999397i \(0.511052\pi\)
−0.978186 + 0.207732i \(0.933392\pi\)
\(242\) 9.88978 8.29851i 0.635739 0.533449i
\(243\) 3.57773 15.1723i 0.229511 0.973306i
\(244\) −2.80645 15.9162i −0.179665 1.01893i
\(245\) 4.86281 + 5.79527i 0.310673 + 0.370246i
\(246\) 14.1734 23.9147i 0.903661 1.52475i
\(247\) −1.98428 4.06740i −0.126256 0.258803i
\(248\) 2.72704 1.57446i 0.173167 0.0999783i
\(249\) 14.6876 2.41739i 0.930789 0.153196i
\(250\) 7.73156 21.2423i 0.488987 1.34348i
\(251\) −8.54330 + 10.1815i −0.539248 + 0.642651i −0.965019 0.262180i \(-0.915559\pi\)
0.425771 + 0.904831i \(0.360003\pi\)
\(252\) −13.5082 5.26860i −0.850934 0.331890i
\(253\) 2.01822 11.4459i 0.126885 0.719599i
\(254\) −2.10608 + 1.21595i −0.132147 + 0.0762953i
\(255\) −11.4095 20.2930i −0.714491 1.27080i
\(256\) 16.0323 + 13.4527i 1.00202 + 0.840791i
\(257\) −15.4469 12.9615i −0.963551 0.808516i 0.0179757 0.999838i \(-0.494278\pi\)
−0.981527 + 0.191323i \(0.938722\pi\)
\(258\) 5.02543 + 8.93827i 0.312870 + 0.556472i
\(259\) 7.39988 4.27232i 0.459806 0.265469i
\(260\) −0.481369 + 2.72998i −0.0298533 + 0.169306i
\(261\) −3.37454 + 2.70281i −0.208879 + 0.167300i
\(262\) 6.19106 7.37822i 0.382485 0.455828i
\(263\) −7.51651 + 20.6514i −0.463488 + 1.27342i 0.459358 + 0.888251i \(0.348080\pi\)
−0.922845 + 0.385170i \(0.874143\pi\)
\(264\) −3.51292 + 0.578180i −0.216205 + 0.0355845i
\(265\) −8.69827 + 5.02195i −0.534331 + 0.308496i
\(266\) −26.1841 6.52582i −1.60545 0.400124i
\(267\) 6.87866 11.6064i 0.420967 0.710298i
\(268\) 8.02199 + 9.56023i 0.490021 + 0.583984i
\(269\) −1.76467 10.0079i −0.107594 0.610194i −0.990153 0.139992i \(-0.955292\pi\)
0.882559 0.470202i \(-0.155819\pi\)
\(270\) −11.8821 + 13.2145i −0.723123 + 0.804210i
\(271\) 11.1890 9.38869i 0.679683 0.570322i −0.236230 0.971697i \(-0.575912\pi\)
0.915914 + 0.401375i \(0.131468\pi\)
\(272\) −22.5109 + 26.8274i −1.36492 + 1.62665i
\(273\) 5.22451 2.93742i 0.316202 0.177781i
\(274\) 22.1095 + 12.7649i 1.33569 + 0.771158i
\(275\) 2.08222 2.48150i 0.125563 0.149640i
\(276\) −9.45057 + 11.0053i −0.568858 + 0.662441i
\(277\) 8.81336 0.529543 0.264772 0.964311i \(-0.414703\pi\)
0.264772 + 0.964311i \(0.414703\pi\)
\(278\) −4.85774 + 8.41386i −0.291348 + 0.504629i
\(279\) 6.10490 6.94727i 0.365491 0.415922i
\(280\) −4.02927 4.80190i −0.240795 0.286968i
\(281\) 1.36960 0.498492i 0.0817032 0.0297376i −0.300845 0.953673i \(-0.597269\pi\)
0.382548 + 0.923935i \(0.375047\pi\)
\(282\) 27.9070 4.59313i 1.66184 0.273517i
\(283\) −5.63746 31.9716i −0.335112 1.90052i −0.426120 0.904666i \(-0.640120\pi\)
0.0910081 0.995850i \(-0.470991\pi\)
\(284\) −4.10427 7.10880i −0.243544 0.421830i
\(285\) −7.90336 + 11.4359i −0.468155 + 0.677406i
\(286\) −1.94037 + 3.36081i −0.114736 + 0.198729i
\(287\) 27.0629 + 9.85011i 1.59748 + 0.581433i
\(288\) 19.1958 + 7.48694i 1.13112 + 0.441172i
\(289\) −27.7986 23.3258i −1.63521 1.37211i
\(290\) 4.85396 0.855885i 0.285035 0.0502593i
\(291\) 9.11456 + 25.9598i 0.534305 + 1.52179i
\(292\) −18.3445 −1.07353
\(293\) 0.195948 0.339392i 0.0114474 0.0198275i −0.860245 0.509881i \(-0.829689\pi\)
0.871692 + 0.490053i \(0.163023\pi\)
\(294\) 2.44372 12.9906i 0.142520 0.757626i
\(295\) 14.6258 + 2.57892i 0.851545 + 0.150150i
\(296\) −2.26780 + 1.30932i −0.131813 + 0.0761025i
\(297\) −9.22908 + 4.91525i −0.535525 + 0.285212i
\(298\) 5.54929 + 0.978490i 0.321462 + 0.0566824i
\(299\) −1.04129 5.90543i −0.0602192 0.341520i
\(300\) −3.81480 + 1.33939i −0.220247 + 0.0773295i
\(301\) −8.13786 + 6.82847i −0.469058 + 0.393587i
\(302\) −33.0419 + 5.82618i −1.90135 + 0.335259i
\(303\) −8.58875 + 4.82892i −0.493411 + 0.277414i
\(304\) 20.2908 + 5.05705i 1.16376 + 0.290042i
\(305\) 20.5215i 1.17506i
\(306\) −14.7810 + 37.8969i −0.844971 + 2.16642i
\(307\) −5.80729 + 1.02398i −0.331440 + 0.0584417i −0.336892 0.941543i \(-0.609376\pi\)
0.00545214 + 0.999985i \(0.498265\pi\)
\(308\) 3.32640 + 9.13922i 0.189539 + 0.520755i
\(309\) 4.45331 + 5.43191i 0.253340 + 0.309011i
\(310\) −9.90752 + 3.60604i −0.562709 + 0.204810i
\(311\) 2.19354i 0.124384i 0.998064 + 0.0621921i \(0.0198092\pi\)
−0.998064 + 0.0621921i \(0.980191\pi\)
\(312\) −1.60113 + 0.900216i −0.0906461 + 0.0509647i
\(313\) −3.72184 + 21.1076i −0.210371 + 1.19307i 0.678390 + 0.734702i \(0.262678\pi\)
−0.888761 + 0.458371i \(0.848433\pi\)
\(314\) 40.5263 14.7504i 2.28703 0.832412i
\(315\) −15.7299 9.56668i −0.886279 0.539021i
\(316\) 12.6559 + 7.30690i 0.711951 + 0.411045i
\(317\) −7.32717 6.14822i −0.411535 0.345319i 0.413397 0.910551i \(-0.364342\pi\)
−0.824932 + 0.565232i \(0.808787\pi\)
\(318\) 16.4215 + 6.19000i 0.920872 + 0.347118i
\(319\) 2.85605 + 0.503598i 0.159908 + 0.0281961i
\(320\) −3.74252 4.46016i −0.209213 0.249331i
\(321\) 5.06466 4.15222i 0.282682 0.231755i
\(322\) −30.9654 17.8779i −1.72564 0.996297i
\(323\) −7.69495 + 30.8751i −0.428159 + 1.71793i
\(324\) 13.0372 + 0.595354i 0.724286 + 0.0330752i
\(325\) 0.571626 1.57053i 0.0317081 0.0871174i
\(326\) −6.55541 2.38597i −0.363070 0.132147i
\(327\) 4.15599 + 11.8370i 0.229827 + 0.654585i
\(328\) −8.29384 3.01871i −0.457951 0.166680i
\(329\) 10.0213 + 27.5334i 0.552494 + 1.51796i
\(330\) 11.9196 + 0.135991i 0.656152 + 0.00748607i
\(331\) 7.67688i 0.421959i −0.977490 0.210980i \(-0.932335\pi\)
0.977490 0.210980i \(-0.0676654\pi\)
\(332\) 4.26225 + 11.7104i 0.233921 + 0.642693i
\(333\) −5.07682 + 5.77734i −0.278208 + 0.316596i
\(334\) 4.81672 + 8.34281i 0.263559 + 0.456498i
\(335\) 7.92332 + 13.7236i 0.432897 + 0.749800i
\(336\) −5.12002 + 27.2176i −0.279320 + 1.48484i
\(337\) −2.77732 + 7.63062i −0.151290 + 0.415667i −0.992066 0.125717i \(-0.959877\pi\)
0.840776 + 0.541383i \(0.182099\pi\)
\(338\) 3.84535 21.8081i 0.209159 1.18620i
\(339\) −4.07133 24.7367i −0.221124 1.34351i
\(340\) 14.9307 12.5283i 0.809729 0.679443i
\(341\) −6.20366 −0.335947
\(342\) 24.2076 1.98939i 1.30900 0.107574i
\(343\) −9.63662 −0.520329
\(344\) 2.49397 2.09269i 0.134466 0.112830i
\(345\) −14.2443 + 11.6780i −0.766885 + 0.628725i
\(346\) 0.334920 1.89943i 0.0180054 0.102114i
\(347\) 4.50145 12.3676i 0.241650 0.663929i −0.758278 0.651932i \(-0.773959\pi\)
0.999928 0.0119971i \(-0.00381890\pi\)
\(348\) −2.74610 2.35816i −0.147206 0.126411i
\(349\) −2.14047 3.70740i −0.114577 0.198452i 0.803034 0.595933i \(-0.203218\pi\)
−0.917610 + 0.397481i \(0.869884\pi\)
\(350\) −4.98284 8.63053i −0.266344 0.461321i
\(351\) −3.60715 + 4.01164i −0.192535 + 0.214125i
\(352\) −4.72698 12.9873i −0.251949 0.692225i
\(353\) 23.1211i 1.23061i −0.788288 0.615307i \(-0.789032\pi\)
0.788288 0.615307i \(-0.210968\pi\)
\(354\) −12.7175 22.6194i −0.675926 1.20221i
\(355\) −3.56484 9.79432i −0.189202 0.519829i
\(356\) 10.6141 + 3.86320i 0.562544 + 0.204749i
\(357\) −41.4150 7.79076i −2.19191 0.412331i
\(358\) 18.4831 + 6.72728i 0.976860 + 0.355548i
\(359\) 1.03497 2.84356i 0.0546238 0.150078i −0.909380 0.415967i \(-0.863443\pi\)
0.964004 + 0.265889i \(0.0856655\pi\)
\(360\) 4.82066 + 2.93185i 0.254071 + 0.154522i
\(361\) 18.5841 3.95380i 0.978109 0.208095i
\(362\) 38.8971 + 22.4573i 2.04439 + 1.18033i
\(363\) −11.2649 4.24626i −0.591256 0.222871i
\(364\) 3.22546 + 3.84396i 0.169060 + 0.201478i
\(365\) −22.9393 4.04482i −1.20070 0.211716i
\(366\) −27.7290 + 22.7334i −1.44942 + 1.18829i
\(367\) 22.1772 + 18.6089i 1.15764 + 0.971376i 0.999870 0.0160993i \(-0.00512480\pi\)
0.157771 + 0.987476i \(0.449569\pi\)
\(368\) 23.9960 + 13.8541i 1.25088 + 0.722195i
\(369\) −25.9159 0.591428i −1.34913 0.0307885i
\(370\) 8.23908 2.99878i 0.428329 0.155899i
\(371\) −3.15710 + 17.9048i −0.163909 + 0.929572i
\(372\) 6.66093 + 3.94769i 0.345353 + 0.204678i
\(373\) 5.02370i 0.260117i −0.991506 0.130059i \(-0.958483\pi\)
0.991506 0.130059i \(-0.0415166\pi\)
\(374\) 25.6399 9.33216i 1.32581 0.482555i
\(375\) −20.7997 + 3.42336i −1.07409 + 0.176782i
\(376\) −3.07118 8.43801i −0.158384 0.435157i
\(377\) 1.47356 0.259828i 0.0758920 0.0133818i
\(378\) 4.49865 + 31.8522i 0.231386 + 1.63830i
\(379\) 10.9355i 0.561718i 0.959749 + 0.280859i \(0.0906193\pi\)
−0.959749 + 0.280859i \(0.909381\pi\)
\(380\) −10.6324 4.73268i −0.545433 0.242781i
\(381\) 1.95085 + 1.15619i 0.0999449 + 0.0592336i
\(382\) −19.8581 + 3.50152i −1.01603 + 0.179153i
\(383\) 3.19500 2.68092i 0.163257 0.136989i −0.557500 0.830177i \(-0.688239\pi\)
0.720756 + 0.693189i \(0.243795\pi\)
\(384\) 2.51767 13.3837i 0.128479 0.682984i
\(385\) 2.14445 + 12.1618i 0.109291 + 0.619822i
\(386\) 4.49506 + 0.792600i 0.228793 + 0.0403423i
\(387\) 4.96865 8.16964i 0.252571 0.415286i
\(388\) −19.9483 + 11.5172i −1.01272 + 0.584696i
\(389\) 9.04539 + 1.59495i 0.458619 + 0.0808670i 0.398185 0.917305i \(-0.369640\pi\)
0.0604345 + 0.998172i \(0.480751\pi\)
\(390\) 5.80294 2.03743i 0.293843 0.103169i
\(391\) −21.0808 + 36.5130i −1.06610 + 1.84654i
\(392\) −4.19678 −0.211970
\(393\) −8.82657 1.66041i −0.445241 0.0837564i
\(394\) −30.0827 + 5.30439i −1.51554 + 0.267231i
\(395\) 14.2148 + 11.9276i 0.715222 + 0.600143i
\(396\) −5.47258 6.83269i −0.275008 0.343355i
\(397\) 34.6905 + 12.6263i 1.74106 + 0.633696i 0.999316 0.0369820i \(-0.0117744\pi\)
0.741749 + 0.670678i \(0.233997\pi\)
\(398\) −12.7441 + 22.0734i −0.638802 + 1.10644i
\(399\) 6.66184 + 24.2655i 0.333509 + 1.21480i
\(400\) 3.86135 + 6.68805i 0.193067 + 0.334403i
\(401\) −4.78032 27.1106i −0.238718 1.35384i −0.834641 0.550795i \(-0.814325\pi\)
0.595923 0.803042i \(-0.296786\pi\)
\(402\) 9.76619 25.9088i 0.487093 1.29221i
\(403\) −3.00770 + 1.09471i −0.149824 + 0.0545316i
\(404\) −5.30244 6.31921i −0.263806 0.314392i
\(405\) 16.1713 + 3.61906i 0.803560 + 0.179833i
\(406\) 4.46099 7.72666i 0.221395 0.383468i
\(407\) 5.15895 0.255720
\(408\) 12.6922 + 2.38759i 0.628360 + 0.118204i
\(409\) −8.63679 + 10.2929i −0.427062 + 0.508952i −0.936072 0.351808i \(-0.885567\pi\)
0.509011 + 0.860760i \(0.330011\pi\)
\(410\) 25.5928 + 14.7760i 1.26394 + 0.729736i
\(411\) 0.271591 23.8049i 0.0133966 1.17421i
\(412\) −3.77997 + 4.50479i −0.186226 + 0.221935i
\(413\) 20.5938 17.2803i 1.01336 0.850307i
\(414\) 31.5590 + 6.31031i 1.55104 + 0.310135i
\(415\) 2.74777 + 15.5834i 0.134883 + 0.764957i
\(416\) −4.58354 5.46245i −0.224727 0.267819i
\(417\) 9.05904 + 0.103355i 0.443623 + 0.00506132i
\(418\) −11.7210 11.3167i −0.573292 0.553518i
\(419\) −28.4986 + 16.4537i −1.39225 + 0.803814i −0.993564 0.113275i \(-0.963866\pi\)
−0.398683 + 0.917089i \(0.630532\pi\)
\(420\) 5.43661 14.4228i 0.265279 0.703762i
\(421\) 9.94232 27.3163i 0.484559 1.33131i −0.420987 0.907067i \(-0.638316\pi\)
0.905546 0.424248i \(-0.139462\pi\)
\(422\) 9.64496 11.4944i 0.469510 0.559540i
\(423\) −16.4870 20.5846i −0.801627 1.00086i
\(424\) 0.967541 5.48720i 0.0469880 0.266482i
\(425\) −10.1767 + 5.87554i −0.493644 + 0.285005i
\(426\) −9.28514 + 15.6668i −0.449867 + 0.759060i
\(427\) −28.4564 23.8778i −1.37710 1.15553i
\(428\) 4.20023 + 3.52441i 0.203026 + 0.170359i
\(429\) 3.61852 + 0.0412839i 0.174704 + 0.00199321i
\(430\) −9.44029 + 5.45035i −0.455251 + 0.262839i
\(431\) 6.81517 38.6508i 0.328275 1.86174i −0.157306 0.987550i \(-0.550281\pi\)
0.485581 0.874192i \(-0.338608\pi\)
\(432\) −3.48614 24.6832i −0.167727 1.18757i
\(433\) 21.1600 25.2175i 1.01689 1.21188i 0.0397614 0.999209i \(-0.487340\pi\)
0.977124 0.212668i \(-0.0682154\pi\)
\(434\) −6.52751 + 17.9342i −0.313330 + 0.860868i
\(435\) −2.91397 3.55430i −0.139714 0.170416i
\(436\) −9.09590 + 5.25152i −0.435614 + 0.251502i
\(437\) 25.1143 + 1.75380i 1.20138 + 0.0838957i
\(438\) 19.9463 + 35.4767i 0.953073 + 1.69514i
\(439\) −2.47542 2.95009i −0.118145 0.140800i 0.703730 0.710467i \(-0.251516\pi\)
−0.821875 + 0.569667i \(0.807072\pi\)
\(440\) −0.657199 3.72716i −0.0313307 0.177685i
\(441\) −11.6759 + 3.95041i −0.555996 + 0.188115i
\(442\) 10.7841 9.04897i 0.512949 0.430416i
\(443\) 20.1469 24.0101i 0.957207 1.14075i −0.0327611 0.999463i \(-0.510430\pi\)
0.989968 0.141292i \(-0.0451255\pi\)
\(444\) −5.53921 3.28289i −0.262879 0.155799i
\(445\) 12.4208 + 7.17115i 0.588802 + 0.339945i
\(446\) −18.8065 + 22.4127i −0.890513 + 1.06127i
\(447\) −1.74070 4.95780i −0.0823323 0.234496i
\(448\) −10.5393 −0.497937
\(449\) −6.48937 + 11.2399i −0.306252 + 0.530444i −0.977539 0.210753i \(-0.932408\pi\)
0.671287 + 0.741197i \(0.265742\pi\)
\(450\) 6.73815 + 5.92113i 0.317639 + 0.279125i
\(451\) 11.1770 + 13.3202i 0.526303 + 0.627223i
\(452\) 19.7225 7.17842i 0.927670 0.337644i
\(453\) 19.8360 + 24.1949i 0.931974 + 1.13677i
\(454\) −8.92129 50.5951i −0.418697 2.37455i
\(455\) 3.18579 + 5.51795i 0.149352 + 0.258685i
\(456\) −2.04162 7.43653i −0.0956075 0.348247i
\(457\) 1.27172 2.20269i 0.0594886 0.103037i −0.834747 0.550633i \(-0.814386\pi\)
0.894236 + 0.447596i \(0.147720\pi\)
\(458\) −15.7553 5.73444i −0.736195 0.267953i
\(459\) 37.5586 5.30461i 1.75309 0.247598i
\(460\) −11.8131 9.91233i −0.550787 0.462165i
\(461\) 19.3059 3.40415i 0.899166 0.158547i 0.295086 0.955471i \(-0.404652\pi\)
0.604080 + 0.796924i \(0.293541\pi\)
\(462\) 14.0576 16.3702i 0.654018 0.761611i
\(463\) 11.1887 0.519984 0.259992 0.965611i \(-0.416280\pi\)
0.259992 + 0.965611i \(0.416280\pi\)
\(464\) −3.45695 + 5.98762i −0.160485 + 0.277968i
\(465\) 7.45887 + 6.40515i 0.345897 + 0.297032i
\(466\) −39.0262 6.88137i −1.80785 0.318773i
\(467\) −12.7064 + 7.33603i −0.587981 + 0.339471i −0.764299 0.644862i \(-0.776915\pi\)
0.176318 + 0.984333i \(0.443581\pi\)
\(468\) −3.85897 2.34697i −0.178381 0.108489i
\(469\) 28.2491 + 4.98108i 1.30442 + 0.230005i
\(470\) 5.22086 + 29.6090i 0.240820 + 1.36576i
\(471\) −30.5102 26.2000i −1.40584 1.20723i
\(472\) −6.31129 + 5.29580i −0.290501 + 0.243759i
\(473\) −6.31648 + 1.11377i −0.290432 + 0.0512110i
\(474\) 0.369885 32.4203i 0.0169894 1.48911i
\(475\) 5.81754 + 3.92319i 0.266927 + 0.180008i
\(476\) 35.2810i 1.61710i
\(477\) −2.47327 16.1767i −0.113243 0.740682i
\(478\) −15.0285 + 2.64993i −0.687389 + 0.121205i
\(479\) −1.26216 3.46776i −0.0576697 0.158446i 0.907512 0.420026i \(-0.137979\pi\)
−0.965182 + 0.261579i \(0.915757\pi\)
\(480\) −7.72569 + 20.4956i −0.352628 + 0.935490i
\(481\) 2.50120 0.910362i 0.114045 0.0415089i
\(482\) 45.4384i 2.06966i
\(483\) −0.380377 + 33.3399i −0.0173077 + 1.51702i
\(484\) 1.75017 9.92573i 0.0795533 0.451169i
\(485\) −27.4843 + 10.0035i −1.24800 + 0.454234i
\(486\) −13.0242 25.8600i −0.590788 1.17303i
\(487\) −26.5090 15.3050i −1.20124 0.693534i −0.240407 0.970672i \(-0.577281\pi\)
−0.960830 + 0.277138i \(0.910614\pi\)
\(488\) 8.72089 + 7.31770i 0.394776 + 0.331257i
\(489\) 1.05645 + 6.41883i 0.0477745 + 0.290269i
\(490\) 13.8384 + 2.44008i 0.625155 + 0.110232i
\(491\) −4.36948 5.20734i −0.197192 0.235004i 0.658383 0.752683i \(-0.271241\pi\)
−0.855575 + 0.517679i \(0.826796\pi\)
\(492\) −3.52454 21.4145i −0.158898 0.965438i
\(493\) −9.11093 5.26020i −0.410336 0.236907i
\(494\) −7.67962 3.41833i −0.345522 0.153798i
\(495\) −5.33676 9.75075i −0.239869 0.438263i
\(496\) 5.05835 13.8977i 0.227127 0.624026i
\(497\) −17.7293 6.45292i −0.795266 0.289453i
\(498\) 18.0125 20.9758i 0.807160 0.939946i
\(499\) 2.92874 + 1.06598i 0.131109 + 0.0477196i 0.406741 0.913543i \(-0.366665\pi\)
−0.275633 + 0.961263i \(0.588887\pi\)
\(500\) −6.03595 16.5836i −0.269936 0.741642i
\(501\) 4.58002 7.72787i 0.204620 0.345256i
\(502\) 24.6873i 1.10185i
\(503\) 13.2963 + 36.5314i 0.592854 + 1.62885i 0.765183 + 0.643813i \(0.222649\pi\)
−0.172329 + 0.985040i \(0.555129\pi\)
\(504\) 9.67454 3.27327i 0.430938 0.145803i
\(505\) −5.23722 9.07114i −0.233053 0.403660i
\(506\) −10.7940 18.6958i −0.479854 0.831131i
\(507\) −19.4836 + 6.84075i −0.865296 + 0.303808i
\(508\) −0.649344 + 1.78406i −0.0288100 + 0.0791547i
\(509\) −0.768996 + 4.36119i −0.0340852 + 0.193307i −0.997096 0.0761566i \(-0.975735\pi\)
0.963011 + 0.269463i \(0.0868462\pi\)
\(510\) −40.4630 15.2523i −1.79173 0.675383i
\(511\) −32.2998 + 27.1027i −1.42886 + 1.19895i
\(512\) 23.1484 1.02303
\(513\) −12.6800 18.7675i −0.559835 0.828604i
\(514\) −37.4543 −1.65204
\(515\) −5.72002 + 4.79967i −0.252054 + 0.211499i
\(516\) 7.49080 + 2.82362i 0.329764 + 0.124303i
\(517\) −3.07193 + 17.4218i −0.135103 + 0.766209i
\(518\) 5.42826 14.9140i 0.238504 0.655284i
\(519\) −1.69697 + 0.595812i −0.0744887 + 0.0261532i
\(520\) −0.976332 1.69106i −0.0428150 0.0741577i
\(521\) 5.51847 + 9.55828i 0.241769 + 0.418756i 0.961218 0.275789i \(-0.0889391\pi\)
−0.719449 + 0.694545i \(0.755606\pi\)
\(522\) −1.57458 + 7.87478i −0.0689176 + 0.344670i
\(523\) 6.63357 + 18.2256i 0.290066 + 0.796949i 0.996056 + 0.0887276i \(0.0282801\pi\)
−0.705990 + 0.708222i \(0.749498\pi\)
\(524\) 7.51926i 0.328481i
\(525\) −4.73798 + 7.99439i −0.206782 + 0.348904i
\(526\) 13.9615 + 38.3588i 0.608748 + 1.67252i
\(527\) 21.1472 + 7.69693i 0.921185 + 0.335284i
\(528\) −10.8936 + 12.6857i −0.474084 + 0.552076i
\(529\) 9.73338 + 3.54266i 0.423190 + 0.154029i
\(530\) −6.38071 + 17.5308i −0.277160 + 0.761491i
\(531\) −12.5738 + 20.6743i −0.545656 + 0.897188i
\(532\) −18.9340 + 9.23690i −0.820891 + 0.400471i
\(533\) 7.76941 + 4.48567i 0.336531 + 0.194296i
\(534\) −4.06977 24.7272i −0.176116 1.07005i
\(535\) 4.47517 + 5.33330i 0.193478 + 0.230578i
\(536\) −8.65736 1.52653i −0.373941 0.0659359i
\(537\) −2.97869 18.0980i −0.128540 0.780985i
\(538\) −14.4598 12.1332i −0.623405 0.523099i
\(539\) 7.16034 + 4.13403i 0.308418 + 0.178065i
\(540\) −0.474742 + 13.8655i −0.0204296 + 0.596676i
\(541\) −12.3864 + 4.50828i −0.532533 + 0.193826i −0.594269 0.804266i \(-0.702559\pi\)
0.0617360 + 0.998093i \(0.480336\pi\)
\(542\) 4.71110 26.7180i 0.202359 1.14764i
\(543\) 0.477809 41.8798i 0.0205047 1.79723i
\(544\) 50.1361i 2.14957i
\(545\) −12.5321 + 4.56131i −0.536815 + 0.195385i
\(546\) 3.92676 10.4174i 0.168050 0.445822i
\(547\) 7.71585 + 21.1991i 0.329906 + 0.906409i 0.988135 + 0.153591i \(0.0490838\pi\)
−0.658229 + 0.752818i \(0.728694\pi\)
\(548\) 19.6281 3.46096i 0.838471 0.147845i
\(549\) 31.1506 + 12.1497i 1.32947 + 0.518536i
\(550\) 6.01692i 0.256562i
\(551\) −0.437618 + 6.26665i −0.0186431 + 0.266968i
\(552\) 0.116572 10.2175i 0.00496164 0.434886i
\(553\) 33.0791 5.83273i 1.40667 0.248033i
\(554\) 12.5404 10.5226i 0.532789 0.447063i
\(555\) −6.20278 5.32651i −0.263293 0.226098i
\(556\) 1.31708 + 7.46954i 0.0558567 + 0.316779i
\(557\) −6.75730 1.19149i −0.286316 0.0504853i 0.0286456 0.999590i \(-0.490881\pi\)
−0.314962 + 0.949104i \(0.601992\pi\)
\(558\) 0.391930 17.1740i 0.0165917 0.727035i
\(559\) −2.86586 + 1.65461i −0.121213 + 0.0699824i
\(560\) −28.9939 5.11241i −1.22522 0.216039i
\(561\) −19.3030 16.5760i −0.814973 0.699841i
\(562\) 1.35360 2.34451i 0.0570983 0.0988972i
\(563\) 14.3595 0.605181 0.302590 0.953121i \(-0.402149\pi\)
0.302590 + 0.953121i \(0.402149\pi\)
\(564\) 14.3847 16.7511i 0.605704 0.705349i
\(565\) 26.2453 4.62775i 1.10415 0.194691i
\(566\) −46.1936 38.7611i −1.94166 1.62925i
\(567\) 23.8345 18.2132i 1.00096 0.764883i
\(568\) 5.43339 + 1.97759i 0.227980 + 0.0829780i
\(569\) −10.6542 + 18.4536i −0.446647 + 0.773616i −0.998165 0.0605472i \(-0.980715\pi\)
0.551518 + 0.834163i \(0.314049\pi\)
\(570\) 2.40827 + 25.7081i 0.100871 + 1.07679i
\(571\) −0.953898 1.65220i −0.0399194 0.0691424i 0.845375 0.534173i \(-0.179377\pi\)
−0.885295 + 0.465030i \(0.846043\pi\)
\(572\) 0.526092 + 2.98362i 0.0219970 + 0.124751i
\(573\) 11.9214 + 14.5411i 0.498022 + 0.607461i
\(574\) 50.2678 18.2960i 2.09814 0.763659i
\(575\) 5.97625 + 7.12221i 0.249227 + 0.297017i
\(576\) 8.98603 3.04032i 0.374418 0.126680i
\(577\) −15.3988 + 26.6715i −0.641061 + 1.11035i 0.344135 + 0.938920i \(0.388172\pi\)
−0.985196 + 0.171430i \(0.945161\pi\)
\(578\) −67.4038 −2.80363
\(579\) −1.41001 4.01594i −0.0585980 0.166897i
\(580\) 2.47338 2.94766i 0.102701 0.122395i
\(581\) 24.8060 + 14.3217i 1.02913 + 0.594166i
\(582\) 43.9634 + 26.0555i 1.82234 + 1.08003i
\(583\) −7.05592 + 8.40892i −0.292226 + 0.348262i
\(584\) 9.89875 8.30603i 0.409613 0.343706i
\(585\) −4.30805 3.78569i −0.178116 0.156519i
\(586\) −0.126403 0.716864i −0.00522164 0.0296134i
\(587\) −6.60180 7.86771i −0.272485 0.324735i 0.612397 0.790551i \(-0.290206\pi\)
−0.884882 + 0.465815i \(0.845761\pi\)
\(588\) −5.05745 8.99521i −0.208566 0.370956i
\(589\) −1.40588 13.3640i −0.0579281 0.550654i
\(590\) 23.8898 13.7928i 0.983528 0.567840i
\(591\) 18.0595 + 22.0280i 0.742867 + 0.906110i
\(592\) −4.20652 + 11.5573i −0.172887 + 0.475002i
\(593\) 5.84464 6.96537i 0.240011 0.286033i −0.632571 0.774503i \(-0.718000\pi\)
0.872581 + 0.488469i \(0.162445\pi\)
\(594\) −7.26337 + 18.0128i −0.298020 + 0.739073i
\(595\) 7.77919 44.1180i 0.318915 1.80866i
\(596\) 3.80973 2.19955i 0.156053 0.0900971i
\(597\) 23.7660 + 0.271147i 0.972677 + 0.0110973i
\(598\) −8.53236 7.15950i −0.348914 0.292774i
\(599\) −9.99737 8.38879i −0.408482 0.342757i 0.415279 0.909694i \(-0.363684\pi\)
−0.823761 + 0.566937i \(0.808128\pi\)
\(600\) 1.45202 2.45000i 0.0592786 0.100021i
\(601\) −3.33374 + 1.92474i −0.135986 + 0.0785117i −0.566450 0.824096i \(-0.691683\pi\)
0.430463 + 0.902608i \(0.358350\pi\)
\(602\) −3.42642 + 19.4322i −0.139651 + 0.791998i
\(603\) −25.5226 + 3.90217i −1.03936 + 0.158909i
\(604\) −16.8368 + 20.0653i −0.685079 + 0.816445i
\(605\) 4.37709 12.0259i 0.177954 0.488924i
\(606\) −6.45534 + 17.1254i −0.262230 + 0.695673i
\(607\) 27.0590 15.6225i 1.09829 0.634098i 0.162519 0.986705i \(-0.448038\pi\)
0.935771 + 0.352607i \(0.114705\pi\)
\(608\) 26.9061 13.1261i 1.09119 0.532334i
\(609\) −8.31915 0.0949136i −0.337109 0.00384609i
\(610\) −24.5015 29.1997i −0.992036 1.18226i
\(611\) 1.58494 + 8.98863i 0.0641197 + 0.363641i
\(612\) 10.1777 + 30.0813i 0.411408 + 1.21596i
\(613\) −15.2044 + 12.7580i −0.614101 + 0.515292i −0.895943 0.444169i \(-0.853499\pi\)
0.281842 + 0.959461i \(0.409055\pi\)
\(614\) −7.04051 + 8.39056i −0.284132 + 0.338615i
\(615\) 0.314380 27.5553i 0.0126770 1.11114i
\(616\) −5.93299 3.42541i −0.239047 0.138014i
\(617\) 9.67497 11.5302i 0.389500 0.464188i −0.535289 0.844669i \(-0.679797\pi\)
0.924789 + 0.380481i \(0.124242\pi\)
\(618\) 12.8219 + 2.41198i 0.515772 + 0.0970242i
\(619\) −6.02193 −0.242042 −0.121021 0.992650i \(-0.538617\pi\)
−0.121021 + 0.992650i \(0.538617\pi\)
\(620\) −4.11554 + 7.12833i −0.165284 + 0.286281i
\(621\) −9.29338 28.5359i −0.372930 1.14511i
\(622\) 2.61895 + 3.12115i 0.105010 + 0.125147i
\(623\) 24.3961 8.87946i 0.977410 0.355748i
\(624\) −3.04296 + 8.07271i −0.121816 + 0.323167i
\(625\) −2.49357 14.1417i −0.0997427 0.565669i
\(626\) 19.9055 + 34.4773i 0.795583 + 1.37799i
\(627\) −3.84202 + 14.6989i −0.153435 + 0.587019i
\(628\) 16.8345 29.1582i 0.671768 1.16354i
\(629\) −17.5859 6.40075i −0.701197 0.255215i
\(630\) −33.8038 + 5.16828i −1.34678 + 0.205909i
\(631\) 29.0095 + 24.3418i 1.15485 + 0.969033i 0.999822 0.0188777i \(-0.00600933\pi\)
0.155026 + 0.987910i \(0.450454\pi\)
\(632\) −10.1376 + 1.78753i −0.403251 + 0.0711040i
\(633\) −13.7508 2.58672i −0.546545 0.102813i
\(634\) −17.7663 −0.705590
\(635\) −1.20536 + 2.08774i −0.0478331 + 0.0828494i
\(636\) 12.9270 4.53871i 0.512589 0.179972i
\(637\) 4.20103 + 0.740755i 0.166451 + 0.0293498i
\(638\) 4.66508 2.69339i 0.184692 0.106632i
\(639\) 16.9778 + 0.387452i 0.671631 + 0.0153273i
\(640\) 14.2572 + 2.51393i 0.563565 + 0.0993717i
\(641\) −4.09124 23.2026i −0.161594 0.916447i −0.952507 0.304518i \(-0.901505\pi\)
0.790912 0.611929i \(-0.209606\pi\)
\(642\) 2.24891 11.9550i 0.0887575 0.471827i
\(643\) −11.3449 + 9.51952i −0.447400 + 0.375413i −0.838470 0.544948i \(-0.816549\pi\)
0.391070 + 0.920361i \(0.372105\pi\)
\(644\) −27.4901 + 4.84724i −1.08326 + 0.191008i
\(645\) 8.74445 + 5.18251i 0.344312 + 0.204061i
\(646\) 25.9140 + 53.1189i 1.01957 + 2.08993i
\(647\) 15.6034i 0.613433i 0.951801 + 0.306716i \(0.0992303\pi\)
−0.951801 + 0.306716i \(0.900770\pi\)
\(648\) −7.30444 + 5.58171i −0.286945 + 0.219270i
\(649\) 15.9846 2.81852i 0.627451 0.110637i
\(650\) −1.06176 2.91717i −0.0416457 0.114421i
\(651\) 17.5605 2.89023i 0.688251 0.113277i
\(652\) −5.11773 + 1.86270i −0.200426 + 0.0729491i
\(653\) 18.6660i 0.730459i −0.930918 0.365229i \(-0.880991\pi\)
0.930918 0.365229i \(-0.119009\pi\)
\(654\) 20.0461 + 11.8806i 0.783864 + 0.464567i
\(655\) 1.65794 9.40263i 0.0647810 0.367391i
\(656\) −38.9540 + 14.1781i −1.52090 + 0.553561i
\(657\) 19.7210 32.4259i 0.769388 1.26506i
\(658\) 47.1323 + 27.2119i 1.83741 + 1.06083i
\(659\) 1.37276 + 1.15188i 0.0534752 + 0.0448710i 0.669134 0.743142i \(-0.266665\pi\)
−0.615658 + 0.788013i \(0.711110\pi\)
\(660\) 7.19666 5.90013i 0.280130 0.229662i
\(661\) 17.2956 + 3.04967i 0.672719 + 0.118619i 0.499565 0.866276i \(-0.333493\pi\)
0.173154 + 0.984895i \(0.444604\pi\)
\(662\) −9.16573 10.9233i −0.356236 0.424546i
\(663\) −12.2837 4.63026i −0.477058 0.179824i
\(664\) −7.60216 4.38911i −0.295021 0.170330i
\(665\) −25.7131 + 7.37570i −0.997110 + 0.286018i
\(666\) −0.325928 + 14.2819i −0.0126295 + 0.553412i
\(667\) −2.84687 + 7.82170i −0.110231 + 0.302857i
\(668\) 7.06717 + 2.57224i 0.273437 + 0.0995229i
\(669\) 26.8123 + 5.04379i 1.03662 + 0.195004i
\(670\) 27.6591 + 10.0671i 1.06856 + 0.388925i
\(671\) −7.67088 21.0756i −0.296131 0.813614i
\(672\) 19.4312 + 34.5605i 0.749575 + 1.33320i
\(673\) 27.5490i 1.06194i −0.847392 0.530968i \(-0.821828\pi\)
0.847392 0.530968i \(-0.178172\pi\)
\(674\) 5.15870 + 14.1734i 0.198706 + 0.545940i
\(675\) 1.73352 8.18295i 0.0667231 0.314962i
\(676\) −8.64398 14.9718i −0.332461 0.575839i
\(677\) 6.64844 + 11.5154i 0.255520 + 0.442574i 0.965037 0.262115i \(-0.0844199\pi\)
−0.709516 + 0.704689i \(0.751087\pi\)
\(678\) −35.3271 30.3364i −1.35673 1.16506i
\(679\) −18.1078 + 49.7509i −0.694915 + 1.90926i
\(680\) −2.38405 + 13.5206i −0.0914240 + 0.518491i
\(681\) −37.0482 + 30.3736i −1.41969 + 1.16392i
\(682\) −8.82708 + 7.40680i −0.338006 + 0.283621i
\(683\) 22.0982 0.845566 0.422783 0.906231i \(-0.361053\pi\)
0.422783 + 0.906231i \(0.361053\pi\)
\(684\) 13.4788 13.3375i 0.515376 0.509973i
\(685\) 25.3075 0.966950
\(686\) −13.7118 + 11.5055i −0.523518 + 0.439284i
\(687\) 2.53908 + 15.4270i 0.0968720 + 0.588577i
\(688\) 2.65523 15.0586i 0.101230 0.574103i
\(689\) −1.93704 + 5.32198i −0.0737954 + 0.202751i
\(690\) −6.32502 + 33.6232i −0.240789 + 1.28002i
\(691\) −11.6378 20.1573i −0.442724 0.766821i 0.555166 0.831739i \(-0.312655\pi\)
−0.997891 + 0.0649186i \(0.979321\pi\)
\(692\) −0.752868 1.30401i −0.0286198 0.0495709i
\(693\) −19.7305 3.94517i −0.749501 0.149865i
\(694\) −8.36117 22.9721i −0.317386 0.872010i
\(695\) 9.63086i 0.365319i
\(696\) 2.54953 + 0.0290877i 0.0966396 + 0.00110257i
\(697\) −21.5738 59.2735i −0.817165 2.24514i
\(698\) −7.47204 2.71960i −0.282821 0.102938i
\(699\) 12.2417 + 34.8665i 0.463025 + 1.31877i
\(700\) −7.31090 2.66095i −0.276326 0.100574i
\(701\) 7.58127 20.8294i 0.286341 0.786715i −0.710230 0.703970i \(-0.751409\pi\)
0.996571 0.0827450i \(-0.0263687\pi\)
\(702\) −0.342897 + 10.0148i −0.0129418 + 0.377984i
\(703\) 1.16912 + 11.1135i 0.0440943 + 0.419152i
\(704\) −5.51075 3.18164i −0.207694 0.119912i
\(705\) 21.6811 17.7751i 0.816558 0.669448i
\(706\) −27.6052 32.8986i −1.03894 1.23816i
\(707\) −18.6723 3.29244i −0.702246 0.123825i
\(708\) −18.9564 7.14551i −0.712425 0.268545i
\(709\) −24.2283 20.3300i −0.909915 0.763509i 0.0621881 0.998064i \(-0.480192\pi\)
−0.972103 + 0.234555i \(0.924637\pi\)
\(710\) −16.7662 9.67995i −0.629223 0.363282i
\(711\) −26.5212 + 14.5155i −0.994624 + 0.544376i
\(712\) −7.47655 + 2.72124i −0.280196 + 0.101983i
\(713\) 3.09186 17.5348i 0.115791 0.656684i
\(714\) −68.2304 + 38.3617i −2.55346 + 1.43565i
\(715\) 3.84693i 0.143867i
\(716\) 14.4295 5.25192i 0.539256 0.196273i
\(717\) 9.02203 + 11.0046i 0.336934 + 0.410974i
\(718\) −1.92240 5.28175i −0.0717433 0.197113i
\(719\) 31.0491 5.47480i 1.15794 0.204176i 0.438499 0.898732i \(-0.355510\pi\)
0.719438 + 0.694556i \(0.244399\pi\)
\(720\) 26.1955 4.00505i 0.976250 0.149260i
\(721\) 13.5164i 0.503376i
\(722\) 21.7223 27.8140i 0.808421 1.03513i
\(723\) 36.9337 20.7655i 1.37358 0.772277i
\(724\) 34.5316 6.08885i 1.28336 0.226290i
\(725\) −1.77717 + 1.49122i −0.0660025 + 0.0553827i
\(726\) −21.0985 + 7.40774i −0.783037 + 0.274927i
\(727\) 6.35871 + 36.0620i 0.235831 + 1.33747i 0.840856 + 0.541260i \(0.182052\pi\)
−0.605024 + 0.796207i \(0.706837\pi\)
\(728\) −3.48093 0.613782i −0.129012 0.0227483i
\(729\) −15.0677 + 22.4046i −0.558063 + 0.829798i
\(730\) −37.4692 + 21.6329i −1.38680 + 0.800668i
\(731\) 22.9136 + 4.04028i 0.847489 + 0.149435i
\(732\) −5.17510 + 27.5104i −0.191277 + 1.01681i
\(733\) 14.7002 25.4615i 0.542964 0.940442i −0.455768 0.890099i \(-0.650635\pi\)
0.998732 0.0503430i \(-0.0160314\pi\)
\(734\) 53.7734 1.98481
\(735\) −4.34083 12.3634i −0.160114 0.456031i
\(736\) 39.0648 6.88817i 1.43995 0.253901i
\(737\) 13.2671 + 11.1324i 0.488698 + 0.410067i
\(738\) −37.5813 + 30.1004i −1.38339 + 1.10801i
\(739\) −45.1726 16.4415i −1.66170 0.604810i −0.671072 0.741392i \(-0.734166\pi\)
−0.990629 + 0.136583i \(0.956388\pi\)
\(740\) 3.42248 5.92791i 0.125813 0.217914i
\(741\) 0.731096 + 7.80441i 0.0268575 + 0.286702i
\(742\) 16.8851 + 29.2458i 0.619871 + 1.07365i
\(743\) −0.262367 1.48796i −0.00962530 0.0545878i 0.979617 0.200875i \(-0.0643786\pi\)
−0.989242 + 0.146288i \(0.953268\pi\)
\(744\) −5.38168 + 0.885754i −0.197302 + 0.0324733i
\(745\) 5.24895 1.91046i 0.192307 0.0699939i
\(746\) −5.99799 7.14813i −0.219602 0.261712i
\(747\) −25.2815 5.05510i −0.925002 0.184957i
\(748\) 10.6507 18.4476i 0.389429 0.674510i
\(749\) 12.6025 0.460487
\(750\) −25.5083 + 29.7046i −0.931430 + 1.08466i
\(751\) 15.4593 18.4237i 0.564118 0.672290i −0.406295 0.913742i \(-0.633179\pi\)
0.970413 + 0.241452i \(0.0776237\pi\)
\(752\) −36.5242 21.0873i −1.33190 0.768973i
\(753\) 20.0665 11.2822i 0.731265 0.411145i
\(754\) 1.78648 2.12904i 0.0650596 0.0775350i
\(755\) −25.4782 + 21.3787i −0.927245 + 0.778051i
\(756\) 18.6744 + 16.7915i 0.679180 + 0.610700i
\(757\) −2.26718 12.8578i −0.0824019 0.467325i −0.997887 0.0649728i \(-0.979304\pi\)
0.915485 0.402352i \(-0.131807\pi\)
\(758\) 13.0563 + 15.5599i 0.474226 + 0.565161i
\(759\) −10.2636 + 17.3178i −0.372545 + 0.628595i
\(760\) 7.88015 2.26039i 0.285843 0.0819931i
\(761\) −27.7682 + 16.0320i −1.00660 + 0.581159i −0.910193 0.414183i \(-0.864067\pi\)
−0.0964035 + 0.995342i \(0.530734\pi\)
\(762\) 4.15625 0.684064i 0.150565 0.0247810i
\(763\) −8.25668 + 22.6850i −0.298912 + 0.821254i
\(764\) −10.1189 + 12.0592i −0.366088 + 0.436286i
\(765\) 6.09420 + 39.8599i 0.220336 + 1.44114i
\(766\) 1.34525 7.62927i 0.0486057 0.275657i
\(767\) 7.25241 4.18718i 0.261869 0.151190i
\(768\) −17.7654 31.5977i −0.641054 1.14018i
\(769\) −1.31313