Properties

Label 171.2.h
Level $171$
Weight $2$
Character orbit 171.h
Rep. character $\chi_{171}(7,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $36$
Newform subspaces $3$
Sturm bound $40$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 171.h (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 171 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 3 \)
Sturm bound: \(40\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(171, [\chi])\).

Total New Old
Modular forms 44 44 0
Cusp forms 36 36 0
Eisenstein series 8 8 0

Trace form

\( 36 q - 6 q^{2} + q^{3} + 30 q^{4} + q^{5} - 7 q^{6} - 3 q^{7} - 24 q^{8} + 5 q^{9} - 6 q^{10} - q^{11} - 3 q^{12} + 5 q^{14} - 2 q^{15} + 18 q^{16} - 5 q^{17} + 18 q^{18} - 9 q^{19} - q^{20} + 2 q^{21}+ \cdots - 25 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(171, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
171.2.h.a 171.h 171.h $2$ $1.365$ \(\Q(\sqrt{-3}) \) None 171.2.g.a \(-2\) \(0\) \(-3\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{2}+(-1+2\zeta_{6})q^{3}-q^{4}-3\zeta_{6}q^{5}+\cdots\)
171.2.h.b 171.h 171.h $2$ $1.365$ \(\Q(\sqrt{-3}) \) None 171.2.g.b \(-2\) \(0\) \(1\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{2}+(1-2\zeta_{6})q^{3}-q^{4}+\zeta_{6}q^{5}+\cdots\)
171.2.h.c 171.h 171.h $32$ $1.365$ None 171.2.g.c \(-2\) \(1\) \(3\) \(1\) $\mathrm{SU}(2)[C_{3}]$