Properties

Label 171.2.g.c.121.6
Level $171$
Weight $2$
Character 171.121
Analytic conductor $1.365$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,2,Mod(106,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.106");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 171.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.36544187456\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.6
Character \(\chi\) \(=\) 171.121
Dual form 171.2.g.c.106.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.395929 + 0.685769i) q^{2} +(0.659141 - 1.60173i) q^{3} +(0.686481 + 1.18902i) q^{4} +2.59093 q^{5} +(0.837442 + 1.08619i) q^{6} +(-0.373088 - 0.646207i) q^{7} -2.67091 q^{8} +(-2.13107 - 2.11153i) q^{9} +O(q^{10})\) \(q+(-0.395929 + 0.685769i) q^{2} +(0.659141 - 1.60173i) q^{3} +(0.686481 + 1.18902i) q^{4} +2.59093 q^{5} +(0.837442 + 1.08619i) q^{6} +(-0.373088 - 0.646207i) q^{7} -2.67091 q^{8} +(-2.13107 - 2.11153i) q^{9} +(-1.02582 + 1.77678i) q^{10} +(-1.28837 - 2.23153i) q^{11} +(2.35697 - 0.315823i) q^{12} +(3.09365 + 5.35835i) q^{13} +0.590865 q^{14} +(1.70779 - 4.14996i) q^{15} +(-0.315472 + 0.546414i) q^{16} +(0.119999 + 0.207845i) q^{17} +(2.29177 - 0.625402i) q^{18} +(3.89399 - 1.95878i) q^{19} +(1.77862 + 3.08066i) q^{20} +(-1.28097 + 0.171643i) q^{21} +2.04042 q^{22} +(-1.93131 - 3.34513i) q^{23} +(-1.76050 + 4.27806i) q^{24} +1.71290 q^{25} -4.89946 q^{26} +(-4.78677 + 2.02159i) q^{27} +(0.512235 - 0.887218i) q^{28} -6.79737 q^{29} +(2.16975 + 2.81424i) q^{30} +(-3.77423 + 6.53716i) q^{31} +(-2.92071 - 5.05883i) q^{32} +(-4.42353 + 0.592732i) q^{33} -0.190045 q^{34} +(-0.966644 - 1.67428i) q^{35} +(1.04772 - 3.98340i) q^{36} -8.47678 q^{37} +(-0.198475 + 3.44592i) q^{38} +(10.6218 - 1.42327i) q^{39} -6.92012 q^{40} +8.15194 q^{41} +(0.389464 - 0.946405i) q^{42} +(1.44011 - 2.49434i) q^{43} +(1.76889 - 3.06380i) q^{44} +(-5.52143 - 5.47082i) q^{45} +3.05865 q^{46} -4.52565 q^{47} +(0.667266 + 0.865465i) q^{48} +(3.22161 - 5.57999i) q^{49} +(-0.678188 + 1.17466i) q^{50} +(0.412007 - 0.0552070i) q^{51} +(-4.24746 + 7.35681i) q^{52} +(-5.57774 + 9.66094i) q^{53} +(0.508878 - 4.08302i) q^{54} +(-3.33808 - 5.78173i) q^{55} +(0.996483 + 1.72596i) q^{56} +(-0.570737 - 7.52823i) q^{57} +(2.69128 - 4.66143i) q^{58} +0.344246 q^{59} +(6.10675 - 0.818275i) q^{60} +0.0790199 q^{61} +(-2.98865 - 5.17650i) q^{62} +(-0.569412 + 2.16490i) q^{63} +3.36369 q^{64} +(8.01542 + 13.8831i) q^{65} +(1.34492 - 3.26820i) q^{66} +(-4.61385 - 7.99142i) q^{67} +(-0.164754 + 0.285363i) q^{68} +(-6.63100 + 0.888523i) q^{69} +1.53089 q^{70} +(2.15288 + 3.72891i) q^{71} +(5.69187 + 5.63970i) q^{72} +(1.63071 + 2.82448i) q^{73} +(3.35620 - 5.81312i) q^{74} +(1.12905 - 2.74361i) q^{75} +(5.00218 + 3.28537i) q^{76} +(-0.961354 + 1.66511i) q^{77} +(-3.22944 + 7.84760i) q^{78} +(3.57283 - 6.18833i) q^{79} +(-0.817366 + 1.41572i) q^{80} +(0.0828771 + 8.99962i) q^{81} +(-3.22759 + 5.59035i) q^{82} +(1.78498 + 3.09167i) q^{83} +(-1.08345 - 1.40526i) q^{84} +(0.310909 + 0.538510i) q^{85} +(1.14036 + 1.97516i) q^{86} +(-4.48043 + 10.8875i) q^{87} +(3.44113 + 5.96021i) q^{88} +(5.21555 - 9.03360i) q^{89} +(5.93782 - 1.62037i) q^{90} +(2.30841 - 3.99827i) q^{91} +(2.65162 - 4.59274i) q^{92} +(7.98300 + 10.3542i) q^{93} +(1.79184 - 3.10355i) q^{94} +(10.0891 - 5.07505i) q^{95} +(-10.0280 + 1.34371i) q^{96} +(1.20626 - 2.08930i) q^{97} +(2.55106 + 4.41856i) q^{98} +(-1.96633 + 7.47598i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + q^{2} - 2 q^{3} - 17 q^{4} - 6 q^{5} + 2 q^{6} + q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 32 q + q^{2} - 2 q^{3} - 17 q^{4} - 6 q^{5} + 2 q^{6} + q^{7} - 36 q^{8} - 10 q^{9} - 8 q^{10} + 7 q^{11} - 3 q^{12} - 4 q^{13} - 2 q^{14} + q^{15} - 11 q^{16} - 7 q^{17} + 6 q^{18} + 7 q^{19} - 3 q^{20} + 11 q^{21} + 16 q^{22} + 5 q^{23} + 27 q^{24} + 18 q^{25} - 4 q^{26} - 5 q^{27} - 10 q^{28} - 20 q^{29} - 5 q^{30} - 10 q^{31} + 17 q^{32} + 34 q^{33} + 26 q^{34} - 3 q^{35} - 16 q^{36} + 2 q^{37} + 38 q^{38} - 24 q^{40} - 12 q^{41} + 25 q^{42} + 7 q^{43} + 20 q^{44} - 35 q^{45} + 18 q^{47} - 33 q^{48} - 13 q^{49} + q^{50} - 28 q^{51} + 19 q^{52} + 16 q^{53} + 35 q^{54} + 15 q^{55} - 6 q^{56} + 6 q^{57} - 74 q^{59} + 50 q^{60} + 24 q^{61} + 54 q^{62} - 30 q^{63} - 64 q^{64} + 54 q^{65} + 4 q^{66} - 11 q^{67} - 2 q^{68} + 3 q^{69} - 48 q^{70} + 9 q^{71} - 10 q^{73} + 6 q^{74} - 76 q^{75} + 29 q^{76} + 46 q^{77} - 82 q^{78} - 8 q^{79} - 24 q^{80} + 26 q^{81} + 7 q^{82} + 3 q^{83} + 12 q^{84} - 27 q^{85} + 17 q^{86} - 9 q^{87} + 9 q^{88} + 30 q^{89} - 74 q^{90} - q^{91} - 17 q^{92} - 24 q^{93} - 18 q^{94} - 6 q^{95} - 5 q^{96} + 18 q^{98} - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.395929 + 0.685769i −0.279964 + 0.484912i −0.971375 0.237549i \(-0.923656\pi\)
0.691411 + 0.722461i \(0.256989\pi\)
\(3\) 0.659141 1.60173i 0.380555 0.924758i
\(4\) 0.686481 + 1.18902i 0.343240 + 0.594510i
\(5\) 2.59093 1.15870 0.579349 0.815080i \(-0.303307\pi\)
0.579349 + 0.815080i \(0.303307\pi\)
\(6\) 0.837442 + 1.08619i 0.341884 + 0.443435i
\(7\) −0.373088 0.646207i −0.141014 0.244243i 0.786865 0.617126i \(-0.211703\pi\)
−0.927879 + 0.372882i \(0.878370\pi\)
\(8\) −2.67091 −0.944308
\(9\) −2.13107 2.11153i −0.710355 0.703844i
\(10\) −1.02582 + 1.77678i −0.324394 + 0.561866i
\(11\) −1.28837 2.23153i −0.388460 0.672832i 0.603783 0.797149i \(-0.293659\pi\)
−0.992243 + 0.124317i \(0.960326\pi\)
\(12\) 2.35697 0.315823i 0.680400 0.0911703i
\(13\) 3.09365 + 5.35835i 0.858023 + 1.48614i 0.873812 + 0.486265i \(0.161641\pi\)
−0.0157882 + 0.999875i \(0.505026\pi\)
\(14\) 0.590865 0.157915
\(15\) 1.70779 4.14996i 0.440949 1.07152i
\(16\) −0.315472 + 0.546414i −0.0788681 + 0.136604i
\(17\) 0.119999 + 0.207845i 0.0291041 + 0.0504097i 0.880211 0.474583i \(-0.157401\pi\)
−0.851107 + 0.524993i \(0.824068\pi\)
\(18\) 2.29177 0.625402i 0.540176 0.147409i
\(19\) 3.89399 1.95878i 0.893343 0.449375i
\(20\) 1.77862 + 3.08066i 0.397712 + 0.688857i
\(21\) −1.28097 + 0.171643i −0.279530 + 0.0374557i
\(22\) 2.04042 0.435019
\(23\) −1.93131 3.34513i −0.402707 0.697509i 0.591345 0.806419i \(-0.298597\pi\)
−0.994052 + 0.108910i \(0.965264\pi\)
\(24\) −1.76050 + 4.27806i −0.359362 + 0.873256i
\(25\) 1.71290 0.342581
\(26\) −4.89946 −0.960863
\(27\) −4.78677 + 2.02159i −0.921215 + 0.389055i
\(28\) 0.512235 0.887218i 0.0968034 0.167668i
\(29\) −6.79737 −1.26224 −0.631120 0.775685i \(-0.717405\pi\)
−0.631120 + 0.775685i \(0.717405\pi\)
\(30\) 2.16975 + 2.81424i 0.396141 + 0.513807i
\(31\) −3.77423 + 6.53716i −0.677872 + 1.17411i 0.297749 + 0.954644i \(0.403764\pi\)
−0.975621 + 0.219464i \(0.929569\pi\)
\(32\) −2.92071 5.05883i −0.516314 0.894283i
\(33\) −4.42353 + 0.592732i −0.770037 + 0.103181i
\(34\) −0.190045 −0.0325924
\(35\) −0.966644 1.67428i −0.163393 0.283004i
\(36\) 1.04772 3.98340i 0.174619 0.663900i
\(37\) −8.47678 −1.39357 −0.696787 0.717278i \(-0.745388\pi\)
−0.696787 + 0.717278i \(0.745388\pi\)
\(38\) −0.198475 + 3.44592i −0.0321970 + 0.559002i
\(39\) 10.6218 1.42327i 1.70085 0.227905i
\(40\) −6.92012 −1.09417
\(41\) 8.15194 1.27312 0.636559 0.771228i \(-0.280357\pi\)
0.636559 + 0.771228i \(0.280357\pi\)
\(42\) 0.389464 0.946405i 0.0600956 0.146034i
\(43\) 1.44011 2.49434i 0.219615 0.380384i −0.735076 0.677985i \(-0.762853\pi\)
0.954690 + 0.297602i \(0.0961867\pi\)
\(44\) 1.76889 3.06380i 0.266670 0.461886i
\(45\) −5.52143 5.47082i −0.823087 0.815542i
\(46\) 3.05865 0.450974
\(47\) −4.52565 −0.660134 −0.330067 0.943957i \(-0.607071\pi\)
−0.330067 + 0.943957i \(0.607071\pi\)
\(48\) 0.667266 + 0.865465i 0.0963115 + 0.124919i
\(49\) 3.22161 5.57999i 0.460230 0.797142i
\(50\) −0.678188 + 1.17466i −0.0959103 + 0.166122i
\(51\) 0.412007 0.0552070i 0.0576925 0.00773053i
\(52\) −4.24746 + 7.35681i −0.589016 + 1.02021i
\(53\) −5.57774 + 9.66094i −0.766162 + 1.32703i 0.173468 + 0.984840i \(0.444503\pi\)
−0.939630 + 0.342192i \(0.888831\pi\)
\(54\) 0.508878 4.08302i 0.0692495 0.555629i
\(55\) −3.33808 5.78173i −0.450107 0.779609i
\(56\) 0.996483 + 1.72596i 0.133161 + 0.230641i
\(57\) −0.570737 7.52823i −0.0755960 0.997139i
\(58\) 2.69128 4.66143i 0.353382 0.612075i
\(59\) 0.344246 0.0448170 0.0224085 0.999749i \(-0.492867\pi\)
0.0224085 + 0.999749i \(0.492867\pi\)
\(60\) 6.10675 0.818275i 0.788378 0.105639i
\(61\) 0.0790199 0.0101175 0.00505873 0.999987i \(-0.498390\pi\)
0.00505873 + 0.999987i \(0.498390\pi\)
\(62\) −2.98865 5.17650i −0.379559 0.657416i
\(63\) −0.569412 + 2.16490i −0.0717391 + 0.272751i
\(64\) 3.36369 0.420462
\(65\) 8.01542 + 13.8831i 0.994190 + 1.72199i
\(66\) 1.34492 3.26820i 0.165549 0.402287i
\(67\) −4.61385 7.99142i −0.563671 0.976307i −0.997172 0.0751540i \(-0.976055\pi\)
0.433501 0.901153i \(-0.357278\pi\)
\(68\) −0.164754 + 0.285363i −0.0199794 + 0.0346053i
\(69\) −6.63100 + 0.888523i −0.798279 + 0.106966i
\(70\) 1.53089 0.182976
\(71\) 2.15288 + 3.72891i 0.255500 + 0.442540i 0.965031 0.262135i \(-0.0844264\pi\)
−0.709531 + 0.704674i \(0.751093\pi\)
\(72\) 5.69187 + 5.63970i 0.670794 + 0.664645i
\(73\) 1.63071 + 2.82448i 0.190861 + 0.330580i 0.945536 0.325518i \(-0.105539\pi\)
−0.754675 + 0.656099i \(0.772206\pi\)
\(74\) 3.35620 5.81312i 0.390151 0.675761i
\(75\) 1.12905 2.74361i 0.130371 0.316804i
\(76\) 5.00218 + 3.28537i 0.573789 + 0.376858i
\(77\) −0.961354 + 1.66511i −0.109556 + 0.189757i
\(78\) −3.22944 + 7.84760i −0.365662 + 0.888566i
\(79\) 3.57283 6.18833i 0.401975 0.696241i −0.591989 0.805946i \(-0.701657\pi\)
0.993964 + 0.109705i \(0.0349905\pi\)
\(80\) −0.817366 + 1.41572i −0.0913843 + 0.158282i
\(81\) 0.0828771 + 8.99962i 0.00920857 + 0.999958i
\(82\) −3.22759 + 5.59035i −0.356427 + 0.617350i
\(83\) 1.78498 + 3.09167i 0.195927 + 0.339355i 0.947204 0.320632i \(-0.103895\pi\)
−0.751277 + 0.659987i \(0.770562\pi\)
\(84\) −1.08345 1.40526i −0.118214 0.153327i
\(85\) 0.310909 + 0.538510i 0.0337228 + 0.0584096i
\(86\) 1.14036 + 1.97516i 0.122968 + 0.212987i
\(87\) −4.48043 + 10.8875i −0.480353 + 1.16727i
\(88\) 3.44113 + 5.96021i 0.366825 + 0.635360i
\(89\) 5.21555 9.03360i 0.552848 0.957560i −0.445220 0.895421i \(-0.646875\pi\)
0.998068 0.0621388i \(-0.0197921\pi\)
\(90\) 5.93782 1.62037i 0.625901 0.170802i
\(91\) 2.30841 3.99827i 0.241987 0.419133i
\(92\) 2.65162 4.59274i 0.276450 0.478826i
\(93\) 7.98300 + 10.3542i 0.827798 + 1.07368i
\(94\) 1.79184 3.10355i 0.184814 0.320107i
\(95\) 10.0891 5.07505i 1.03512 0.520689i
\(96\) −10.0280 + 1.34371i −1.02348 + 0.137142i
\(97\) 1.20626 2.08930i 0.122477 0.212136i −0.798267 0.602304i \(-0.794250\pi\)
0.920744 + 0.390168i \(0.127583\pi\)
\(98\) 2.55106 + 4.41856i 0.257696 + 0.446342i
\(99\) −1.96633 + 7.47598i −0.197624 + 0.751364i
\(100\) 1.17588 + 2.03668i 0.117588 + 0.203668i
\(101\) 15.9278 1.58487 0.792437 0.609954i \(-0.208812\pi\)
0.792437 + 0.609954i \(0.208812\pi\)
\(102\) −0.125266 + 0.304400i −0.0124032 + 0.0301401i
\(103\) 0.233085 0.403715i 0.0229665 0.0397792i −0.854314 0.519758i \(-0.826022\pi\)
0.877280 + 0.479979i \(0.159356\pi\)
\(104\) −8.26284 14.3117i −0.810238 1.40337i
\(105\) −3.31889 + 0.444716i −0.323890 + 0.0433998i
\(106\) −4.41678 7.65009i −0.428996 0.743042i
\(107\) −0.597705 −0.0577823 −0.0288911 0.999583i \(-0.509198\pi\)
−0.0288911 + 0.999583i \(0.509198\pi\)
\(108\) −5.68973 4.30378i −0.547495 0.414132i
\(109\) 5.54817 + 9.60971i 0.531418 + 0.920444i 0.999328 + 0.0366670i \(0.0116741\pi\)
−0.467909 + 0.883777i \(0.654993\pi\)
\(110\) 5.28658 0.504055
\(111\) −5.58740 + 13.5775i −0.530333 + 1.28872i
\(112\) 0.470796 0.0444860
\(113\) −6.32215 + 10.9503i −0.594738 + 1.03012i 0.398846 + 0.917018i \(0.369411\pi\)
−0.993584 + 0.113098i \(0.963923\pi\)
\(114\) 5.38860 + 2.58925i 0.504689 + 0.242506i
\(115\) −5.00389 8.66700i −0.466616 0.808202i
\(116\) −4.66626 8.08221i −0.433252 0.750414i
\(117\) 4.72157 17.9513i 0.436509 1.65960i
\(118\) −0.136297 + 0.236073i −0.0125472 + 0.0217323i
\(119\) 0.0895405 0.155089i 0.00820816 0.0142170i
\(120\) −4.56134 + 11.0842i −0.416391 + 1.01184i
\(121\) 2.18018 3.77619i 0.198198 0.343290i
\(122\) −0.0312863 + 0.0541894i −0.00283252 + 0.00490608i
\(123\) 5.37328 13.0572i 0.484492 1.17733i
\(124\) −10.3637 −0.930691
\(125\) −8.51663 −0.761750
\(126\) −1.25917 1.24763i −0.112176 0.111148i
\(127\) 4.92567 8.53152i 0.437083 0.757050i −0.560380 0.828235i \(-0.689345\pi\)
0.997463 + 0.0711858i \(0.0226783\pi\)
\(128\) 4.50965 7.81094i 0.398600 0.690396i
\(129\) −3.04602 3.95079i −0.268187 0.347847i
\(130\) −12.6941 −1.11335
\(131\) 20.1493 1.76045 0.880224 0.474558i \(-0.157392\pi\)
0.880224 + 0.474558i \(0.157392\pi\)
\(132\) −3.74143 4.85276i −0.325650 0.422378i
\(133\) −2.71858 1.78553i −0.235731 0.154825i
\(134\) 7.30702 0.631231
\(135\) −12.4022 + 5.23779i −1.06741 + 0.450797i
\(136\) −0.320506 0.555133i −0.0274832 0.0476023i
\(137\) −3.88526 −0.331940 −0.165970 0.986131i \(-0.553075\pi\)
−0.165970 + 0.986131i \(0.553075\pi\)
\(138\) 2.01608 4.89913i 0.171620 0.417042i
\(139\) −0.770102 1.33386i −0.0653192 0.113136i 0.831516 0.555500i \(-0.187473\pi\)
−0.896836 + 0.442364i \(0.854140\pi\)
\(140\) 1.32716 2.29872i 0.112166 0.194277i
\(141\) −2.98305 + 7.24887i −0.251218 + 0.610465i
\(142\) −3.40956 −0.286124
\(143\) 7.97155 13.8071i 0.666615 1.15461i
\(144\) 1.82606 0.498315i 0.152172 0.0415262i
\(145\) −17.6115 −1.46256
\(146\) −2.58259 −0.213736
\(147\) −6.81413 8.83815i −0.562020 0.728958i
\(148\) −5.81915 10.0791i −0.478331 0.828494i
\(149\) −4.12115 −0.337618 −0.168809 0.985649i \(-0.553992\pi\)
−0.168809 + 0.985649i \(0.553992\pi\)
\(150\) 1.43446 + 1.86054i 0.117123 + 0.151912i
\(151\) 9.79231 + 16.9608i 0.796887 + 1.38025i 0.921634 + 0.388060i \(0.126855\pi\)
−0.124748 + 0.992188i \(0.539812\pi\)
\(152\) −10.4005 + 5.23171i −0.843591 + 0.424348i
\(153\) 0.183144 0.696312i 0.0148063 0.0562935i
\(154\) −0.761256 1.31853i −0.0613437 0.106250i
\(155\) −9.77875 + 16.9373i −0.785448 + 1.36044i
\(156\) 8.98394 + 11.6525i 0.719291 + 0.932943i
\(157\) 2.42409 0.193464 0.0967319 0.995310i \(-0.469161\pi\)
0.0967319 + 0.995310i \(0.469161\pi\)
\(158\) 2.82918 + 4.90028i 0.225077 + 0.389845i
\(159\) 11.7977 + 15.3020i 0.935616 + 1.21352i
\(160\) −7.56736 13.1071i −0.598252 1.03620i
\(161\) −1.44110 + 2.49606i −0.113575 + 0.196717i
\(162\) −6.20447 3.50637i −0.487469 0.275487i
\(163\) 5.92945 0.464430 0.232215 0.972664i \(-0.425403\pi\)
0.232215 + 0.972664i \(0.425403\pi\)
\(164\) 5.59615 + 9.69281i 0.436986 + 0.756881i
\(165\) −11.4610 + 1.53572i −0.892240 + 0.119556i
\(166\) −2.82690 −0.219410
\(167\) 2.37028 + 4.10545i 0.183418 + 0.317689i 0.943042 0.332673i \(-0.107950\pi\)
−0.759624 + 0.650362i \(0.774617\pi\)
\(168\) 3.42134 0.458443i 0.263962 0.0353697i
\(169\) −12.6413 + 21.8954i −0.972408 + 1.68426i
\(170\) −0.492392 −0.0377647
\(171\) −12.4344 4.04800i −0.950880 0.309559i
\(172\) 3.95443 0.301522
\(173\) −1.43916 + 2.49270i −0.109417 + 0.189517i −0.915534 0.402240i \(-0.868232\pi\)
0.806117 + 0.591756i \(0.201565\pi\)
\(174\) −5.69241 7.38323i −0.431540 0.559722i
\(175\) −0.639064 1.10689i −0.0483087 0.0836731i
\(176\) 1.62579 0.122548
\(177\) 0.226907 0.551389i 0.0170554 0.0414449i
\(178\) 4.12998 + 7.15333i 0.309555 + 0.536165i
\(179\) 16.2405 1.21387 0.606935 0.794752i \(-0.292399\pi\)
0.606935 + 0.794752i \(0.292399\pi\)
\(180\) 2.71456 10.3207i 0.202331 0.769260i
\(181\) 11.5027 19.9233i 0.854989 1.48088i −0.0216663 0.999765i \(-0.506897\pi\)
0.876655 0.481119i \(-0.159770\pi\)
\(182\) 1.82793 + 3.16607i 0.135495 + 0.234684i
\(183\) 0.0520853 0.126568i 0.00385025 0.00935620i
\(184\) 5.15836 + 8.93454i 0.380279 + 0.658663i
\(185\) −21.9627 −1.61473
\(186\) −10.2613 + 1.37496i −0.752394 + 0.100817i
\(187\) 0.309208 0.535563i 0.0226115 0.0391643i
\(188\) −3.10677 5.38109i −0.226585 0.392456i
\(189\) 3.09225 + 2.33902i 0.224928 + 0.170138i
\(190\) −0.514235 + 8.92812i −0.0373066 + 0.647714i
\(191\) −6.57083 11.3810i −0.475449 0.823502i 0.524156 0.851622i \(-0.324381\pi\)
−0.999605 + 0.0281209i \(0.991048\pi\)
\(192\) 2.21715 5.38772i 0.160009 0.388825i
\(193\) 16.9725 1.22170 0.610852 0.791745i \(-0.290827\pi\)
0.610852 + 0.791745i \(0.290827\pi\)
\(194\) 0.955184 + 1.65443i 0.0685782 + 0.118781i
\(195\) 27.5203 3.68758i 1.97077 0.264073i
\(196\) 8.84629 0.631878
\(197\) −6.99036 −0.498042 −0.249021 0.968498i \(-0.580109\pi\)
−0.249021 + 0.968498i \(0.580109\pi\)
\(198\) −4.34827 4.30841i −0.309018 0.306185i
\(199\) −10.0819 + 17.4623i −0.714684 + 1.23787i 0.248397 + 0.968658i \(0.420096\pi\)
−0.963081 + 0.269211i \(0.913237\pi\)
\(200\) −4.57501 −0.323502
\(201\) −15.8413 + 2.12265i −1.11736 + 0.149720i
\(202\) −6.30627 + 10.9228i −0.443708 + 0.768524i
\(203\) 2.53602 + 4.39251i 0.177994 + 0.308294i
\(204\) 0.348477 + 0.451986i 0.0243983 + 0.0316453i
\(205\) 21.1211 1.47516
\(206\) 0.184570 + 0.319685i 0.0128596 + 0.0222735i
\(207\) −2.94760 + 11.2067i −0.204872 + 0.778921i
\(208\) −3.90384 −0.270683
\(209\) −9.38799 6.16592i −0.649381 0.426506i
\(210\) 1.00907 2.45207i 0.0696326 0.169209i
\(211\) −15.5141 −1.06803 −0.534016 0.845474i \(-0.679318\pi\)
−0.534016 + 0.845474i \(0.679318\pi\)
\(212\) −15.3161 −1.05191
\(213\) 7.39175 0.990460i 0.506474 0.0678652i
\(214\) 0.236649 0.409887i 0.0161770 0.0280193i
\(215\) 3.73122 6.46266i 0.254467 0.440750i
\(216\) 12.7850 5.39947i 0.869910 0.367388i
\(217\) 5.63248 0.382358
\(218\) −8.78672 −0.595112
\(219\) 5.59892 0.750228i 0.378340 0.0506957i
\(220\) 4.58306 7.93809i 0.308990 0.535186i
\(221\) −0.742470 + 1.28600i −0.0499439 + 0.0865055i
\(222\) −7.09882 9.20739i −0.476441 0.617960i
\(223\) 11.1614 19.3322i 0.747424 1.29458i −0.201629 0.979462i \(-0.564624\pi\)
0.949053 0.315115i \(-0.102043\pi\)
\(224\) −2.17937 + 3.77477i −0.145615 + 0.252213i
\(225\) −3.65031 3.61685i −0.243354 0.241123i
\(226\) −5.00624 8.67107i −0.333010 0.576791i
\(227\) −9.92340 17.1878i −0.658639 1.14080i −0.980968 0.194169i \(-0.937799\pi\)
0.322329 0.946628i \(-0.395534\pi\)
\(228\) 8.55941 5.84660i 0.566861 0.387201i
\(229\) 10.8099 18.7233i 0.714340 1.23727i −0.248873 0.968536i \(-0.580060\pi\)
0.963213 0.268737i \(-0.0866064\pi\)
\(230\) 7.92475 0.522542
\(231\) 2.03339 + 2.63737i 0.133787 + 0.173526i
\(232\) 18.1551 1.19194
\(233\) 3.43567 + 5.95075i 0.225078 + 0.389847i 0.956343 0.292247i \(-0.0944029\pi\)
−0.731265 + 0.682094i \(0.761070\pi\)
\(234\) 10.4411 + 10.3454i 0.682554 + 0.676297i
\(235\) −11.7256 −0.764896
\(236\) 0.236318 + 0.409315i 0.0153830 + 0.0266441i
\(237\) −7.55702 9.80169i −0.490881 0.636688i
\(238\) 0.0709033 + 0.122808i 0.00459598 + 0.00796047i
\(239\) −0.795373 + 1.37763i −0.0514484 + 0.0891113i −0.890603 0.454782i \(-0.849717\pi\)
0.839154 + 0.543893i \(0.183050\pi\)
\(240\) 1.72884 + 2.24236i 0.111596 + 0.144744i
\(241\) −27.8863 −1.79631 −0.898157 0.439675i \(-0.855094\pi\)
−0.898157 + 0.439675i \(0.855094\pi\)
\(242\) 1.72639 + 2.99020i 0.110977 + 0.192218i
\(243\) 14.4696 + 5.79927i 0.928223 + 0.372024i
\(244\) 0.0542456 + 0.0939562i 0.00347272 + 0.00601493i
\(245\) 8.34696 14.4574i 0.533268 0.923647i
\(246\) 6.82678 + 8.85454i 0.435259 + 0.564545i
\(247\) 22.5425 + 14.8056i 1.43434 + 0.942060i
\(248\) 10.0806 17.4601i 0.640119 1.10872i
\(249\) 6.12857 0.821200i 0.388382 0.0520414i
\(250\) 3.37198 5.84044i 0.213263 0.369382i
\(251\) −4.62823 + 8.01632i −0.292131 + 0.505986i −0.974313 0.225196i \(-0.927698\pi\)
0.682182 + 0.731182i \(0.261031\pi\)
\(252\) −2.96499 + 0.809118i −0.186777 + 0.0509696i
\(253\) −4.97651 + 8.61957i −0.312871 + 0.541908i
\(254\) 3.90043 + 6.75575i 0.244735 + 0.423893i
\(255\) 1.06748 0.143037i 0.0668482 0.00895734i
\(256\) 6.93469 + 12.0112i 0.433418 + 0.750702i
\(257\) 3.10494 + 5.37792i 0.193681 + 0.335465i 0.946467 0.322800i \(-0.104624\pi\)
−0.752786 + 0.658265i \(0.771291\pi\)
\(258\) 3.91534 0.524636i 0.243758 0.0326624i
\(259\) 3.16259 + 5.47776i 0.196514 + 0.340371i
\(260\) −11.0049 + 19.0610i −0.682492 + 1.18211i
\(261\) 14.4856 + 14.3529i 0.896639 + 0.888420i
\(262\) −7.97767 + 13.8177i −0.492862 + 0.853663i
\(263\) −2.08904 + 3.61833i −0.128816 + 0.223116i −0.923218 0.384276i \(-0.874451\pi\)
0.794402 + 0.607392i \(0.207784\pi\)
\(264\) 11.8148 1.58313i 0.727152 0.0974349i
\(265\) −14.4515 + 25.0308i −0.887751 + 1.53763i
\(266\) 2.30083 1.15737i 0.141073 0.0709631i
\(267\) −11.0316 14.3083i −0.675122 0.875655i
\(268\) 6.33463 10.9719i 0.386949 0.670216i
\(269\) 13.0970 + 22.6846i 0.798537 + 1.38311i 0.920569 + 0.390580i \(0.127726\pi\)
−0.122032 + 0.992526i \(0.538941\pi\)
\(270\) 1.31847 10.5788i 0.0802392 0.643807i
\(271\) −3.52849 6.11152i −0.214340 0.371249i 0.738728 0.674004i \(-0.235427\pi\)
−0.953068 + 0.302755i \(0.902094\pi\)
\(272\) −0.151426 −0.00918153
\(273\) −4.88258 6.33287i −0.295507 0.383282i
\(274\) 1.53828 2.66439i 0.0929312 0.160962i
\(275\) −2.20686 3.82240i −0.133079 0.230499i
\(276\) −5.60853 7.27444i −0.337594 0.437870i
\(277\) 4.11711 + 7.13104i 0.247373 + 0.428463i 0.962796 0.270229i \(-0.0870994\pi\)
−0.715423 + 0.698691i \(0.753766\pi\)
\(278\) 1.21962 0.0731482
\(279\) 21.8465 5.96171i 1.30792 0.356918i
\(280\) 2.58181 + 4.47183i 0.154293 + 0.267243i
\(281\) −27.7682 −1.65651 −0.828256 0.560350i \(-0.810667\pi\)
−0.828256 + 0.560350i \(0.810667\pi\)
\(282\) −3.78997 4.91572i −0.225690 0.292727i
\(283\) −15.8585 −0.942688 −0.471344 0.881950i \(-0.656231\pi\)
−0.471344 + 0.881950i \(0.656231\pi\)
\(284\) −2.95583 + 5.11964i −0.175396 + 0.303795i
\(285\) −1.47874 19.5051i −0.0875929 1.15538i
\(286\) 6.31234 + 10.9333i 0.373256 + 0.646499i
\(287\) −3.04139 5.26784i −0.179528 0.310951i
\(288\) −4.45763 + 16.9479i −0.262669 + 0.998663i
\(289\) 8.47120 14.6725i 0.498306 0.863091i
\(290\) 6.97290 12.0774i 0.409463 0.709211i
\(291\) −2.55139 3.30924i −0.149565 0.193991i
\(292\) −2.23891 + 3.87790i −0.131022 + 0.226937i
\(293\) −13.1176 + 22.7203i −0.766336 + 1.32733i 0.173201 + 0.984887i \(0.444589\pi\)
−0.939537 + 0.342447i \(0.888744\pi\)
\(294\) 8.75884 1.17364i 0.510826 0.0684483i
\(295\) 0.891916 0.0519294
\(296\) 22.6407 1.31596
\(297\) 10.6784 + 8.07726i 0.619623 + 0.468690i
\(298\) 1.63168 2.82616i 0.0945209 0.163715i
\(299\) 11.9496 20.6973i 0.691064 1.19696i
\(300\) 4.03727 0.540975i 0.233092 0.0312332i
\(301\) −2.14915 −0.123875
\(302\) −15.5082 −0.892398
\(303\) 10.4987 25.5120i 0.603132 1.46562i
\(304\) −0.158143 + 2.74567i −0.00907014 + 0.157475i
\(305\) 0.204735 0.0117231
\(306\) 0.404997 + 0.401285i 0.0231522 + 0.0229399i
\(307\) 4.00376 + 6.93471i 0.228507 + 0.395785i 0.957366 0.288879i \(-0.0932824\pi\)
−0.728859 + 0.684664i \(0.759949\pi\)
\(308\) −2.63980 −0.150417
\(309\) −0.493005 0.639444i −0.0280461 0.0363767i
\(310\) −7.74338 13.4119i −0.439795 0.761747i
\(311\) 0.504759 0.874268i 0.0286222 0.0495752i −0.851359 0.524583i \(-0.824221\pi\)
0.879982 + 0.475008i \(0.157555\pi\)
\(312\) −28.3698 + 3.80141i −1.60612 + 0.215213i
\(313\) 13.4145 0.758233 0.379117 0.925349i \(-0.376228\pi\)
0.379117 + 0.925349i \(0.376228\pi\)
\(314\) −0.959769 + 1.66237i −0.0541629 + 0.0938129i
\(315\) −1.47530 + 5.60909i −0.0831240 + 0.316036i
\(316\) 9.81072 0.551896
\(317\) −20.1675 −1.13272 −0.566361 0.824157i \(-0.691649\pi\)
−0.566361 + 0.824157i \(0.691649\pi\)
\(318\) −15.1646 + 2.03199i −0.850391 + 0.113948i
\(319\) 8.75756 + 15.1685i 0.490329 + 0.849275i
\(320\) 8.71508 0.487188
\(321\) −0.393972 + 0.957360i −0.0219894 + 0.0534346i
\(322\) −1.14115 1.97652i −0.0635936 0.110147i
\(323\) 0.874398 + 0.574294i 0.0486528 + 0.0319546i
\(324\) −10.6438 + 6.27661i −0.591324 + 0.348700i
\(325\) 5.29912 + 9.17835i 0.293942 + 0.509123i
\(326\) −2.34764 + 4.06623i −0.130024 + 0.225208i
\(327\) 19.0492 2.55250i 1.05342 0.141154i
\(328\) −21.7731 −1.20222
\(329\) 1.68847 + 2.92451i 0.0930882 + 0.161233i
\(330\) 3.48460 8.46766i 0.191821 0.466129i
\(331\) −9.58507 16.6018i −0.526843 0.912519i −0.999511 0.0312784i \(-0.990042\pi\)
0.472667 0.881241i \(-0.343291\pi\)
\(332\) −2.45071 + 4.24475i −0.134500 + 0.232961i
\(333\) 18.0646 + 17.8990i 0.989933 + 0.980859i
\(334\) −3.75386 −0.205402
\(335\) −11.9541 20.7052i −0.653125 1.13125i
\(336\) 0.310321 0.754087i 0.0169294 0.0411388i
\(337\) −4.74013 −0.258211 −0.129106 0.991631i \(-0.541211\pi\)
−0.129106 + 0.991631i \(0.541211\pi\)
\(338\) −10.0101 17.3380i −0.544479 0.943065i
\(339\) 13.3722 + 17.3442i 0.726278 + 0.942005i
\(340\) −0.426866 + 0.739354i −0.0231501 + 0.0400971i
\(341\) 19.4505 1.05330
\(342\) 7.69912 6.92439i 0.416321 0.374428i
\(343\) −10.0310 −0.541624
\(344\) −3.84640 + 6.66215i −0.207384 + 0.359199i
\(345\) −17.1804 + 2.30210i −0.924964 + 0.123941i
\(346\) −1.13961 1.97387i −0.0612659 0.106116i
\(347\) −5.22915 −0.280716 −0.140358 0.990101i \(-0.544825\pi\)
−0.140358 + 0.990101i \(0.544825\pi\)
\(348\) −16.0212 + 2.14677i −0.858828 + 0.115079i
\(349\) 6.15681 + 10.6639i 0.329567 + 0.570826i 0.982426 0.186653i \(-0.0597640\pi\)
−0.652859 + 0.757479i \(0.726431\pi\)
\(350\) 1.01210 0.0540988
\(351\) −25.6410 19.3951i −1.36861 1.03524i
\(352\) −7.52595 + 13.0353i −0.401134 + 0.694785i
\(353\) 0.258317 + 0.447419i 0.0137488 + 0.0238137i 0.872818 0.488046i \(-0.162290\pi\)
−0.859069 + 0.511860i \(0.828957\pi\)
\(354\) 0.288286 + 0.373916i 0.0153222 + 0.0198734i
\(355\) 5.57797 + 9.66133i 0.296048 + 0.512770i
\(356\) 14.3215 0.759038
\(357\) −0.189390 0.245645i −0.0100236 0.0130009i
\(358\) −6.43007 + 11.1372i −0.339840 + 0.588620i
\(359\) −9.78613 16.9501i −0.516492 0.894591i −0.999817 0.0191496i \(-0.993904\pi\)
0.483324 0.875441i \(-0.339429\pi\)
\(360\) 14.7472 + 14.6121i 0.777247 + 0.770123i
\(361\) 11.3264 15.2549i 0.596125 0.802892i
\(362\) 9.10850 + 15.7764i 0.478732 + 0.829189i
\(363\) −4.61138 5.98110i −0.242034 0.313926i
\(364\) 6.33870 0.332238
\(365\) 4.22506 + 7.31802i 0.221150 + 0.383043i
\(366\) 0.0661746 + 0.0858305i 0.00345900 + 0.00448643i
\(367\) −28.2514 −1.47471 −0.737356 0.675504i \(-0.763926\pi\)
−0.737356 + 0.675504i \(0.763926\pi\)
\(368\) 2.43710 0.127043
\(369\) −17.3723 17.2131i −0.904366 0.896076i
\(370\) 8.69568 15.0614i 0.452067 0.783003i
\(371\) 8.32396 0.432158
\(372\) −6.83117 + 16.5999i −0.354180 + 0.860664i
\(373\) 17.6321 30.5397i 0.912956 1.58129i 0.103090 0.994672i \(-0.467127\pi\)
0.809866 0.586615i \(-0.199540\pi\)
\(374\) 0.244849 + 0.424090i 0.0126608 + 0.0219292i
\(375\) −5.61366 + 13.6413i −0.289888 + 0.704435i
\(376\) 12.0876 0.623370
\(377\) −21.0287 36.4227i −1.08303 1.87587i
\(378\) −2.82834 + 1.19449i −0.145474 + 0.0614378i
\(379\) −13.0819 −0.671973 −0.335986 0.941867i \(-0.609070\pi\)
−0.335986 + 0.941867i \(0.609070\pi\)
\(380\) 12.9603 + 8.51216i 0.664848 + 0.436664i
\(381\) −10.4185 13.5131i −0.533754 0.692295i
\(382\) 10.4063 0.532434
\(383\) −15.4842 −0.791204 −0.395602 0.918422i \(-0.629464\pi\)
−0.395602 + 0.918422i \(0.629464\pi\)
\(384\) −9.53850 12.3717i −0.486760 0.631343i
\(385\) −2.49080 + 4.31419i −0.126943 + 0.219871i
\(386\) −6.71989 + 11.6392i −0.342033 + 0.592419i
\(387\) −8.33584 + 2.27477i −0.423735 + 0.115633i
\(388\) 3.31229 0.168156
\(389\) 6.13738 0.311178 0.155589 0.987822i \(-0.450273\pi\)
0.155589 + 0.987822i \(0.450273\pi\)
\(390\) −8.36723 + 20.3326i −0.423691 + 1.02958i
\(391\) 0.463512 0.802826i 0.0234408 0.0406007i
\(392\) −8.60462 + 14.9036i −0.434599 + 0.752747i
\(393\) 13.2812 32.2736i 0.669948 1.62799i
\(394\) 2.76768 4.79377i 0.139434 0.241507i
\(395\) 9.25695 16.0335i 0.465768 0.806733i
\(396\) −10.2389 + 2.79410i −0.514526 + 0.140409i
\(397\) 11.2911 + 19.5568i 0.566685 + 0.981528i 0.996891 + 0.0787968i \(0.0251078\pi\)
−0.430205 + 0.902731i \(0.641559\pi\)
\(398\) −7.98340 13.8277i −0.400172 0.693118i
\(399\) −4.65186 + 3.17751i −0.232884 + 0.159074i
\(400\) −0.540374 + 0.935955i −0.0270187 + 0.0467978i
\(401\) −21.5331 −1.07531 −0.537657 0.843164i \(-0.680690\pi\)
−0.537657 + 0.843164i \(0.680690\pi\)
\(402\) 4.81636 11.7039i 0.240218 0.583736i
\(403\) −46.7045 −2.32652
\(404\) 10.9341 + 18.9384i 0.543992 + 0.942222i
\(405\) 0.214729 + 23.3174i 0.0106700 + 1.15865i
\(406\) −4.01633 −0.199327
\(407\) 10.9213 + 18.9162i 0.541347 + 0.937641i
\(408\) −1.10043 + 0.147453i −0.0544795 + 0.00730000i
\(409\) 4.92098 + 8.52338i 0.243327 + 0.421454i 0.961660 0.274245i \(-0.0884280\pi\)
−0.718333 + 0.695699i \(0.755095\pi\)
\(410\) −8.36244 + 14.4842i −0.412992 + 0.715323i
\(411\) −2.56093 + 6.22312i −0.126321 + 0.306964i
\(412\) 0.640033 0.0315322
\(413\) −0.128434 0.222454i −0.00631983 0.0109463i
\(414\) −6.51819 6.45844i −0.320351 0.317415i
\(415\) 4.62475 + 8.01030i 0.227020 + 0.393210i
\(416\) 18.0713 31.3005i 0.886020 1.53463i
\(417\) −2.64408 + 0.354295i −0.129481 + 0.0173499i
\(418\) 7.94538 3.99673i 0.388621 0.195486i
\(419\) −6.15719 + 10.6646i −0.300798 + 0.520998i −0.976317 0.216345i \(-0.930586\pi\)
0.675519 + 0.737343i \(0.263920\pi\)
\(420\) −2.80713 3.64094i −0.136974 0.177659i
\(421\) 9.26763 16.0520i 0.451677 0.782327i −0.546814 0.837254i \(-0.684159\pi\)
0.998490 + 0.0549274i \(0.0174927\pi\)
\(422\) 6.14246 10.6391i 0.299010 0.517901i
\(423\) 9.64446 + 9.55606i 0.468930 + 0.464631i
\(424\) 14.8976 25.8035i 0.723493 1.25313i
\(425\) 0.205547 + 0.356018i 0.00997050 + 0.0172694i
\(426\) −2.24738 + 5.46118i −0.108886 + 0.264595i
\(427\) −0.0294814 0.0510632i −0.00142670 0.00247112i
\(428\) −0.410313 0.710682i −0.0198332 0.0343521i
\(429\) −16.8609 21.8691i −0.814052 1.05585i
\(430\) 2.95459 + 5.11751i 0.142483 + 0.246788i
\(431\) 4.50820 7.80844i 0.217153 0.376119i −0.736784 0.676128i \(-0.763656\pi\)
0.953936 + 0.300009i \(0.0969898\pi\)
\(432\) 0.405469 3.25331i 0.0195081 0.156525i
\(433\) 0.510034 0.883405i 0.0245107 0.0424537i −0.853510 0.521077i \(-0.825531\pi\)
0.878021 + 0.478623i \(0.158864\pi\)
\(434\) −2.23006 + 3.86258i −0.107046 + 0.185410i
\(435\) −11.6085 + 28.2088i −0.556584 + 1.35251i
\(436\) −7.61742 + 13.1938i −0.364808 + 0.631867i
\(437\) −14.0729 9.24291i −0.673198 0.442149i
\(438\) −1.70229 + 4.13660i −0.0813385 + 0.197654i
\(439\) −11.5394 + 19.9868i −0.550744 + 0.953917i 0.447477 + 0.894296i \(0.352323\pi\)
−0.998221 + 0.0596217i \(0.981011\pi\)
\(440\) 8.91571 + 15.4425i 0.425040 + 0.736190i
\(441\) −18.6478 + 5.08880i −0.887990 + 0.242324i
\(442\) −0.587931 1.01833i −0.0279650 0.0484368i
\(443\) 36.3349 1.72632 0.863162 0.504926i \(-0.168480\pi\)
0.863162 + 0.504926i \(0.168480\pi\)
\(444\) −19.9796 + 2.67717i −0.948188 + 0.127053i
\(445\) 13.5131 23.4054i 0.640583 1.10952i
\(446\) 8.83826 + 15.3083i 0.418504 + 0.724870i
\(447\) −2.71642 + 6.60097i −0.128482 + 0.312215i
\(448\) −1.25495 2.17364i −0.0592910 0.102695i
\(449\) 0.710948 0.0335517 0.0167759 0.999859i \(-0.494660\pi\)
0.0167759 + 0.999859i \(0.494660\pi\)
\(450\) 3.92559 1.07125i 0.185054 0.0504994i
\(451\) −10.5027 18.1913i −0.494555 0.856594i
\(452\) −17.3601 −0.816552
\(453\) 33.6211 4.50506i 1.57966 0.211666i
\(454\) 15.7158 0.737581
\(455\) 5.98091 10.3592i 0.280389 0.485649i
\(456\) 1.52438 + 20.1072i 0.0713859 + 0.941606i
\(457\) −1.95861 3.39242i −0.0916201 0.158691i 0.816573 0.577242i \(-0.195871\pi\)
−0.908193 + 0.418552i \(0.862538\pi\)
\(458\) 8.55993 + 14.8262i 0.399979 + 0.692784i
\(459\) −0.994585 0.752316i −0.0464233 0.0351151i
\(460\) 6.87015 11.8995i 0.320322 0.554815i
\(461\) 20.1656 34.9279i 0.939206 1.62675i 0.172250 0.985053i \(-0.444896\pi\)
0.766956 0.641700i \(-0.221770\pi\)
\(462\) −2.61371 + 0.350224i −0.121601 + 0.0162939i
\(463\) −14.2988 + 24.7662i −0.664520 + 1.15098i 0.314895 + 0.949127i \(0.398031\pi\)
−0.979415 + 0.201856i \(0.935303\pi\)
\(464\) 2.14438 3.71418i 0.0995505 0.172426i
\(465\) 20.6834 + 26.8270i 0.959168 + 1.24407i
\(466\) −5.44112 −0.252055
\(467\) 37.4815 1.73444 0.867219 0.497928i \(-0.165906\pi\)
0.867219 + 0.497928i \(0.165906\pi\)
\(468\) 24.5857 6.70921i 1.13648 0.310133i
\(469\) −3.44274 + 5.96300i −0.158971 + 0.275346i
\(470\) 4.64252 8.04108i 0.214143 0.370907i
\(471\) 1.59782 3.88274i 0.0736237 0.178907i
\(472\) −0.919449 −0.0423211
\(473\) −7.42160 −0.341245
\(474\) 9.71374 1.30159i 0.446167 0.0597842i
\(475\) 6.67004 3.35520i 0.306042 0.153947i
\(476\) 0.245871 0.0112695
\(477\) 32.2859 8.81051i 1.47827 0.403405i
\(478\) −0.629822 1.09088i −0.0288074 0.0498959i
\(479\) −26.9200 −1.23001 −0.615004 0.788524i \(-0.710846\pi\)
−0.615004 + 0.788524i \(0.710846\pi\)
\(480\) −25.9819 + 3.48145i −1.18591 + 0.158906i
\(481\) −26.2242 45.4216i −1.19572 2.07105i
\(482\) 11.0410 19.1236i 0.502903 0.871054i
\(483\) 3.04812 + 3.95351i 0.138694 + 0.179891i
\(484\) 5.98661 0.272119
\(485\) 3.12533 5.41322i 0.141914 0.245802i
\(486\) −9.70588 + 7.62668i −0.440268 + 0.345953i
\(487\) −18.4707 −0.836987 −0.418494 0.908220i \(-0.637442\pi\)
−0.418494 + 0.908220i \(0.637442\pi\)
\(488\) −0.211055 −0.00955399
\(489\) 3.90835 9.49736i 0.176741 0.429486i
\(490\) 6.60961 + 11.4482i 0.298592 + 0.517176i
\(491\) 42.2932 1.90866 0.954332 0.298747i \(-0.0965686\pi\)
0.954332 + 0.298747i \(0.0965686\pi\)
\(492\) 19.2139 2.57457i 0.866229 0.116071i
\(493\) −0.815679 1.41280i −0.0367363 0.0636292i
\(494\) −19.0785 + 9.59695i −0.858380 + 0.431787i
\(495\) −5.09463 + 19.3697i −0.228987 + 0.870604i
\(496\) −2.38133 4.12458i −0.106925 0.185199i
\(497\) 1.60643 2.78242i 0.0720583 0.124809i
\(498\) −1.86333 + 4.52792i −0.0834976 + 0.202901i
\(499\) −33.6793 −1.50769 −0.753845 0.657052i \(-0.771803\pi\)
−0.753845 + 0.657052i \(0.771803\pi\)
\(500\) −5.84650 10.1264i −0.261463 0.452868i
\(501\) 8.13817 1.09048i 0.363587 0.0487189i
\(502\) −3.66490 6.34779i −0.163572 0.283316i
\(503\) −17.5970 + 30.4790i −0.784613 + 1.35899i 0.144617 + 0.989488i \(0.453805\pi\)
−0.929230 + 0.369502i \(0.879528\pi\)
\(504\) 1.52085 5.78223i 0.0677438 0.257561i
\(505\) 41.2677 1.83639
\(506\) −3.94069 6.82547i −0.175185 0.303429i
\(507\) 26.7380 + 34.6801i 1.18748 + 1.54020i
\(508\) 13.5255 0.600098
\(509\) 6.32220 + 10.9504i 0.280226 + 0.485366i 0.971440 0.237284i \(-0.0762571\pi\)
−0.691214 + 0.722650i \(0.742924\pi\)
\(510\) −0.324556 + 0.788677i −0.0143716 + 0.0349232i
\(511\) 1.21680 2.10756i 0.0538280 0.0932329i
\(512\) 7.05601 0.311834
\(513\) −14.6798 + 17.2483i −0.648130 + 0.761530i
\(514\) −4.91735 −0.216895
\(515\) 0.603906 1.04600i 0.0266113 0.0460921i
\(516\) 2.60653 6.33392i 0.114746 0.278835i
\(517\) 5.83074 + 10.0991i 0.256435 + 0.444159i
\(518\) −5.00864 −0.220067
\(519\) 3.04402 + 3.94819i 0.133618 + 0.173306i
\(520\) −21.4084 37.0805i −0.938821 1.62609i
\(521\) 36.6369 1.60509 0.802546 0.596590i \(-0.203478\pi\)
0.802546 + 0.596590i \(0.203478\pi\)
\(522\) −15.5780 + 4.25109i −0.681832 + 0.186065i
\(523\) −0.0107484 + 0.0186167i −0.000469994 + 0.000814053i −0.866260 0.499593i \(-0.833483\pi\)
0.865790 + 0.500407i \(0.166816\pi\)
\(524\) 13.8321 + 23.9579i 0.604257 + 1.04660i
\(525\) −2.19417 + 0.294009i −0.0957615 + 0.0128316i
\(526\) −1.65422 2.86520i −0.0721276 0.124929i
\(527\) −1.81162 −0.0789153
\(528\) 1.07162 2.60407i 0.0466364 0.113327i
\(529\) 4.04005 6.99758i 0.175654 0.304243i
\(530\) −11.4436 19.8208i −0.497076 0.860962i
\(531\) −0.733611 0.726886i −0.0318360 0.0315442i
\(532\) 0.256779 4.45817i 0.0111328 0.193286i
\(533\) 25.2192 + 43.6810i 1.09237 + 1.89203i
\(534\) 14.1799 1.90004i 0.613625 0.0822229i
\(535\) −1.54861 −0.0669522
\(536\) 12.3232 + 21.3443i 0.532279 + 0.921935i
\(537\) 10.7048 26.0128i 0.461945 1.12254i
\(538\) −20.7419 −0.894246
\(539\) −16.6026 −0.715123
\(540\) −14.7417 11.1508i −0.634381 0.479853i
\(541\) −7.18611 + 12.4467i −0.308955 + 0.535126i −0.978134 0.207975i \(-0.933313\pi\)
0.669179 + 0.743101i \(0.266646\pi\)
\(542\) 5.58812 0.240030
\(543\) −24.3297 31.5564i −1.04409 1.35422i
\(544\) 0.700967 1.21411i 0.0300537 0.0520545i
\(545\) 14.3749 + 24.8981i 0.615753 + 1.06652i
\(546\) 6.27604 0.840960i 0.268590 0.0359898i
\(547\) −7.37541 −0.315350 −0.157675 0.987491i \(-0.550400\pi\)
−0.157675 + 0.987491i \(0.550400\pi\)
\(548\) −2.66715 4.61964i −0.113935 0.197341i
\(549\) −0.168397 0.166853i −0.00718699 0.00712111i
\(550\) 3.49504 0.149029
\(551\) −26.4689 + 13.3145i −1.12761 + 0.567219i
\(552\) 17.7108 2.37316i 0.753821 0.101008i
\(553\) −5.33192 −0.226736
\(554\) −6.52033 −0.277022
\(555\) −14.4765 + 35.1783i −0.614495 + 1.49324i
\(556\) 1.05732 1.83133i 0.0448404 0.0776658i
\(557\) 6.57042 11.3803i 0.278398 0.482199i −0.692589 0.721332i \(-0.743530\pi\)
0.970987 + 0.239134i \(0.0768634\pi\)
\(558\) −4.56132 + 17.3421i −0.193096 + 0.734149i
\(559\) 17.8208 0.753738
\(560\) 1.21980 0.0515458
\(561\) −0.654015 0.848279i −0.0276125 0.0358144i
\(562\) 10.9942 19.0426i 0.463764 0.803263i
\(563\) 2.60620 4.51407i 0.109838 0.190245i −0.805866 0.592097i \(-0.798300\pi\)
0.915705 + 0.401852i \(0.131633\pi\)
\(564\) −10.6668 + 1.42931i −0.449155 + 0.0601847i
\(565\) −16.3802 + 28.3714i −0.689122 + 1.19359i
\(566\) 6.27882 10.8752i 0.263919 0.457121i
\(567\) 5.78470 3.41121i 0.242935 0.143257i
\(568\) −5.75015 9.95956i −0.241271 0.417894i
\(569\) −1.09700 1.90006i −0.0459885 0.0796545i 0.842115 0.539298i \(-0.181310\pi\)
−0.888103 + 0.459644i \(0.847977\pi\)
\(570\) 13.9615 + 6.70856i 0.584782 + 0.280991i
\(571\) −7.89887 + 13.6813i −0.330558 + 0.572543i −0.982621 0.185622i \(-0.940570\pi\)
0.652064 + 0.758164i \(0.273903\pi\)
\(572\) 21.8893 0.915236
\(573\) −22.5604 + 3.02299i −0.942474 + 0.126287i
\(574\) 4.81670 0.201045
\(575\) −3.30816 5.72990i −0.137960 0.238953i
\(576\) −7.16825 7.10254i −0.298677 0.295939i
\(577\) 4.81787 0.200571 0.100285 0.994959i \(-0.468024\pi\)
0.100285 + 0.994959i \(0.468024\pi\)
\(578\) 6.70799 + 11.6186i 0.279015 + 0.483269i
\(579\) 11.1872 27.1853i 0.464926 1.12978i
\(580\) −12.0900 20.9404i −0.502008 0.869503i
\(581\) 1.33191 2.30693i 0.0552568 0.0957077i
\(582\) 3.27955 0.439444i 0.135942 0.0182155i
\(583\) 28.7449 1.19049
\(584\) −4.35548 7.54392i −0.180231 0.312169i
\(585\) 12.2332 46.5106i 0.505782 1.92298i
\(586\) −10.3872 17.9912i −0.429093 0.743211i
\(587\) −16.8994 + 29.2706i −0.697512 + 1.20813i 0.271814 + 0.962350i \(0.412376\pi\)
−0.969326 + 0.245777i \(0.920957\pi\)
\(588\) 5.83096 14.1694i 0.240465 0.584334i
\(589\) −1.89199 + 32.8485i −0.0779579 + 1.35350i
\(590\) −0.353136 + 0.611649i −0.0145384 + 0.0251812i
\(591\) −4.60763 + 11.1966i −0.189533 + 0.460569i
\(592\) 2.67419 4.63183i 0.109909 0.190367i
\(593\) 3.70101 6.41033i 0.151982 0.263241i −0.779974 0.625812i \(-0.784768\pi\)
0.931956 + 0.362571i \(0.118101\pi\)
\(594\) −9.76702 + 4.12489i −0.400746 + 0.169246i
\(595\) 0.231993 0.401823i 0.00951078 0.0164732i
\(596\) −2.82909 4.90013i −0.115884 0.200717i
\(597\) 21.3245 + 27.6585i 0.872752 + 1.13199i
\(598\) 9.46239 + 16.3893i 0.386946 + 0.670210i
\(599\) 5.70023 + 9.87310i 0.232905 + 0.403404i 0.958662 0.284548i \(-0.0918435\pi\)
−0.725757 + 0.687952i \(0.758510\pi\)
\(600\) −3.01558 + 7.32792i −0.123110 + 0.299161i
\(601\) 2.77385 + 4.80445i 0.113148 + 0.195978i 0.917038 0.398800i \(-0.130573\pi\)
−0.803890 + 0.594778i \(0.797240\pi\)
\(602\) 0.850910 1.47382i 0.0346805 0.0600684i
\(603\) −7.04172 + 26.7725i −0.286761 + 1.09026i
\(604\) −13.4445 + 23.2865i −0.547047 + 0.947513i
\(605\) 5.64869 9.78383i 0.229652 0.397769i
\(606\) 13.3386 + 17.3006i 0.541843 + 0.702788i
\(607\) 13.9128 24.0976i 0.564702 0.978092i −0.432376 0.901693i \(-0.642325\pi\)
0.997077 0.0763983i \(-0.0243421\pi\)
\(608\) −21.2824 13.9780i −0.863114 0.566883i
\(609\) 8.70720 1.16672i 0.352834 0.0472781i
\(610\) −0.0810604 + 0.140401i −0.00328204 + 0.00568466i
\(611\) −14.0008 24.2501i −0.566411 0.981052i
\(612\) 0.953654 0.260243i 0.0385492 0.0105197i
\(613\) 9.29567 + 16.1006i 0.375448 + 0.650296i 0.990394 0.138274i \(-0.0441554\pi\)
−0.614946 + 0.788569i \(0.710822\pi\)
\(614\) −6.34081 −0.255894
\(615\) 13.9218 33.8302i 0.561380 1.36417i
\(616\) 2.56769 4.44736i 0.103455 0.179189i
\(617\) −9.84057 17.0444i −0.396167 0.686181i 0.597083 0.802180i \(-0.296326\pi\)
−0.993249 + 0.115999i \(0.962993\pi\)
\(618\) 0.633706 0.0849136i 0.0254914 0.00341573i
\(619\) −8.42230 14.5879i −0.338521 0.586335i 0.645634 0.763647i \(-0.276593\pi\)
−0.984155 + 0.177312i \(0.943260\pi\)
\(620\) −26.8517 −1.07839
\(621\) 16.0072 + 12.1081i 0.642349 + 0.485880i
\(622\) 0.399697 + 0.692296i 0.0160264 + 0.0277585i
\(623\) −7.78344 −0.311837
\(624\) −2.57318 + 6.25289i −0.103010 + 0.250316i
\(625\) −30.6305 −1.22522
\(626\) −5.31119 + 9.19926i −0.212278 + 0.367676i
\(627\) −16.0641 + 10.9728i −0.641540 + 0.438211i
\(628\) 1.66409 + 2.88229i 0.0664045 + 0.115016i
\(629\) −1.01721 1.76185i −0.0405587 0.0702497i
\(630\) −3.26242 3.23252i −0.129978 0.128787i
\(631\) −5.13196 + 8.88881i −0.204300 + 0.353858i −0.949909 0.312525i \(-0.898825\pi\)
0.745609 + 0.666383i \(0.232158\pi\)
\(632\) −9.54270 + 16.5284i −0.379588 + 0.657466i
\(633\) −10.2260 + 24.8493i −0.406445 + 0.987671i
\(634\) 7.98491 13.8303i 0.317121 0.549270i
\(635\) 12.7621 22.1045i 0.506447 0.877192i
\(636\) −10.0954 + 24.5322i −0.400310 + 0.972763i
\(637\) 39.8661 1.57955
\(638\) −13.8695 −0.549098
\(639\) 3.28576 12.4924i 0.129983 0.494193i
\(640\) 11.6842 20.2376i 0.461857 0.799960i
\(641\) −2.39758 + 4.15274i −0.0946988 + 0.164023i −0.909483 0.415741i \(-0.863522\pi\)
0.814784 + 0.579765i \(0.196855\pi\)
\(642\) −0.500543 0.649220i −0.0197549 0.0256227i
\(643\) −16.8023 −0.662618 −0.331309 0.943522i \(-0.607490\pi\)
−0.331309 + 0.943522i \(0.607490\pi\)
\(644\) −3.95715 −0.155933
\(645\) −7.89202 10.2362i −0.310748 0.403050i
\(646\) −0.740032 + 0.372255i −0.0291162 + 0.0146462i
\(647\) −19.6230 −0.771458 −0.385729 0.922612i \(-0.626050\pi\)
−0.385729 + 0.922612i \(0.626050\pi\)
\(648\) −0.221357 24.0371i −0.00869572 0.944268i
\(649\) −0.443518 0.768195i −0.0174096 0.0301543i
\(650\) −8.39230 −0.329173
\(651\) 3.71260 9.02170i 0.145508 0.353588i
\(652\) 4.07045 + 7.05023i 0.159411 + 0.276108i
\(653\) 20.9143 36.2246i 0.818438 1.41758i −0.0883946 0.996086i \(-0.528174\pi\)
0.906833 0.421491i \(-0.138493\pi\)
\(654\) −5.79169 + 14.0739i −0.226473 + 0.550335i
\(655\) 52.2053 2.03983
\(656\) −2.57171 + 4.45433i −0.100408 + 0.173912i
\(657\) 2.48882 9.46245i 0.0970980 0.369165i
\(658\) −2.67405 −0.104245
\(659\) −18.6497 −0.726490 −0.363245 0.931694i \(-0.618331\pi\)
−0.363245 + 0.931694i \(0.618331\pi\)
\(660\) −9.69378 12.5731i −0.377330 0.489409i
\(661\) −13.7354 23.7905i −0.534247 0.925343i −0.999199 0.0400070i \(-0.987262\pi\)
0.464953 0.885336i \(-0.346071\pi\)
\(662\) 15.1800 0.589989
\(663\) 1.57042 + 2.03689i 0.0609902 + 0.0791062i
\(664\) −4.76751 8.25757i −0.185015 0.320456i
\(665\) −7.04364 4.62618i −0.273141 0.179396i
\(666\) −19.4269 + 5.30140i −0.752776 + 0.205425i
\(667\) 13.1279 + 22.7381i 0.508313 + 0.880424i
\(668\) −3.25431 + 5.63663i −0.125913 + 0.218088i
\(669\) −23.6079 30.6202i −0.912734 1.18385i
\(670\) 18.9320 0.731406
\(671\) −0.101807 0.176335i −0.00393022 0.00680735i
\(672\) 4.60965 + 5.97886i 0.177821 + 0.230640i
\(673\) 1.36481 + 2.36393i 0.0526097 + 0.0911227i 0.891131 0.453746i \(-0.149913\pi\)
−0.838521 + 0.544869i \(0.816579\pi\)
\(674\) 1.87675 3.25063i 0.0722898 0.125210i
\(675\) −8.19928 + 3.46279i −0.315591 + 0.133283i
\(676\) −34.7120 −1.33508
\(677\) 2.68210 + 4.64553i 0.103081 + 0.178542i 0.912953 0.408065i \(-0.133796\pi\)
−0.809871 + 0.586608i \(0.800463\pi\)
\(678\) −17.1885 + 2.30318i −0.660121 + 0.0884531i
\(679\) −1.80016 −0.0690838
\(680\) −0.830409 1.43831i −0.0318447 0.0551567i
\(681\) −34.0712 + 4.56538i −1.30561 + 0.174946i
\(682\) −7.70101 + 13.3385i −0.294887 + 0.510759i
\(683\) −29.4476 −1.12678 −0.563390 0.826191i \(-0.690503\pi\)
−0.563390 + 0.826191i \(0.690503\pi\)
\(684\) −3.72280 17.5636i −0.142345 0.671560i
\(685\) −10.0664 −0.384618
\(686\) 3.97157 6.87895i 0.151635 0.262640i
\(687\) −22.8644 29.6559i −0.872333 1.13144i
\(688\) 0.908629 + 1.57379i 0.0346412 + 0.0600002i
\(689\) −69.0223 −2.62954
\(690\) 5.22353 12.6933i 0.198856 0.483225i
\(691\) 18.6988 + 32.3873i 0.711337 + 1.23207i 0.964355 + 0.264611i \(0.0852435\pi\)
−0.253018 + 0.967462i \(0.581423\pi\)
\(692\) −3.95183 −0.150226
\(693\) 5.56465 1.51854i 0.211383 0.0576845i
\(694\) 2.07037 3.58599i 0.0785903 0.136122i
\(695\) −1.99528 3.45593i −0.0756853 0.131091i
\(696\) 11.9668 29.0796i 0.453601 1.10226i
\(697\) 0.978225 + 1.69434i 0.0370529 + 0.0641776i
\(698\) −9.75064 −0.369067
\(699\) 11.7961 1.58062i 0.446169 0.0597845i
\(700\) 0.877410 1.51972i 0.0331630 0.0574400i
\(701\) 12.0381 + 20.8506i 0.454673 + 0.787517i 0.998669 0.0515710i \(-0.0164228\pi\)
−0.543996 + 0.839088i \(0.683090\pi\)
\(702\) 23.4526 9.90469i 0.885161 0.373828i
\(703\) −33.0085 + 16.6041i −1.24494 + 0.626237i
\(704\) −4.33370 7.50618i −0.163332 0.282900i
\(705\) −7.72885 + 18.7813i −0.291086 + 0.707344i
\(706\) −0.409101 −0.0153967
\(707\) −5.94246 10.2926i −0.223489 0.387095i
\(708\) 0.811379 0.108721i 0.0304935 0.00408598i
\(709\) −11.4163 −0.428747 −0.214374 0.976752i \(-0.568771\pi\)
−0.214374 + 0.976752i \(0.568771\pi\)
\(710\) −8.83392 −0.331531
\(711\) −20.6808 + 5.64358i −0.775590 + 0.211651i
\(712\) −13.9303 + 24.1279i −0.522058 + 0.904231i
\(713\) 29.1569 1.09193
\(714\) 0.243441 0.0326199i 0.00911054 0.00122077i
\(715\) 20.6537 35.7733i 0.772405 1.33784i
\(716\) 11.1488 + 19.3102i 0.416649 + 0.721657i
\(717\) 1.68232 + 2.18202i 0.0628274 + 0.0814891i
\(718\) 15.4985 0.578397
\(719\) −4.42810 7.66969i −0.165140 0.286031i 0.771565 0.636151i \(-0.219474\pi\)
−0.936705 + 0.350119i \(0.886141\pi\)
\(720\) 4.73119 1.29110i 0.176321 0.0481163i
\(721\) −0.347845 −0.0129544
\(722\) 5.97693 + 13.8072i 0.222438 + 0.513849i
\(723\) −18.3810 + 44.6663i −0.683597 + 1.66116i
\(724\) 31.5855 1.17387
\(725\) −11.6433 −0.432420
\(726\) 5.92743 0.794248i 0.219988 0.0294773i
\(727\) −13.3462 + 23.1163i −0.494982 + 0.857334i −0.999983 0.00578442i \(-0.998159\pi\)
0.505001 + 0.863119i \(0.331492\pi\)
\(728\) −6.16553 + 10.6790i −0.228510 + 0.395791i
\(729\) 18.8264 19.3538i 0.697272 0.716806i
\(730\) −6.69129 −0.247656
\(731\) 0.691247 0.0255667
\(732\) 0.186248 0.0249563i 0.00688391 0.000922412i
\(733\) −7.37986 + 12.7823i −0.272581 + 0.472125i −0.969522 0.245004i \(-0.921211\pi\)
0.696941 + 0.717129i \(0.254544\pi\)
\(734\) 11.1856 19.3740i 0.412866 0.715106i
\(735\) −17.6549 22.8990i −0.651212 0.844642i
\(736\) −11.2816 + 19.5404i −0.415847 + 0.720267i
\(737\) −11.8887 + 20.5919i −0.437927 + 0.758512i
\(738\) 18.6824 5.09824i 0.687708 0.187669i
\(739\) −8.59207 14.8819i −0.316065 0.547440i 0.663599 0.748089i \(-0.269028\pi\)
−0.979663 + 0.200649i \(0.935695\pi\)
\(740\) −15.0770 26.1141i −0.554241 0.959974i
\(741\) 38.5733 26.3479i 1.41702 0.967914i
\(742\) −3.29570 + 5.70831i −0.120989 + 0.209559i
\(743\) 33.4683 1.22783 0.613917 0.789370i \(-0.289593\pi\)
0.613917 + 0.789370i \(0.289593\pi\)
\(744\) −21.3218 27.6551i −0.781696 1.01388i
\(745\) −10.6776 −0.391197
\(746\) 13.9621 + 24.1831i 0.511190 + 0.885407i
\(747\) 2.72426 10.3576i 0.0996754 0.378964i
\(748\) 0.849060 0.0310447
\(749\) 0.222996 + 0.386241i 0.00814811 + 0.0141129i
\(750\) −7.13218 9.25067i −0.260430 0.337787i
\(751\) 4.86944 + 8.43412i 0.177688 + 0.307765i 0.941088 0.338161i \(-0.109805\pi\)
−0.763400 + 0.645926i \(0.776471\pi\)
\(752\) 1.42772 2.47288i 0.0520635 0.0901767i
\(753\) 9.78931 + 12.6970i 0.356742 + 0.462706i
\(754\) 33.3034 1.21284
\(755\) 25.3712 + 43.9441i 0.923351 + 1.59929i
\(756\) −0.658363 + 5.28244i −0.0239444 + 0.192120i
\(757\) 4.20284 + 7.27954i 0.152755 + 0.264579i 0.932239 0.361842i \(-0.117852\pi\)
−0.779484 + 0.626422i \(0.784519\pi\)
\(758\) 5.17951 8.97117i 0.188128 0.325848i
\(759\) 10.5260 + 13.6525i 0.382069 + 0.495556i
\(760\) −26.9469 + 13.5550i −0.977467 + 0.491691i
\(761\) −9.41541 + 16.3080i −0.341308 + 0.591163i −0.984676 0.174394i \(-0.944203\pi\)
0.643368 + 0.765557i \(0.277537\pi\)
\(762\) 13.3918 1.79444i 0.485134 0.0650057i
\(763\) 4.13991 7.17054i 0.149875 0.259591i
\(764\) 9.02150 15.6257i 0.326386 0.565318i
\(765\) 0.474514 1.80409i 0.0171561 0.0652272i
\(766\) 6.13063 10.6186i 0.221509 0.383664i
\(767\) 1.06498 + 1.84459i 0.0384540 + 0.0666044i
\(768\) 23.8097 3.19039i 0.859158 0.115123i
\(769\) 16.4630 + 28.5148i 0.593671 + 1.02827i 0.993733 + 0.111780i \(0.0356553\pi\)
−0.400062 + 0.916488i \(0.631011\pi\)
\(770\) −1.97236 3.41622i