Properties

Label 171.2.g.c.121.2
Level $171$
Weight $2$
Character 171.121
Analytic conductor $1.365$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,2,Mod(106,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.106");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 171.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.36544187456\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.2
Character \(\chi\) \(=\) 171.121
Dual form 171.2.g.c.106.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.04884 + 1.81665i) q^{2} +(0.154304 - 1.72516i) q^{3} +(-1.20014 - 2.07870i) q^{4} -2.89593 q^{5} +(2.97217 + 2.08974i) q^{6} +(0.116480 + 0.201749i) q^{7} +0.839660 q^{8} +(-2.95238 - 0.532400i) q^{9} +O(q^{10})\) \(q+(-1.04884 + 1.81665i) q^{2} +(0.154304 - 1.72516i) q^{3} +(-1.20014 - 2.07870i) q^{4} -2.89593 q^{5} +(2.97217 + 2.08974i) q^{6} +(0.116480 + 0.201749i) q^{7} +0.839660 q^{8} +(-2.95238 - 0.532400i) q^{9} +(3.03737 - 5.26088i) q^{10} +(-1.99611 - 3.45736i) q^{11} +(-3.77129 + 1.74969i) q^{12} +(-1.91794 - 3.32197i) q^{13} -0.488677 q^{14} +(-0.446854 + 4.99595i) q^{15} +(1.51961 - 2.63204i) q^{16} +(0.0780996 + 0.135272i) q^{17} +(4.06376 - 4.80503i) q^{18} +(-1.94973 + 3.89853i) q^{19} +(3.47552 + 6.01977i) q^{20} +(0.366024 - 0.169816i) q^{21} +8.37441 q^{22} +(0.471109 + 0.815985i) q^{23} +(0.129563 - 1.44855i) q^{24} +3.38640 q^{25} +8.04647 q^{26} +(-1.37404 + 5.01119i) q^{27} +(0.279585 - 0.484255i) q^{28} +3.25702 q^{29} +(-8.60720 - 6.05174i) q^{30} +(2.40142 - 4.15938i) q^{31} +(4.02732 + 6.97552i) q^{32} +(-6.27252 + 2.91013i) q^{33} -0.327657 q^{34} +(-0.337318 - 0.584251i) q^{35} +(2.43657 + 6.77608i) q^{36} -11.1188 q^{37} +(-5.03730 - 7.63092i) q^{38} +(-6.02689 + 2.79617i) q^{39} -2.43160 q^{40} +0.107488 q^{41} +(-0.0754048 + 0.843047i) q^{42} +(-5.47974 + 9.49119i) q^{43} +(-4.79122 + 8.29864i) q^{44} +(8.54988 + 1.54179i) q^{45} -1.97648 q^{46} +6.79177 q^{47} +(-4.30622 - 3.02771i) q^{48} +(3.47286 - 6.01518i) q^{49} +(-3.55179 + 6.15189i) q^{50} +(0.245418 - 0.113861i) q^{51} +(-4.60360 + 7.97366i) q^{52} +(4.03453 - 6.98802i) q^{53} +(-7.66241 - 7.75210i) q^{54} +(5.78059 + 10.0123i) q^{55} +(0.0978037 + 0.169401i) q^{56} +(6.42475 + 3.96517i) q^{57} +(-3.41610 + 5.91685i) q^{58} -11.4867 q^{59} +(10.9214 - 5.06696i) q^{60} +4.98571 q^{61} +(5.03742 + 8.72506i) q^{62} +(-0.236482 - 0.657655i) q^{63} -10.8177 q^{64} +(5.55422 + 9.62019i) q^{65} +(1.29221 - 14.4472i) q^{66} +(-3.56923 - 6.18209i) q^{67} +(0.187461 - 0.324692i) q^{68} +(1.48040 - 0.686831i) q^{69} +1.41517 q^{70} +(-3.33230 - 5.77171i) q^{71} +(-2.47900 - 0.447035i) q^{72} +(5.38628 + 9.32931i) q^{73} +(11.6618 - 20.1989i) q^{74} +(0.522535 - 5.84209i) q^{75} +(10.4438 - 0.625870i) q^{76} +(0.465014 - 0.805427i) q^{77} +(1.24160 - 13.8815i) q^{78} +(8.10827 - 14.0439i) q^{79} +(-4.40068 + 7.62219i) q^{80} +(8.43310 + 3.14369i) q^{81} +(-0.112737 + 0.195267i) q^{82} +(-5.46298 - 9.46217i) q^{83} +(-0.792278 - 0.557052i) q^{84} +(-0.226171 - 0.391739i) q^{85} +(-11.4948 - 19.9095i) q^{86} +(0.502571 - 5.61889i) q^{87} +(-1.67605 - 2.90301i) q^{88} +(1.25911 - 2.18084i) q^{89} +(-11.7684 + 13.9150i) q^{90} +(0.446804 - 0.773887i) q^{91} +(1.13079 - 1.95859i) q^{92} +(-6.80506 - 4.78465i) q^{93} +(-7.12349 + 12.3383i) q^{94} +(5.64628 - 11.2899i) q^{95} +(12.6553 - 5.87143i) q^{96} +(-1.04369 + 1.80773i) q^{97} +(7.28497 + 12.6179i) q^{98} +(4.05257 + 11.2702i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + q^{2} - 2 q^{3} - 17 q^{4} - 6 q^{5} + 2 q^{6} + q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 32 q + q^{2} - 2 q^{3} - 17 q^{4} - 6 q^{5} + 2 q^{6} + q^{7} - 36 q^{8} - 10 q^{9} - 8 q^{10} + 7 q^{11} - 3 q^{12} - 4 q^{13} - 2 q^{14} + q^{15} - 11 q^{16} - 7 q^{17} + 6 q^{18} + 7 q^{19} - 3 q^{20} + 11 q^{21} + 16 q^{22} + 5 q^{23} + 27 q^{24} + 18 q^{25} - 4 q^{26} - 5 q^{27} - 10 q^{28} - 20 q^{29} - 5 q^{30} - 10 q^{31} + 17 q^{32} + 34 q^{33} + 26 q^{34} - 3 q^{35} - 16 q^{36} + 2 q^{37} + 38 q^{38} - 24 q^{40} - 12 q^{41} + 25 q^{42} + 7 q^{43} + 20 q^{44} - 35 q^{45} + 18 q^{47} - 33 q^{48} - 13 q^{49} + q^{50} - 28 q^{51} + 19 q^{52} + 16 q^{53} + 35 q^{54} + 15 q^{55} - 6 q^{56} + 6 q^{57} - 74 q^{59} + 50 q^{60} + 24 q^{61} + 54 q^{62} - 30 q^{63} - 64 q^{64} + 54 q^{65} + 4 q^{66} - 11 q^{67} - 2 q^{68} + 3 q^{69} - 48 q^{70} + 9 q^{71} - 10 q^{73} + 6 q^{74} - 76 q^{75} + 29 q^{76} + 46 q^{77} - 82 q^{78} - 8 q^{79} - 24 q^{80} + 26 q^{81} + 7 q^{82} + 3 q^{83} + 12 q^{84} - 27 q^{85} + 17 q^{86} - 9 q^{87} + 9 q^{88} + 30 q^{89} - 74 q^{90} - q^{91} - 17 q^{92} - 24 q^{93} - 18 q^{94} - 6 q^{95} - 5 q^{96} + 18 q^{98} - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.04884 + 1.81665i −0.741643 + 1.28456i 0.210103 + 0.977679i \(0.432620\pi\)
−0.951747 + 0.306885i \(0.900713\pi\)
\(3\) 0.154304 1.72516i 0.0890875 0.996024i
\(4\) −1.20014 2.07870i −0.600070 1.03935i
\(5\) −2.89593 −1.29510 −0.647549 0.762024i \(-0.724206\pi\)
−0.647549 + 0.762024i \(0.724206\pi\)
\(6\) 2.97217 + 2.08974i 1.21339 + 0.853133i
\(7\) 0.116480 + 0.201749i 0.0440253 + 0.0762541i 0.887198 0.461388i \(-0.152648\pi\)
−0.843173 + 0.537642i \(0.819315\pi\)
\(8\) 0.839660 0.296865
\(9\) −2.95238 0.532400i −0.984127 0.177467i
\(10\) 3.03737 5.26088i 0.960501 1.66364i
\(11\) −1.99611 3.45736i −0.601849 1.04243i −0.992541 0.121912i \(-0.961097\pi\)
0.390691 0.920522i \(-0.372236\pi\)
\(12\) −3.77129 + 1.74969i −1.08868 + 0.505091i
\(13\) −1.91794 3.32197i −0.531941 0.921349i −0.999305 0.0372840i \(-0.988129\pi\)
0.467363 0.884065i \(-0.345204\pi\)
\(14\) −0.488677 −0.130604
\(15\) −0.446854 + 4.99595i −0.115377 + 1.28995i
\(16\) 1.51961 2.63204i 0.379902 0.658010i
\(17\) 0.0780996 + 0.135272i 0.0189419 + 0.0328084i 0.875341 0.483506i \(-0.160637\pi\)
−0.856399 + 0.516314i \(0.827304\pi\)
\(18\) 4.06376 4.80503i 0.957838 1.13256i
\(19\) −1.94973 + 3.89853i −0.447299 + 0.894384i
\(20\) 3.47552 + 6.01977i 0.777149 + 1.34606i
\(21\) 0.366024 0.169816i 0.0798730 0.0370570i
\(22\) 8.37441 1.78543
\(23\) 0.471109 + 0.815985i 0.0982331 + 0.170145i 0.910953 0.412509i \(-0.135348\pi\)
−0.812720 + 0.582654i \(0.802014\pi\)
\(24\) 0.129563 1.44855i 0.0264469 0.295684i
\(25\) 3.38640 0.677279
\(26\) 8.04647 1.57804
\(27\) −1.37404 + 5.01119i −0.264434 + 0.964404i
\(28\) 0.279585 0.484255i 0.0528365 0.0915156i
\(29\) 3.25702 0.604813 0.302406 0.953179i \(-0.402210\pi\)
0.302406 + 0.953179i \(0.402210\pi\)
\(30\) −8.60720 6.05174i −1.57145 1.10489i
\(31\) 2.40142 4.15938i 0.431307 0.747046i −0.565679 0.824626i \(-0.691386\pi\)
0.996986 + 0.0775795i \(0.0247191\pi\)
\(32\) 4.02732 + 6.97552i 0.711936 + 1.23311i
\(33\) −6.27252 + 2.91013i −1.09191 + 0.506589i
\(34\) −0.327657 −0.0561926
\(35\) −0.337318 0.584251i −0.0570171 0.0987565i
\(36\) 2.43657 + 6.77608i 0.406095 + 1.12935i
\(37\) −11.1188 −1.82791 −0.913956 0.405814i \(-0.866988\pi\)
−0.913956 + 0.405814i \(0.866988\pi\)
\(38\) −5.03730 7.63092i −0.817158 1.23790i
\(39\) −6.02689 + 2.79617i −0.965075 + 0.447745i
\(40\) −2.43160 −0.384469
\(41\) 0.107488 0.0167867 0.00839337 0.999965i \(-0.497328\pi\)
0.00839337 + 0.999965i \(0.497328\pi\)
\(42\) −0.0754048 + 0.843047i −0.0116352 + 0.130085i
\(43\) −5.47974 + 9.49119i −0.835653 + 1.44739i 0.0578451 + 0.998326i \(0.481577\pi\)
−0.893498 + 0.449067i \(0.851756\pi\)
\(44\) −4.79122 + 8.29864i −0.722304 + 1.25107i
\(45\) 8.54988 + 1.54179i 1.27454 + 0.229837i
\(46\) −1.97648 −0.291416
\(47\) 6.79177 0.990681 0.495341 0.868699i \(-0.335043\pi\)
0.495341 + 0.868699i \(0.335043\pi\)
\(48\) −4.30622 3.02771i −0.621549 0.437012i
\(49\) 3.47286 6.01518i 0.496124 0.859311i
\(50\) −3.55179 + 6.15189i −0.502300 + 0.870008i
\(51\) 0.245418 0.113861i 0.0343654 0.0159438i
\(52\) −4.60360 + 7.97366i −0.638404 + 1.10575i
\(53\) 4.03453 6.98802i 0.554186 0.959878i −0.443781 0.896135i \(-0.646363\pi\)
0.997966 0.0637424i \(-0.0203036\pi\)
\(54\) −7.66241 7.75210i −1.04272 1.05493i
\(55\) 5.78059 + 10.0123i 0.779454 + 1.35005i
\(56\) 0.0978037 + 0.169401i 0.0130696 + 0.0226371i
\(57\) 6.42475 + 3.96517i 0.850979 + 0.525199i
\(58\) −3.41610 + 5.91685i −0.448555 + 0.776921i
\(59\) −11.4867 −1.49545 −0.747723 0.664011i \(-0.768853\pi\)
−0.747723 + 0.664011i \(0.768853\pi\)
\(60\) 10.9214 5.06696i 1.40994 0.654142i
\(61\) 4.98571 0.638354 0.319177 0.947695i \(-0.396594\pi\)
0.319177 + 0.947695i \(0.396594\pi\)
\(62\) 5.03742 + 8.72506i 0.639752 + 1.10808i
\(63\) −0.236482 0.657655i −0.0297939 0.0828567i
\(64\) −10.8177 −1.35221
\(65\) 5.55422 + 9.62019i 0.688916 + 1.19324i
\(66\) 1.29221 14.4472i 0.159060 1.77833i
\(67\) −3.56923 6.18209i −0.436051 0.755263i 0.561330 0.827592i \(-0.310290\pi\)
−0.997381 + 0.0723295i \(0.976957\pi\)
\(68\) 0.187461 0.324692i 0.0227330 0.0393747i
\(69\) 1.48040 0.686831i 0.178220 0.0826847i
\(70\) 1.41517 0.169145
\(71\) −3.33230 5.77171i −0.395471 0.684976i 0.597690 0.801727i \(-0.296085\pi\)
−0.993161 + 0.116751i \(0.962752\pi\)
\(72\) −2.47900 0.447035i −0.292153 0.0526836i
\(73\) 5.38628 + 9.32931i 0.630416 + 1.09191i 0.987467 + 0.157828i \(0.0504490\pi\)
−0.357051 + 0.934085i \(0.616218\pi\)
\(74\) 11.6618 20.1989i 1.35566 2.34807i
\(75\) 0.522535 5.84209i 0.0603371 0.674586i
\(76\) 10.4438 0.625870i 1.19799 0.0717923i
\(77\) 0.465014 0.805427i 0.0529932 0.0917869i
\(78\) 1.24160 13.8815i 0.140584 1.57177i
\(79\) 8.10827 14.0439i 0.912252 1.58007i 0.101376 0.994848i \(-0.467675\pi\)
0.810876 0.585219i \(-0.198991\pi\)
\(80\) −4.40068 + 7.62219i −0.492011 + 0.852187i
\(81\) 8.43310 + 3.14369i 0.937011 + 0.349299i
\(82\) −0.112737 + 0.195267i −0.0124498 + 0.0215636i
\(83\) −5.46298 9.46217i −0.599640 1.03861i −0.992874 0.119169i \(-0.961977\pi\)
0.393234 0.919439i \(-0.371356\pi\)
\(84\) −0.792278 0.557052i −0.0864446 0.0607793i
\(85\) −0.226171 0.391739i −0.0245317 0.0424901i
\(86\) −11.4948 19.9095i −1.23951 2.14690i
\(87\) 0.502571 5.61889i 0.0538813 0.602408i
\(88\) −1.67605 2.90301i −0.178668 0.309462i
\(89\) 1.25911 2.18084i 0.133465 0.231169i −0.791545 0.611111i \(-0.790723\pi\)
0.925010 + 0.379942i \(0.124056\pi\)
\(90\) −11.7684 + 13.9150i −1.24049 + 1.46677i
\(91\) 0.446804 0.773887i 0.0468378 0.0811254i
\(92\) 1.13079 1.95859i 0.117893 0.204197i
\(93\) −6.80506 4.78465i −0.705652 0.496145i
\(94\) −7.12349 + 12.3383i −0.734732 + 1.27259i
\(95\) 5.64628 11.2899i 0.579296 1.15832i
\(96\) 12.6553 5.87143i 1.29163 0.599251i
\(97\) −1.04369 + 1.80773i −0.105971 + 0.183547i −0.914134 0.405411i \(-0.867128\pi\)
0.808164 + 0.588958i \(0.200462\pi\)
\(98\) 7.28497 + 12.6179i 0.735894 + 1.27460i
\(99\) 4.05257 + 11.2702i 0.407299 + 1.13270i
\(100\) −4.06415 7.03931i −0.406415 0.703931i
\(101\) 14.3465 1.42753 0.713764 0.700387i \(-0.246989\pi\)
0.713764 + 0.700387i \(0.246989\pi\)
\(102\) −0.0505588 + 0.565261i −0.00500606 + 0.0559692i
\(103\) −4.99968 + 8.65971i −0.492633 + 0.853266i −0.999964 0.00848542i \(-0.997299\pi\)
0.507331 + 0.861752i \(0.330632\pi\)
\(104\) −1.61042 2.78933i −0.157915 0.273516i
\(105\) −1.05998 + 0.491776i −0.103443 + 0.0479924i
\(106\) 8.46318 + 14.6587i 0.822016 + 1.42377i
\(107\) −14.9853 −1.44869 −0.724343 0.689440i \(-0.757857\pi\)
−0.724343 + 0.689440i \(0.757857\pi\)
\(108\) 12.0658 3.15790i 1.16103 0.303869i
\(109\) −4.14328 7.17637i −0.396854 0.687371i 0.596482 0.802627i \(-0.296565\pi\)
−0.993336 + 0.115255i \(0.963231\pi\)
\(110\) −24.2517 −2.31231
\(111\) −1.71567 + 19.1817i −0.162844 + 1.82064i
\(112\) 0.708016 0.0669012
\(113\) 2.80310 4.85511i 0.263693 0.456730i −0.703527 0.710668i \(-0.748393\pi\)
0.967220 + 0.253938i \(0.0817260\pi\)
\(114\) −13.9419 + 7.51268i −1.30578 + 0.703627i
\(115\) −1.36430 2.36303i −0.127221 0.220354i
\(116\) −3.90888 6.77037i −0.362930 0.628613i
\(117\) 3.89388 + 10.8288i 0.359989 + 1.00113i
\(118\) 12.0478 20.8674i 1.10909 1.92100i
\(119\) −0.0181941 + 0.0315131i −0.00166785 + 0.00288880i
\(120\) −0.375205 + 4.19490i −0.0342514 + 0.382940i
\(121\) −2.46890 + 4.27626i −0.224446 + 0.388751i
\(122\) −5.22922 + 9.05727i −0.473431 + 0.820007i
\(123\) 0.0165858 0.185434i 0.00149549 0.0167200i
\(124\) −11.5281 −1.03526
\(125\) 4.67288 0.417955
\(126\) 1.44276 + 0.260171i 0.128531 + 0.0231779i
\(127\) 0.496673 0.860264i 0.0440726 0.0763361i −0.843148 0.537682i \(-0.819300\pi\)
0.887220 + 0.461346i \(0.152633\pi\)
\(128\) 3.29137 5.70083i 0.290919 0.503887i
\(129\) 15.5283 + 10.9180i 1.36719 + 0.961275i
\(130\) −23.3020 −2.04372
\(131\) −4.51677 −0.394632 −0.197316 0.980340i \(-0.563223\pi\)
−0.197316 + 0.980340i \(0.563223\pi\)
\(132\) 13.5772 + 9.54615i 1.18174 + 0.830886i
\(133\) −1.01363 + 0.0607441i −0.0878929 + 0.00526718i
\(134\) 14.9742 1.29358
\(135\) 3.97912 14.5120i 0.342469 1.24900i
\(136\) 0.0655771 + 0.113583i 0.00562319 + 0.00973965i
\(137\) −18.9770 −1.62131 −0.810656 0.585522i \(-0.800889\pi\)
−0.810656 + 0.585522i \(0.800889\pi\)
\(138\) −0.304979 + 3.40975i −0.0259615 + 0.290257i
\(139\) −1.15850 2.00658i −0.0982626 0.170196i 0.812703 0.582678i \(-0.197995\pi\)
−0.910966 + 0.412482i \(0.864662\pi\)
\(140\) −0.809657 + 1.40237i −0.0684285 + 0.118522i
\(141\) 1.04800 11.7169i 0.0882574 0.986742i
\(142\) 13.9802 1.17319
\(143\) −7.65684 + 13.2620i −0.640297 + 1.10903i
\(144\) −5.88776 + 6.96174i −0.490647 + 0.580145i
\(145\) −9.43208 −0.783292
\(146\) −22.5974 −1.87018
\(147\) −9.84129 6.91943i −0.811696 0.570705i
\(148\) 13.3441 + 23.1126i 1.09687 + 1.89984i
\(149\) 6.36449 0.521399 0.260699 0.965420i \(-0.416047\pi\)
0.260699 + 0.965420i \(0.416047\pi\)
\(150\) 10.0650 + 7.07669i 0.821800 + 0.577809i
\(151\) −8.60251 14.9000i −0.700062 1.21254i −0.968444 0.249231i \(-0.919822\pi\)
0.268382 0.963313i \(-0.413511\pi\)
\(152\) −1.63711 + 3.27344i −0.132787 + 0.265511i
\(153\) −0.158561 0.440956i −0.0128189 0.0356492i
\(154\) 0.975452 + 1.68953i 0.0786041 + 0.136146i
\(155\) −6.95433 + 12.0453i −0.558585 + 0.967498i
\(156\) 13.0455 + 9.17233i 1.04448 + 0.734374i
\(157\) −13.4943 −1.07696 −0.538480 0.842638i \(-0.681001\pi\)
−0.538480 + 0.842638i \(0.681001\pi\)
\(158\) 17.0086 + 29.4598i 1.35313 + 2.34369i
\(159\) −11.4329 8.03851i −0.906690 0.637495i
\(160\) −11.6628 20.2006i −0.922027 1.59700i
\(161\) −0.109750 + 0.190092i −0.00864949 + 0.0149813i
\(162\) −14.5560 + 12.0227i −1.14363 + 0.944595i
\(163\) 17.6579 1.38308 0.691538 0.722340i \(-0.256934\pi\)
0.691538 + 0.722340i \(0.256934\pi\)
\(164\) −0.129000 0.223435i −0.0100732 0.0174473i
\(165\) 18.1648 8.42752i 1.41413 0.656082i
\(166\) 22.9192 1.77888
\(167\) −4.66683 8.08318i −0.361130 0.625495i 0.627017 0.779005i \(-0.284276\pi\)
−0.988147 + 0.153510i \(0.950942\pi\)
\(168\) 0.307336 0.142588i 0.0237115 0.0110009i
\(169\) −0.856999 + 1.48437i −0.0659230 + 0.114182i
\(170\) 0.948870 0.0727750
\(171\) 7.83193 10.4719i 0.598922 0.800807i
\(172\) 26.3058 2.00580
\(173\) 5.00636 8.67128i 0.380627 0.659265i −0.610525 0.791997i \(-0.709042\pi\)
0.991152 + 0.132732i \(0.0423749\pi\)
\(174\) 9.68042 + 6.80632i 0.733871 + 0.515986i
\(175\) 0.394447 + 0.683203i 0.0298174 + 0.0516453i
\(176\) −12.1332 −0.914576
\(177\) −1.77245 + 19.8165i −0.133226 + 1.48950i
\(178\) 2.64121 + 4.57472i 0.197967 + 0.342890i
\(179\) −1.07944 −0.0806809 −0.0403404 0.999186i \(-0.512844\pi\)
−0.0403404 + 0.999186i \(0.512844\pi\)
\(180\) −7.05612 19.6230i −0.525932 1.46261i
\(181\) 2.63111 4.55721i 0.195569 0.338735i −0.751518 0.659712i \(-0.770678\pi\)
0.947087 + 0.320978i \(0.104011\pi\)
\(182\) 0.937253 + 1.62337i 0.0694738 + 0.120332i
\(183\) 0.769315 8.60116i 0.0568694 0.635816i
\(184\) 0.395572 + 0.685151i 0.0291619 + 0.0505100i
\(185\) 32.1991 2.36732
\(186\) 15.8295 7.34405i 1.16067 0.538492i
\(187\) 0.311791 0.540037i 0.0228004 0.0394914i
\(188\) −8.15107 14.1181i −0.594478 1.02967i
\(189\) −1.17105 + 0.306491i −0.0851815 + 0.0222940i
\(190\) 14.5877 + 22.0986i 1.05830 + 1.60320i
\(191\) −1.40254 2.42927i −0.101484 0.175776i 0.810812 0.585306i \(-0.199026\pi\)
−0.912296 + 0.409531i \(0.865692\pi\)
\(192\) −1.66921 + 18.6622i −0.120465 + 1.34683i
\(193\) −3.75614 −0.270373 −0.135186 0.990820i \(-0.543163\pi\)
−0.135186 + 0.990820i \(0.543163\pi\)
\(194\) −2.18934 3.79204i −0.157185 0.272253i
\(195\) 17.4534 8.09750i 1.24987 0.579874i
\(196\) −16.6717 −1.19084
\(197\) 1.68702 0.120195 0.0600975 0.998193i \(-0.480859\pi\)
0.0600975 + 0.998193i \(0.480859\pi\)
\(198\) −24.7245 4.45854i −1.75709 0.316854i
\(199\) −5.27449 + 9.13569i −0.373899 + 0.647612i −0.990162 0.139929i \(-0.955313\pi\)
0.616263 + 0.787541i \(0.288646\pi\)
\(200\) 2.84342 0.201060
\(201\) −11.2159 + 5.20359i −0.791107 + 0.367033i
\(202\) −15.0472 + 26.0625i −1.05872 + 1.83375i
\(203\) 0.379377 + 0.657101i 0.0266271 + 0.0461194i
\(204\) −0.531220 0.373502i −0.0371929 0.0261504i
\(205\) −0.311276 −0.0217405
\(206\) −10.4878 18.1653i −0.730717 1.26564i
\(207\) −0.956464 2.65992i −0.0664788 0.184877i
\(208\) −11.6581 −0.808342
\(209\) 17.3705 1.04097i 1.20154 0.0720052i
\(210\) 0.218367 2.44140i 0.0150687 0.168473i
\(211\) −1.93875 −0.133469 −0.0667347 0.997771i \(-0.521258\pi\)
−0.0667347 + 0.997771i \(0.521258\pi\)
\(212\) −19.3680 −1.33020
\(213\) −10.4713 + 4.85816i −0.717484 + 0.332876i
\(214\) 15.7172 27.2230i 1.07441 1.86093i
\(215\) 15.8689 27.4858i 1.08225 1.87452i
\(216\) −1.15373 + 4.20770i −0.0785013 + 0.286297i
\(217\) 1.11887 0.0759538
\(218\) 17.3826 1.17730
\(219\) 16.9257 7.85266i 1.14373 0.530634i
\(220\) 13.8750 24.0322i 0.935454 1.62025i
\(221\) 0.299581 0.518889i 0.0201520 0.0349043i
\(222\) −33.0469 23.2353i −2.21796 1.55945i
\(223\) −13.4427 + 23.2834i −0.900188 + 1.55917i −0.0729395 + 0.997336i \(0.523238\pi\)
−0.827249 + 0.561836i \(0.810095\pi\)
\(224\) −0.938204 + 1.62502i −0.0626864 + 0.108576i
\(225\) −9.99793 1.80292i −0.666529 0.120194i
\(226\) 5.88002 + 10.1845i 0.391133 + 0.677462i
\(227\) 14.0953 + 24.4137i 0.935536 + 1.62040i 0.773675 + 0.633583i \(0.218416\pi\)
0.161861 + 0.986814i \(0.448250\pi\)
\(228\) 0.531799 18.1139i 0.0352192 1.19962i
\(229\) 5.73812 9.93871i 0.379185 0.656768i −0.611758 0.791045i \(-0.709538\pi\)
0.990944 + 0.134276i \(0.0428709\pi\)
\(230\) 5.72374 0.377412
\(231\) −1.31774 0.926505i −0.0867010 0.0609596i
\(232\) 2.73479 0.179548
\(233\) 8.82310 + 15.2821i 0.578021 + 1.00116i 0.995706 + 0.0925695i \(0.0295080\pi\)
−0.417686 + 0.908592i \(0.637159\pi\)
\(234\) −23.7562 4.28394i −1.55299 0.280050i
\(235\) −19.6685 −1.28303
\(236\) 13.7857 + 23.8775i 0.897372 + 1.55429i
\(237\) −22.9770 16.1551i −1.49251 1.04939i
\(238\) −0.0381654 0.0661045i −0.00247390 0.00428492i
\(239\) −5.38677 + 9.33017i −0.348441 + 0.603518i −0.985973 0.166906i \(-0.946622\pi\)
0.637531 + 0.770424i \(0.279956\pi\)
\(240\) 12.4705 + 8.76802i 0.804967 + 0.565973i
\(241\) −7.69998 −0.496000 −0.248000 0.968760i \(-0.579773\pi\)
−0.248000 + 0.968760i \(0.579773\pi\)
\(242\) −5.17898 8.97025i −0.332917 0.576629i
\(243\) 6.72465 14.0634i 0.431386 0.902167i
\(244\) −5.98354 10.3638i −0.383057 0.663474i
\(245\) −10.0572 + 17.4195i −0.642529 + 1.11289i
\(246\) 0.319472 + 0.224621i 0.0203688 + 0.0143213i
\(247\) 16.6903 1.00020i 1.06198 0.0636414i
\(248\) 2.01637 3.49246i 0.128040 0.221772i
\(249\) −17.1667 + 7.96449i −1.08790 + 0.504729i
\(250\) −4.90112 + 8.48898i −0.309974 + 0.536890i
\(251\) −6.55110 + 11.3468i −0.413502 + 0.716206i −0.995270 0.0971489i \(-0.969028\pi\)
0.581768 + 0.813355i \(0.302361\pi\)
\(252\) −1.08326 + 1.28085i −0.0682388 + 0.0806862i
\(253\) 1.88077 3.25759i 0.118243 0.204803i
\(254\) 1.04186 + 1.80456i 0.0653724 + 0.113228i
\(255\) −0.710713 + 0.329735i −0.0445066 + 0.0206488i
\(256\) −3.91339 6.77819i −0.244587 0.423637i
\(257\) 7.66519 + 13.2765i 0.478141 + 0.828165i 0.999686 0.0250591i \(-0.00797739\pi\)
−0.521545 + 0.853224i \(0.674644\pi\)
\(258\) −36.1209 + 16.7582i −2.24879 + 1.04332i
\(259\) −1.29511 2.24320i −0.0804744 0.139386i
\(260\) 13.3317 23.0911i 0.826796 1.43205i
\(261\) −9.61595 1.73404i −0.595212 0.107334i
\(262\) 4.73738 8.20538i 0.292676 0.506930i
\(263\) 7.76187 13.4440i 0.478618 0.828990i −0.521082 0.853507i \(-0.674471\pi\)
0.999699 + 0.0245168i \(0.00780472\pi\)
\(264\) −5.26679 + 2.44352i −0.324148 + 0.150388i
\(265\) −11.6837 + 20.2368i −0.717725 + 1.24314i
\(266\) 0.952788 1.90512i 0.0584192 0.116810i
\(267\) −3.56802 2.50868i −0.218360 0.153529i
\(268\) −8.56716 + 14.8388i −0.523322 + 0.906421i
\(269\) 8.94841 + 15.4991i 0.545594 + 0.944996i 0.998569 + 0.0534733i \(0.0170292\pi\)
−0.452975 + 0.891523i \(0.649637\pi\)
\(270\) 22.1898 + 22.4495i 1.35043 + 1.36623i
\(271\) 7.63638 + 13.2266i 0.463877 + 0.803458i 0.999150 0.0412207i \(-0.0131247\pi\)
−0.535273 + 0.844679i \(0.679791\pi\)
\(272\) 0.474723 0.0287843
\(273\) −1.26614 0.890224i −0.0766301 0.0538788i
\(274\) 19.9039 34.4745i 1.20244 2.08268i
\(275\) −6.75961 11.7080i −0.407620 0.706019i
\(276\) −3.20441 2.25302i −0.192883 0.135616i
\(277\) −1.57024 2.71974i −0.0943468 0.163413i 0.814989 0.579476i \(-0.196743\pi\)
−0.909336 + 0.416063i \(0.863410\pi\)
\(278\) 4.86033 0.291503
\(279\) −9.30435 + 11.0015i −0.557037 + 0.658646i
\(280\) −0.283232 0.490573i −0.0169264 0.0293173i
\(281\) −12.8663 −0.767537 −0.383768 0.923429i \(-0.625374\pi\)
−0.383768 + 0.923429i \(0.625374\pi\)
\(282\) 20.1863 + 14.1930i 1.20208 + 0.845183i
\(283\) −25.1972 −1.49782 −0.748909 0.662673i \(-0.769422\pi\)
−0.748909 + 0.662673i \(0.769422\pi\)
\(284\) −7.99845 + 13.8537i −0.474621 + 0.822067i
\(285\) −18.6056 11.4828i −1.10210 0.680184i
\(286\) −16.0616 27.8196i −0.949744 1.64501i
\(287\) 0.0125202 + 0.0216855i 0.000739041 + 0.00128006i
\(288\) −8.17641 22.7385i −0.481800 1.33988i
\(289\) 8.48780 14.7013i 0.499282 0.864782i
\(290\) 9.89277 17.1348i 0.580923 1.00619i
\(291\) 2.95758 + 2.07948i 0.173376 + 0.121901i
\(292\) 12.9286 22.3929i 0.756587 1.31045i
\(293\) 6.70012 11.6049i 0.391425 0.677968i −0.601213 0.799089i \(-0.705316\pi\)
0.992638 + 0.121121i \(0.0386489\pi\)
\(294\) 22.8921 10.6208i 1.33510 0.619416i
\(295\) 33.2648 1.93675
\(296\) −9.33598 −0.542643
\(297\) 20.0682 5.25232i 1.16448 0.304770i
\(298\) −6.67534 + 11.5620i −0.386692 + 0.669770i
\(299\) 1.80712 3.13002i 0.104508 0.181014i
\(300\) −12.7711 + 5.92513i −0.737339 + 0.342087i
\(301\) −2.55312 −0.147159
\(302\) 36.0907 2.07679
\(303\) 2.21372 24.7500i 0.127175 1.42185i
\(304\) 7.29826 + 11.0560i 0.418584 + 0.634106i
\(305\) −14.4382 −0.826731
\(306\) 0.967367 + 0.174444i 0.0553007 + 0.00997232i
\(307\) −0.844211 1.46222i −0.0481817 0.0834531i 0.840929 0.541146i \(-0.182009\pi\)
−0.889110 + 0.457693i \(0.848676\pi\)
\(308\) −2.23233 −0.127199
\(309\) 14.1679 + 9.96150i 0.805986 + 0.566690i
\(310\) −14.5880 25.2671i −0.828542 1.43508i
\(311\) −8.88963 + 15.3973i −0.504085 + 0.873100i 0.495904 + 0.868377i \(0.334837\pi\)
−0.999989 + 0.00472299i \(0.998497\pi\)
\(312\) −5.06054 + 2.34783i −0.286497 + 0.132920i
\(313\) 7.33156 0.414404 0.207202 0.978298i \(-0.433564\pi\)
0.207202 + 0.978298i \(0.433564\pi\)
\(314\) 14.1534 24.5144i 0.798721 1.38343i
\(315\) 0.684835 + 1.90452i 0.0385861 + 0.107308i
\(316\) −38.9242 −2.18966
\(317\) −3.16611 −0.177827 −0.0889133 0.996039i \(-0.528339\pi\)
−0.0889133 + 0.996039i \(0.528339\pi\)
\(318\) 26.5945 12.3385i 1.49134 0.691907i
\(319\) −6.50136 11.2607i −0.364006 0.630477i
\(320\) 31.3271 1.75124
\(321\) −2.31230 + 25.8521i −0.129060 + 1.44292i
\(322\) −0.230220 0.398753i −0.0128297 0.0222216i
\(323\) −0.679637 + 0.0407288i −0.0378160 + 0.00226621i
\(324\) −3.58609 21.3028i −0.199227 1.18349i
\(325\) −6.49491 11.2495i −0.360273 0.624011i
\(326\) −18.5204 + 32.0782i −1.02575 + 1.77665i
\(327\) −13.0197 + 6.04049i −0.719993 + 0.334040i
\(328\) 0.0902530 0.00498339
\(329\) 0.791106 + 1.37023i 0.0436151 + 0.0755435i
\(330\) −3.74214 + 41.8381i −0.205998 + 2.30311i
\(331\) 5.29356 + 9.16871i 0.290960 + 0.503958i 0.974037 0.226389i \(-0.0726919\pi\)
−0.683077 + 0.730347i \(0.739359\pi\)
\(332\) −13.1127 + 22.7118i −0.719652 + 1.24647i
\(333\) 32.8268 + 5.91962i 1.79890 + 0.324393i
\(334\) 19.5791 1.07132
\(335\) 10.3362 + 17.9029i 0.564729 + 0.978140i
\(336\) 0.109250 1.22144i 0.00596007 0.0666352i
\(337\) 24.0581 1.31053 0.655264 0.755400i \(-0.272558\pi\)
0.655264 + 0.755400i \(0.272558\pi\)
\(338\) −1.79771 3.11373i −0.0977827 0.169365i
\(339\) −7.94333 5.58497i −0.431422 0.303334i
\(340\) −0.542873 + 0.940284i −0.0294414 + 0.0509940i
\(341\) −19.1740 −1.03833
\(342\) 10.8093 + 25.2112i 0.584501 + 1.36327i
\(343\) 3.24880 0.175419
\(344\) −4.60112 + 7.96938i −0.248076 + 0.429680i
\(345\) −4.28714 + 1.98901i −0.230812 + 0.107085i
\(346\) 10.5018 + 18.1896i 0.564579 + 0.977879i
\(347\) 10.1967 0.547389 0.273695 0.961817i \(-0.411754\pi\)
0.273695 + 0.961817i \(0.411754\pi\)
\(348\) −12.2832 + 5.69875i −0.658446 + 0.305485i
\(349\) 15.5177 + 26.8775i 0.830644 + 1.43872i 0.897528 + 0.440957i \(0.145361\pi\)
−0.0668845 + 0.997761i \(0.521306\pi\)
\(350\) −1.65485 −0.0884556
\(351\) 19.2824 5.04664i 1.02922 0.269370i
\(352\) 16.0779 27.8478i 0.856957 1.48429i
\(353\) −5.38668 9.33000i −0.286704 0.496586i 0.686317 0.727303i \(-0.259226\pi\)
−0.973021 + 0.230717i \(0.925893\pi\)
\(354\) −34.1406 24.0043i −1.81455 1.27581i
\(355\) 9.65010 + 16.7145i 0.512174 + 0.887111i
\(356\) −6.04443 −0.320354
\(357\) 0.0515578 + 0.0362504i 0.00272873 + 0.00191857i
\(358\) 1.13216 1.96096i 0.0598364 0.103640i
\(359\) 3.13116 + 5.42333i 0.165256 + 0.286232i 0.936746 0.350009i \(-0.113822\pi\)
−0.771490 + 0.636241i \(0.780488\pi\)
\(360\) 7.17899 + 1.29458i 0.378366 + 0.0682304i
\(361\) −11.3971 15.2022i −0.599847 0.800115i
\(362\) 5.51923 + 9.55959i 0.290084 + 0.502441i
\(363\) 6.99629 + 4.91910i 0.367210 + 0.258186i
\(364\) −2.14491 −0.112424
\(365\) −15.5983 27.0170i −0.816451 1.41413i
\(366\) 14.8184 + 10.4188i 0.774570 + 0.544601i
\(367\) −5.08459 −0.265413 −0.132707 0.991155i \(-0.542367\pi\)
−0.132707 + 0.991155i \(0.542367\pi\)
\(368\) 2.86361 0.149276
\(369\) −0.317344 0.0572264i −0.0165203 0.00297909i
\(370\) −33.7718 + 58.4944i −1.75571 + 3.04098i
\(371\) 1.87977 0.0975928
\(372\) −1.77884 + 19.8879i −0.0922286 + 1.03114i
\(373\) 16.7194 28.9589i 0.865698 1.49943i −0.000654553 1.00000i \(-0.500208\pi\)
0.866352 0.499433i \(-0.166458\pi\)
\(374\) 0.654038 + 1.13283i 0.0338195 + 0.0585771i
\(375\) 0.721045 8.06149i 0.0372346 0.416293i
\(376\) 5.70278 0.294098
\(377\) −6.24677 10.8197i −0.321725 0.557244i
\(378\) 0.671462 2.44885i 0.0345363 0.125955i
\(379\) −0.685446 −0.0352090 −0.0176045 0.999845i \(-0.505604\pi\)
−0.0176045 + 0.999845i \(0.505604\pi\)
\(380\) −30.2446 + 1.81248i −1.55152 + 0.0929780i
\(381\) −1.40746 0.989585i −0.0721062 0.0506980i
\(382\) 5.88417 0.301060
\(383\) −30.5373 −1.56038 −0.780191 0.625541i \(-0.784878\pi\)
−0.780191 + 0.625541i \(0.784878\pi\)
\(384\) −9.32699 6.55782i −0.475966 0.334652i
\(385\) −1.34665 + 2.33246i −0.0686314 + 0.118873i
\(386\) 3.93960 6.82359i 0.200520 0.347311i
\(387\) 21.2314 25.1042i 1.07925 1.27612i
\(388\) 5.01031 0.254360
\(389\) −29.3704 −1.48914 −0.744568 0.667547i \(-0.767345\pi\)
−0.744568 + 0.667547i \(0.767345\pi\)
\(390\) −3.59559 + 40.1998i −0.182070 + 2.03559i
\(391\) −0.0735869 + 0.127456i −0.00372145 + 0.00644574i
\(392\) 2.91603 5.05071i 0.147282 0.255099i
\(393\) −0.696956 + 7.79217i −0.0351568 + 0.393063i
\(394\) −1.76942 + 3.06472i −0.0891419 + 0.154398i
\(395\) −23.4810 + 40.6702i −1.18146 + 2.04634i
\(396\) 18.5637 21.9499i 0.932861 1.10302i
\(397\) −7.59749 13.1592i −0.381307 0.660443i 0.609942 0.792446i \(-0.291193\pi\)
−0.991249 + 0.132002i \(0.957859\pi\)
\(398\) −11.0642 19.1638i −0.554599 0.960594i
\(399\) −0.0516139 + 1.75805i −0.00258393 + 0.0880127i
\(400\) 5.14600 8.91313i 0.257300 0.445656i
\(401\) −13.2752 −0.662934 −0.331467 0.943467i \(-0.607544\pi\)
−0.331467 + 0.943467i \(0.607544\pi\)
\(402\) 2.31059 25.8330i 0.115242 1.28843i
\(403\) −18.4231 −0.917721
\(404\) −17.2178 29.8221i −0.856616 1.48370i
\(405\) −24.4216 9.10391i −1.21352 0.452377i
\(406\) −1.59163 −0.0789912
\(407\) 22.1942 + 38.4416i 1.10013 + 1.90548i
\(408\) 0.206068 0.0956050i 0.0102019 0.00473315i
\(409\) 0.641448 + 1.11102i 0.0317175 + 0.0549364i 0.881448 0.472280i \(-0.156569\pi\)
−0.849731 + 0.527217i \(0.823236\pi\)
\(410\) 0.326480 0.565479i 0.0161237 0.0279270i
\(411\) −2.92823 + 32.7384i −0.144439 + 1.61487i
\(412\) 24.0013 1.18246
\(413\) −1.33798 2.31744i −0.0658375 0.114034i
\(414\) 5.83531 + 1.05228i 0.286790 + 0.0517166i
\(415\) 15.8204 + 27.4017i 0.776593 + 1.34510i
\(416\) 15.4483 26.7573i 0.757416 1.31188i
\(417\) −3.64044 + 1.68898i −0.178273 + 0.0827096i
\(418\) −16.3279 + 32.6479i −0.798621 + 1.59686i
\(419\) 10.5202 18.2215i 0.513945 0.890178i −0.485924 0.874001i \(-0.661517\pi\)
0.999869 0.0161776i \(-0.00514971\pi\)
\(420\) 2.29438 + 1.61318i 0.111954 + 0.0787152i
\(421\) 14.0861 24.3978i 0.686514 1.18908i −0.286444 0.958097i \(-0.592473\pi\)
0.972958 0.230980i \(-0.0741933\pi\)
\(422\) 2.03345 3.52203i 0.0989867 0.171450i
\(423\) −20.0519 3.61594i −0.974956 0.175813i
\(424\) 3.38764 5.86756i 0.164518 0.284954i
\(425\) 0.264476 + 0.458086i 0.0128290 + 0.0222204i
\(426\) 2.15721 24.1182i 0.104517 1.16853i
\(427\) 0.580735 + 1.00586i 0.0281037 + 0.0486771i
\(428\) 17.9845 + 31.1500i 0.869312 + 1.50569i
\(429\) 21.6977 + 15.2557i 1.04757 + 0.736552i
\(430\) 33.2880 + 57.6565i 1.60529 + 2.78044i
\(431\) 2.96192 5.13019i 0.142671 0.247113i −0.785831 0.618441i \(-0.787764\pi\)
0.928501 + 0.371329i \(0.121098\pi\)
\(432\) 11.1016 + 11.2316i 0.534128 + 0.540379i
\(433\) 11.4140 19.7696i 0.548522 0.950067i −0.449854 0.893102i \(-0.648524\pi\)
0.998376 0.0569656i \(-0.0181425\pi\)
\(434\) −1.17352 + 2.03259i −0.0563306 + 0.0975675i
\(435\) −1.45541 + 16.2719i −0.0697815 + 0.780177i
\(436\) −9.94503 + 17.2253i −0.476280 + 0.824942i
\(437\) −4.09968 + 0.245683i −0.196114 + 0.0117526i
\(438\) −3.48688 + 38.9843i −0.166609 + 1.86274i
\(439\) 8.99780 15.5847i 0.429442 0.743815i −0.567382 0.823455i \(-0.692044\pi\)
0.996824 + 0.0796399i \(0.0253770\pi\)
\(440\) 4.85373 + 8.40690i 0.231392 + 0.400783i
\(441\) −13.4557 + 15.9101i −0.640748 + 0.757626i
\(442\) 0.628426 + 1.08847i 0.0298912 + 0.0517730i
\(443\) −24.0933 −1.14471 −0.572353 0.820007i \(-0.693969\pi\)
−0.572353 + 0.820007i \(0.693969\pi\)
\(444\) 41.9320 19.4543i 1.99001 0.923261i
\(445\) −3.64629 + 6.31556i −0.172851 + 0.299386i
\(446\) −28.1985 48.8412i −1.33524 2.31270i
\(447\) 0.982066 10.9798i 0.0464501 0.519326i
\(448\) −1.26004 2.18245i −0.0595313 0.103111i
\(449\) 4.61776 0.217926 0.108963 0.994046i \(-0.465247\pi\)
0.108963 + 0.994046i \(0.465247\pi\)
\(450\) 13.7615 16.2717i 0.648724 0.767057i
\(451\) −0.214557 0.371623i −0.0101031 0.0174991i
\(452\) −13.4564 −0.632938
\(453\) −27.0323 + 12.5416i −1.27009 + 0.589256i
\(454\) −59.1349 −2.77534
\(455\) −1.29391 + 2.24112i −0.0606595 + 0.105065i
\(456\) 5.39461 + 3.32939i 0.252626 + 0.155913i
\(457\) −6.98057 12.0907i −0.326537 0.565579i 0.655285 0.755382i \(-0.272549\pi\)
−0.981822 + 0.189803i \(0.939215\pi\)
\(458\) 12.0368 + 20.8483i 0.562441 + 0.974176i
\(459\) −0.785188 + 0.205502i −0.0366494 + 0.00959200i
\(460\) −3.27470 + 5.67194i −0.152684 + 0.264456i
\(461\) 10.5341 18.2456i 0.490621 0.849780i −0.509321 0.860577i \(-0.670103\pi\)
0.999942 + 0.0107964i \(0.00343668\pi\)
\(462\) 3.06524 1.42211i 0.142608 0.0661627i
\(463\) 3.01504 5.22221i 0.140121 0.242696i −0.787421 0.616415i \(-0.788584\pi\)
0.927542 + 0.373719i \(0.121918\pi\)
\(464\) 4.94939 8.57259i 0.229770 0.397973i
\(465\) 19.7070 + 13.8560i 0.913888 + 0.642556i
\(466\) −37.0162 −1.71474
\(467\) −7.89487 −0.365331 −0.182666 0.983175i \(-0.558473\pi\)
−0.182666 + 0.983175i \(0.558473\pi\)
\(468\) 17.8367 21.0903i 0.824504 0.974901i
\(469\) 0.831489 1.44018i 0.0383946 0.0665014i
\(470\) 20.6291 35.7307i 0.951550 1.64813i
\(471\) −2.08222 + 23.2798i −0.0959438 + 1.07268i
\(472\) −9.64496 −0.443945
\(473\) 43.7526 2.01175
\(474\) 53.4474 24.7969i 2.45492 1.13896i
\(475\) −6.60256 + 13.2020i −0.302946 + 0.605748i
\(476\) 0.0873418 0.00400330
\(477\) −15.6319 + 18.4833i −0.715735 + 0.846292i
\(478\) −11.2998 19.5717i −0.516839 0.895191i
\(479\) 3.16355 0.144546 0.0722732 0.997385i \(-0.476975\pi\)
0.0722732 + 0.997385i \(0.476975\pi\)
\(480\) −36.6490 + 17.0032i −1.67279 + 0.776088i
\(481\) 21.3251 + 36.9362i 0.972342 + 1.68415i
\(482\) 8.07607 13.9882i 0.367855 0.637143i
\(483\) 0.311005 + 0.218668i 0.0141512 + 0.00994974i
\(484\) 11.8521 0.538732
\(485\) 3.02246 5.23505i 0.137243 0.237711i
\(486\) 18.4951 + 26.9666i 0.838957 + 1.22323i
\(487\) −0.354706 −0.0160733 −0.00803664 0.999968i \(-0.502558\pi\)
−0.00803664 + 0.999968i \(0.502558\pi\)
\(488\) 4.18630 0.189505
\(489\) 2.72469 30.4628i 0.123215 1.37758i
\(490\) −21.0968 36.5407i −0.953054 1.65074i
\(491\) −22.2645 −1.00478 −0.502391 0.864641i \(-0.667546\pi\)
−0.502391 + 0.864641i \(0.667546\pi\)
\(492\) −0.405367 + 0.188069i −0.0182753 + 0.00847882i
\(493\) 0.254372 + 0.440585i 0.0114563 + 0.0198429i
\(494\) −15.6885 + 31.3694i −0.705857 + 1.41138i
\(495\) −11.7360 32.6376i −0.527492 1.46695i
\(496\) −7.29843 12.6412i −0.327709 0.567609i
\(497\) 0.776293 1.34458i 0.0348215 0.0603126i
\(498\) 3.53653 39.5394i 0.158476 1.77180i
\(499\) 2.08266 0.0932325 0.0466163 0.998913i \(-0.485156\pi\)
0.0466163 + 0.998913i \(0.485156\pi\)
\(500\) −5.60811 9.71353i −0.250802 0.434402i
\(501\) −14.6649 + 6.80377i −0.655180 + 0.303970i
\(502\) −13.7421 23.8021i −0.613341 1.06234i
\(503\) 5.29375 9.16905i 0.236037 0.408828i −0.723537 0.690286i \(-0.757485\pi\)
0.959574 + 0.281458i \(0.0908181\pi\)
\(504\) −0.198565 0.552207i −0.00884477 0.0245972i
\(505\) −41.5463 −1.84879
\(506\) 3.94526 + 6.83340i 0.175388 + 0.303782i
\(507\) 2.42853 + 1.70751i 0.107855 + 0.0758330i
\(508\) −2.38431 −0.105787
\(509\) 16.0721 + 27.8377i 0.712383 + 1.23388i 0.963960 + 0.266046i \(0.0857172\pi\)
−0.251578 + 0.967837i \(0.580949\pi\)
\(510\) 0.146415 1.63696i 0.00648334 0.0724856i
\(511\) −1.25479 + 2.17336i −0.0555085 + 0.0961436i
\(512\) 29.5836 1.30742
\(513\) −16.8573 15.1272i −0.744266 0.667883i
\(514\) −32.1583 −1.41844
\(515\) 14.4787 25.0779i 0.638009 1.10506i
\(516\) 4.05910 45.3819i 0.178692 1.99782i
\(517\) −13.5571 23.4816i −0.596241 1.03272i
\(518\) 5.43347 0.238733
\(519\) −14.1869 9.97481i −0.622734 0.437846i
\(520\) 4.66366 + 8.07769i 0.204515 + 0.354230i
\(521\) −28.1078 −1.23143 −0.615713 0.787971i \(-0.711132\pi\)
−0.615713 + 0.787971i \(0.711132\pi\)
\(522\) 13.2357 15.6501i 0.579313 0.684985i
\(523\) −2.78655 + 4.82644i −0.121847 + 0.211045i −0.920496 0.390752i \(-0.872215\pi\)
0.798649 + 0.601797i \(0.205548\pi\)
\(524\) 5.42076 + 9.38903i 0.236807 + 0.410161i
\(525\) 1.23950 0.575065i 0.0540963 0.0250979i
\(526\) 16.2820 + 28.2012i 0.709927 + 1.22963i
\(527\) 0.750199 0.0326792
\(528\) −1.87221 + 20.9318i −0.0814773 + 0.910939i
\(529\) 11.0561 19.1497i 0.480701 0.832598i
\(530\) −24.5087 42.4504i −1.06459 1.84393i
\(531\) 33.9132 + 6.11554i 1.47171 + 0.265392i
\(532\) 1.34277 + 2.03414i 0.0582164 + 0.0881910i
\(533\) −0.206155 0.357071i −0.00892956 0.0154664i
\(534\) 8.29969 3.85063i 0.359163 0.166633i
\(535\) 43.3964 1.87619
\(536\) −2.99694 5.19086i −0.129448 0.224211i
\(537\) −0.166561 + 1.86220i −0.00718766 + 0.0803601i
\(538\) −37.5419 −1.61854
\(539\) −27.7289 −1.19437
\(540\) −34.9417 + 9.14506i −1.50365 + 0.393541i
\(541\) −8.42025 + 14.5843i −0.362015 + 0.627028i −0.988292 0.152572i \(-0.951244\pi\)
0.626277 + 0.779600i \(0.284578\pi\)
\(542\) −32.0374 −1.37612
\(543\) −7.45594 5.24228i −0.319965 0.224968i
\(544\) −0.629064 + 1.08957i −0.0269709 + 0.0467150i
\(545\) 11.9986 + 20.7822i 0.513965 + 0.890213i
\(546\) 2.94520 1.36642i 0.126043 0.0584775i
\(547\) 35.9314 1.53632 0.768158 0.640260i \(-0.221173\pi\)
0.768158 + 0.640260i \(0.221173\pi\)
\(548\) 22.7750 + 39.4475i 0.972901 + 1.68511i
\(549\) −14.7197 2.65439i −0.628221 0.113287i
\(550\) 28.3591 1.20923
\(551\) −6.35031 + 12.6976i −0.270532 + 0.540935i
\(552\) 1.24304 0.576705i 0.0529071 0.0245462i
\(553\) 3.77781 0.160649
\(554\) 6.58775 0.279887
\(555\) 4.96845 55.5487i 0.210899 2.35791i
\(556\) −2.78072 + 4.81635i −0.117929 + 0.204259i
\(557\) 17.6614 30.5904i 0.748338 1.29616i −0.200281 0.979738i \(-0.564186\pi\)
0.948619 0.316421i \(-0.102481\pi\)
\(558\) −10.2271 28.4416i −0.432950 1.20403i
\(559\) 42.0393 1.77807
\(560\) −2.05036 −0.0866437
\(561\) −0.883542 0.621220i −0.0373032 0.0262279i
\(562\) 13.4947 23.3735i 0.569239 0.985950i
\(563\) 16.3299 28.2843i 0.688225 1.19204i −0.284186 0.958769i \(-0.591723\pi\)
0.972412 0.233272i \(-0.0749432\pi\)
\(564\) −25.6137 + 11.8835i −1.07853 + 0.500384i
\(565\) −8.11757 + 14.0600i −0.341509 + 0.591510i
\(566\) 26.4279 45.7744i 1.11085 1.92404i
\(567\) 0.348050 + 2.06755i 0.0146167 + 0.0868289i
\(568\) −2.79800 4.84628i −0.117401 0.203345i
\(569\) −18.7889 32.5434i −0.787674 1.36429i −0.927389 0.374099i \(-0.877952\pi\)
0.139715 0.990192i \(-0.455381\pi\)
\(570\) 40.3746 21.7562i 1.69111 0.911266i
\(571\) −11.1825 + 19.3686i −0.467973 + 0.810552i −0.999330 0.0365954i \(-0.988349\pi\)
0.531358 + 0.847148i \(0.321682\pi\)
\(572\) 36.7571 1.53689
\(573\) −4.40731 + 2.04476i −0.184118 + 0.0854213i
\(574\) −0.0525267 −0.00219242
\(575\) 1.59536 + 2.76325i 0.0665312 + 0.115235i
\(576\) 31.9378 + 5.75932i 1.33074 + 0.239972i
\(577\) 9.05688 0.377043 0.188521 0.982069i \(-0.439631\pi\)
0.188521 + 0.982069i \(0.439631\pi\)
\(578\) 17.8047 + 30.8387i 0.740579 + 1.28272i
\(579\) −0.579588 + 6.47996i −0.0240869 + 0.269298i
\(580\) 11.3198 + 19.6065i 0.470030 + 0.814116i
\(581\) 1.27266 2.20431i 0.0527987 0.0914500i
\(582\) −6.87972 + 3.19184i −0.285173 + 0.132306i
\(583\) −32.2135 −1.33415
\(584\) 4.52264 + 7.83345i 0.187148 + 0.324150i
\(585\) −11.2764 31.3595i −0.466221 1.29656i
\(586\) 14.0547 + 24.3435i 0.580596 + 1.00562i
\(587\) 2.65899 4.60550i 0.109748 0.190089i −0.805920 0.592024i \(-0.798329\pi\)
0.915668 + 0.401935i \(0.131662\pi\)
\(588\) −2.57251 + 28.7614i −0.106089 + 1.18610i
\(589\) 11.5333 + 17.4717i 0.475223 + 0.719908i
\(590\) −34.8895 + 60.4304i −1.43638 + 2.48788i
\(591\) 0.260314 2.91038i 0.0107079 0.119717i
\(592\) −16.8962 + 29.2650i −0.694428 + 1.20278i
\(593\) 11.4291 19.7957i 0.469336 0.812914i −0.530050 0.847967i \(-0.677827\pi\)
0.999385 + 0.0350531i \(0.0111600\pi\)
\(594\) −11.5068 + 41.9658i −0.472129 + 1.72188i
\(595\) 0.0526887 0.0912596i 0.00216003 0.00374128i
\(596\) −7.63827 13.2299i −0.312876 0.541917i
\(597\) 14.9467 + 10.5090i 0.611727 + 0.430106i
\(598\) 3.79077 + 6.56580i 0.155016 + 0.268496i
\(599\) 8.54681 + 14.8035i 0.349213 + 0.604855i 0.986110 0.166094i \(-0.0531155\pi\)
−0.636897 + 0.770949i \(0.719782\pi\)
\(600\) 0.438752 4.90537i 0.0179120 0.200261i
\(601\) −8.89147 15.4005i −0.362691 0.628199i 0.625712 0.780054i \(-0.284808\pi\)
−0.988403 + 0.151856i \(0.951475\pi\)
\(602\) 2.67782 4.63812i 0.109140 0.189036i
\(603\) 7.24639 + 20.1522i 0.295096 + 0.820659i
\(604\) −20.6484 + 35.7641i −0.840173 + 1.45522i
\(605\) 7.14976 12.3837i 0.290679 0.503471i
\(606\) 42.6402 + 29.9804i 1.73214 + 1.21787i
\(607\) −15.1824 + 26.2967i −0.616235 + 1.06735i 0.373931 + 0.927456i \(0.378010\pi\)
−0.990166 + 0.139894i \(0.955324\pi\)
\(608\) −35.0465 + 2.10024i −1.42132 + 0.0851759i
\(609\) 1.19215 0.553095i 0.0483082 0.0224125i
\(610\) 15.1434 26.2292i 0.613140 1.06199i
\(611\) −13.0262 22.5621i −0.526984 0.912764i
\(612\) −0.726322 + 0.858809i −0.0293598 + 0.0347153i
\(613\) −5.65795 9.79986i −0.228522 0.395812i 0.728848 0.684676i \(-0.240056\pi\)
−0.957370 + 0.288863i \(0.906723\pi\)
\(614\) 3.54178 0.142934
\(615\) −0.0480312 + 0.537002i −0.00193680 + 0.0216540i
\(616\) 0.390453 0.676285i 0.0157318 0.0272483i
\(617\) 20.4204 + 35.3692i 0.822094 + 1.42391i 0.904120 + 0.427279i \(0.140528\pi\)
−0.0820253 + 0.996630i \(0.526139\pi\)
\(618\) −32.9565 + 15.2901i −1.32570 + 0.615059i
\(619\) 15.9954 + 27.7048i 0.642908 + 1.11355i 0.984781 + 0.173802i \(0.0556054\pi\)
−0.341873 + 0.939746i \(0.611061\pi\)
\(620\) 33.3847 1.34076
\(621\) −4.73638 + 1.23962i −0.190064 + 0.0497442i
\(622\) −18.6476 32.2987i −0.747702 1.29506i
\(623\) 0.586645 0.0235034
\(624\) −1.79889 + 20.1121i −0.0720132 + 0.805128i
\(625\) −30.4643 −1.21857
\(626\) −7.68965 + 13.3189i −0.307340 + 0.532329i
\(627\) 0.884504 30.1276i 0.0353237 1.20318i
\(628\) 16.1950 + 28.0506i 0.646252 + 1.11934i
\(629\) −0.868370 1.50406i −0.0346242 0.0599708i
\(630\) −4.17813 0.753437i −0.166461 0.0300177i
\(631\) −11.2738 + 19.5268i −0.448802 + 0.777348i −0.998308 0.0581416i \(-0.981483\pi\)
0.549506 + 0.835490i \(0.314816\pi\)
\(632\) 6.80819 11.7921i 0.270815 0.469066i
\(633\) −0.299158 + 3.34467i −0.0118905 + 0.132939i
\(634\) 3.32075 5.75171i 0.131884 0.228430i
\(635\) −1.43833 + 2.49126i −0.0570784 + 0.0988627i
\(636\) −2.98856 + 33.4130i −0.118504 + 1.32491i
\(637\) −26.6430 −1.05563
\(638\) 27.2756 1.07985
\(639\) 6.76536 + 18.8144i 0.267633 + 0.744286i
\(640\) −9.53158 + 16.5092i −0.376769 + 0.652583i
\(641\) −20.0042 + 34.6483i −0.790118 + 1.36852i 0.135775 + 0.990740i \(0.456648\pi\)
−0.925893 + 0.377785i \(0.876686\pi\)
\(642\) −44.5390 31.3154i −1.75781 1.23592i
\(643\) 33.1069 1.30561 0.652805 0.757526i \(-0.273592\pi\)
0.652805 + 0.757526i \(0.273592\pi\)
\(644\) 0.526860 0.0207612
\(645\) −44.9689 31.6177i −1.77065 1.24495i
\(646\) 0.638842 1.27738i 0.0251349 0.0502578i
\(647\) −25.5295 −1.00367 −0.501834 0.864964i \(-0.667341\pi\)
−0.501834 + 0.864964i \(0.667341\pi\)
\(648\) 7.08094 + 2.63963i 0.278166 + 0.103695i
\(649\) 22.9288 + 39.7138i 0.900033 + 1.55890i
\(650\) 27.2485 1.06878
\(651\) 0.172646 1.93023i 0.00676653 0.0756517i
\(652\) −21.1920 36.7056i −0.829942 1.43750i
\(653\) 6.52259 11.2975i 0.255249 0.442104i −0.709714 0.704490i \(-0.751176\pi\)
0.964963 + 0.262386i \(0.0845093\pi\)
\(654\) 2.68220 29.9878i 0.104882 1.17262i
\(655\) 13.0802 0.511087
\(656\) 0.163339 0.282911i 0.00637732 0.0110458i
\(657\) −10.9354 30.4113i −0.426631 1.18646i
\(658\) −3.31898 −0.129387
\(659\) −5.87528 −0.228869 −0.114434 0.993431i \(-0.536506\pi\)
−0.114434 + 0.993431i \(0.536506\pi\)
\(660\) −39.3186 27.6450i −1.53047 1.07608i
\(661\) 4.54553 + 7.87309i 0.176801 + 0.306228i 0.940783 0.339010i \(-0.110092\pi\)
−0.763982 + 0.645237i \(0.776759\pi\)
\(662\) −22.2084 −0.863155
\(663\) −0.848942 0.596893i −0.0329702 0.0231814i
\(664\) −4.58705 7.94501i −0.178012 0.308326i
\(665\) 2.93540 0.175910i 0.113830 0.00682152i
\(666\) −45.1840 + 53.4260i −1.75084 + 2.07021i
\(667\) 1.53441 + 2.65768i 0.0594126 + 0.102906i
\(668\) −11.2017 + 19.4019i −0.433406 + 0.750682i
\(669\) 38.0934 + 26.7835i 1.47278 + 1.03551i
\(670\) −43.3643 −1.67531
\(671\) −9.95201 17.2374i −0.384193 0.665442i
\(672\) 2.65865 + 1.86930i 0.102560 + 0.0721099i
\(673\) −14.8147 25.6597i −0.571063 0.989110i −0.996457 0.0841018i \(-0.973198\pi\)
0.425394 0.905008i \(-0.360135\pi\)
\(674\) −25.2331 + 43.7051i −0.971944 + 1.68346i
\(675\) −4.65305 + 16.9699i −0.179096 + 0.653170i
\(676\) 4.11407 0.158234
\(677\) −12.3841 21.4499i −0.475961 0.824388i 0.523660 0.851927i \(-0.324566\pi\)
−0.999621 + 0.0275394i \(0.991233\pi\)
\(678\) 18.4772 8.57248i 0.709613 0.329224i
\(679\) −0.486277 −0.0186616
\(680\) −0.189907 0.328928i −0.00728258 0.0126138i
\(681\) 44.2926 20.5495i 1.69730 0.787459i
\(682\) 20.1105 34.8323i 0.770069 1.33380i
\(683\) 34.2166 1.30926 0.654631 0.755949i \(-0.272824\pi\)
0.654631 + 0.755949i \(0.272824\pi\)
\(684\) −31.1674 3.71249i −1.19172 0.141951i
\(685\) 54.9559 2.09976
\(686\) −3.40748 + 5.90192i −0.130098 + 0.225336i
\(687\) −16.2605 11.4328i −0.620376 0.436188i
\(688\) 16.6541 + 28.8458i 0.634933 + 1.09974i
\(689\) −30.9520 −1.17918
\(690\) 0.883196 9.87438i 0.0336227 0.375911i
\(691\) −9.86385 17.0847i −0.375239 0.649932i 0.615124 0.788430i \(-0.289106\pi\)
−0.990363 + 0.138498i \(0.955773\pi\)
\(692\) −24.0333 −0.913611
\(693\) −1.80171 + 2.13035i −0.0684412 + 0.0809255i
\(694\) −10.6948 + 18.5239i −0.405968 + 0.703157i
\(695\) 3.35493 + 5.81091i 0.127260 + 0.220420i
\(696\) 0.421989 4.71796i 0.0159955 0.178834i
\(697\) 0.00839473 + 0.0145401i 0.000317973 + 0.000550746i
\(698\) −65.1025 −2.46417
\(699\) 27.7255 12.8632i 1.04867 0.486531i
\(700\) 0.946784 1.63988i 0.0357851 0.0619816i
\(701\) 17.7815 + 30.7985i 0.671598 + 1.16324i 0.977451 + 0.211163i \(0.0677252\pi\)
−0.305852 + 0.952079i \(0.598941\pi\)
\(702\) −11.0562 + 40.3224i −0.417289 + 1.52187i
\(703\) 21.6786 43.3468i 0.817623 1.63486i
\(704\) 21.5932 + 37.4005i 0.813825 + 1.40959i
\(705\) −3.03493 + 33.9313i −0.114302 + 1.27793i
\(706\) 22.5991 0.850529
\(707\) 1.67108 + 2.89439i 0.0628473 + 0.108855i
\(708\) 43.3198 20.0982i 1.62806 0.755336i
\(709\) 29.4001 1.10414 0.552071 0.833797i \(-0.313838\pi\)
0.552071 + 0.833797i \(0.313838\pi\)
\(710\) −40.4857 −1.51940
\(711\) −31.4157 + 37.1462i −1.17818 + 1.39309i
\(712\) 1.05722 1.83117i 0.0396212 0.0686259i
\(713\) 4.52532 0.169475
\(714\) −0.119930 + 0.0556414i −0.00448827 + 0.00208233i
\(715\) 22.1737 38.4059i 0.829248 1.43630i
\(716\) 1.29547 + 2.24383i 0.0484142 + 0.0838558i
\(717\) 15.2649 + 10.7328i 0.570077 + 0.400822i
\(718\) −13.1364 −0.490245
\(719\) 2.60428 + 4.51075i 0.0971234 + 0.168223i 0.910493 0.413525i \(-0.135703\pi\)
−0.813369 + 0.581747i \(0.802369\pi\)
\(720\) 17.0505 20.1607i 0.635436 0.751345i
\(721\) −2.32945 −0.0867534
\(722\) 39.5708 4.75983i 1.47267 0.177142i
\(723\) −1.18814 + 13.2837i −0.0441874 + 0.494027i
\(724\) −12.6308 −0.469419
\(725\) 11.0295 0.409627
\(726\) −16.2743 + 7.55043i −0.603995 + 0.280223i
\(727\) 5.77766 10.0072i 0.214282 0.371147i −0.738768 0.673959i \(-0.764592\pi\)
0.953050 + 0.302813i \(0.0979256\pi\)
\(728\) 0.375163 0.649802i 0.0139045 0.0240833i
\(729\) −23.2240 13.7712i −0.860149 0.510043i
\(730\) 65.4405 2.42206
\(731\) −1.71186 −0.0633155
\(732\) −18.8025 + 8.72342i −0.694962 + 0.322427i
\(733\) −0.617068 + 1.06879i −0.0227919 + 0.0394768i −0.877196 0.480132i \(-0.840589\pi\)
0.854404 + 0.519609i \(0.173922\pi\)
\(734\) 5.33293 9.23690i 0.196842 0.340940i
\(735\) 28.4997 + 20.0382i 1.05123 + 0.739119i
\(736\) −3.79462 + 6.57247i −0.139871 + 0.242264i
\(737\) −14.2492 + 24.6803i −0.524874 + 0.909109i
\(738\) 0.436804 0.516481i 0.0160790 0.0190119i
\(739\) −7.03784 12.1899i −0.258891 0.448413i 0.707054 0.707160i \(-0.250024\pi\)
−0.965945 + 0.258747i \(0.916690\pi\)
\(740\) −38.6434 66.9324i −1.42056 2.46048i
\(741\) 0.849866 28.9478i 0.0312206 1.06342i
\(742\) −1.97158 + 3.41488i −0.0723790 + 0.125364i
\(743\) −8.81018 −0.323214 −0.161607 0.986855i \(-0.551668\pi\)
−0.161607 + 0.986855i \(0.551668\pi\)
\(744\) −5.71394 4.01748i −0.209483 0.147288i
\(745\) −18.4311 −0.675263
\(746\) 35.0720 + 60.7465i 1.28408 + 2.22409i
\(747\) 11.0912 + 30.8444i 0.405804 + 1.12854i
\(748\) −1.49677 −0.0547273
\(749\) −1.74549 3.02328i −0.0637788 0.110468i
\(750\) 13.8886 + 9.76511i 0.507141 + 0.356571i
\(751\) −20.7240 35.8950i −0.756229 1.30983i −0.944761 0.327760i \(-0.893706\pi\)
0.188532 0.982067i \(-0.439627\pi\)
\(752\) 10.3208 17.8762i 0.376362 0.651878i
\(753\) 18.5643 + 13.0526i 0.676520 + 0.475662i
\(754\) 26.2075 0.954421
\(755\) 24.9122 + 43.1493i 0.906649 + 1.57036i
\(756\) 2.04253 + 2.06644i 0.0742861 + 0.0751556i
\(757\) −24.6418 42.6808i −0.895621 1.55126i −0.833035 0.553221i \(-0.813399\pi\)
−0.0625859 0.998040i \(-0.519935\pi\)
\(758\) 0.718924 1.24521i 0.0261125 0.0452282i
\(759\) −5.32967 3.74730i −0.193455 0.136018i
\(760\) 4.74096 9.47965i 0.171973 0.343863i
\(761\) 11.0780 19.1877i 0.401578 0.695553i −0.592339 0.805689i \(-0.701795\pi\)
0.993917 + 0.110136i \(0.0351287\pi\)
\(762\) 3.27393 1.51893i 0.118602 0.0550252i
\(763\) 0.965218 1.67181i 0.0349432 0.0605235i
\(764\) −3.36649 + 5.83093i −0.121795 + 0.210956i
\(765\) 0.459180 + 1.27698i 0.0166017 + 0.0461692i
\(766\) 32.0288 55.4755i 1.15725 2.00441i
\(767\) 22.0309 + 38.1586i 0.795489 + 1.37783i
\(768\) −12.2973 + 5.70534i −0.443742 + 0.205874i
\(769\) 7.41862 + 12.8494i 0.267522 + 0.463362i 0.968221 0.250095i \(-0.0804618\pi\)
−0.700699 + 0.713457i \(0.747128\pi\)
\(770\) −2.82484 4.89276i −0.101800