Properties

Label 171.2.g.c.106.4
Level $171$
Weight $2$
Character 171.106
Analytic conductor $1.365$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 171.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.36544187456\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 106.4
Character \(\chi\) \(=\) 171.106
Dual form 171.2.g.c.121.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.888985 - 1.53977i) q^{2} +(1.15573 - 1.29008i) q^{3} +(-0.580589 + 1.00561i) q^{4} -1.27957 q^{5} +(-3.01384 - 0.632688i) q^{6} +(0.657761 - 1.13928i) q^{7} -1.49140 q^{8} +(-0.328599 - 2.98195i) q^{9} +O(q^{10})\) \(q+(-0.888985 - 1.53977i) q^{2} +(1.15573 - 1.29008i) q^{3} +(-0.580589 + 1.00561i) q^{4} -1.27957 q^{5} +(-3.01384 - 0.632688i) q^{6} +(0.657761 - 1.13928i) q^{7} -1.49140 q^{8} +(-0.328599 - 2.98195i) q^{9} +(1.13752 + 1.97024i) q^{10} +(-0.130095 + 0.225331i) q^{11} +(0.626313 + 1.91121i) q^{12} +(0.933961 - 1.61767i) q^{13} -2.33896 q^{14} +(-1.47883 + 1.65075i) q^{15} +(2.48701 + 4.30763i) q^{16} +(-0.0508308 + 0.0880415i) q^{17} +(-4.29939 + 3.15688i) q^{18} +(3.11089 + 3.05326i) q^{19} +(0.742905 - 1.28675i) q^{20} +(-0.709563 - 2.16525i) q^{21} +0.462610 q^{22} +(0.611950 - 1.05993i) q^{23} +(-1.72365 + 1.92402i) q^{24} -3.36270 q^{25} -3.32111 q^{26} +(-4.22672 - 3.02240i) q^{27} +(0.763778 + 1.32290i) q^{28} +6.52642 q^{29} +(3.85642 + 0.809570i) q^{30} +(-0.617667 - 1.06983i) q^{31} +(2.93043 - 5.07566i) q^{32} +(0.140340 + 0.428253i) q^{33} +0.180751 q^{34} +(-0.841652 + 1.45778i) q^{35} +(3.18946 + 1.40084i) q^{36} +8.59418 q^{37} +(1.93577 - 7.50434i) q^{38} +(-1.00751 - 3.07446i) q^{39} +1.90835 q^{40} +8.21490 q^{41} +(-2.70319 + 3.01744i) q^{42} +(-1.53770 - 2.66338i) q^{43} +(-0.151063 - 0.261649i) q^{44} +(0.420466 + 3.81562i) q^{45} -2.17606 q^{46} +1.58093 q^{47} +(8.43148 + 1.77000i) q^{48} +(2.63470 + 4.56344i) q^{49} +(2.98939 + 5.17777i) q^{50} +(0.0548339 + 0.167327i) q^{51} +(1.08449 + 1.87840i) q^{52} +(-2.59998 - 4.50330i) q^{53} +(-0.896298 + 9.19502i) q^{54} +(0.166466 - 0.288327i) q^{55} +(-0.980985 + 1.69912i) q^{56} +(7.53427 - 0.484562i) q^{57} +(-5.80189 - 10.0492i) q^{58} +8.02123 q^{59} +(-0.801412 - 2.44553i) q^{60} -14.1310 q^{61} +(-1.09819 + 1.90213i) q^{62} +(-3.61340 - 1.58705i) q^{63} -0.472395 q^{64} +(-1.19507 + 2.06992i) q^{65} +(0.534649 - 0.596802i) q^{66} +(0.390956 - 0.677156i) q^{67} +(-0.0590236 - 0.102232i) q^{68} +(-0.660144 - 2.01445i) q^{69} +2.99287 q^{70} +(-8.19574 + 14.1954i) q^{71} +(0.490073 + 4.44728i) q^{72} +(-0.397074 + 0.687753i) q^{73} +(-7.64010 - 13.2330i) q^{74} +(-3.88635 + 4.33814i) q^{75} +(-4.87653 + 1.35565i) q^{76} +(0.171143 + 0.296428i) q^{77} +(-3.83829 + 4.28449i) q^{78} +(-5.82382 - 10.0871i) q^{79} +(-3.18231 - 5.51192i) q^{80} +(-8.78405 + 1.95973i) q^{81} +(-7.30292 - 12.6490i) q^{82} +(-3.03265 + 5.25271i) q^{83} +(2.58936 + 0.543579i) q^{84} +(0.0650416 - 0.112655i) q^{85} +(-2.73399 + 4.73542i) q^{86} +(7.54275 - 8.41959i) q^{87} +(0.194023 - 0.336058i) q^{88} +(5.75551 + 9.96883i) q^{89} +(5.50137 - 4.03945i) q^{90} +(-1.22865 - 2.12808i) q^{91} +(0.710583 + 1.23077i) q^{92} +(-2.09402 - 0.439592i) q^{93} +(-1.40542 - 2.43426i) q^{94} +(-3.98060 - 3.90686i) q^{95} +(-3.16122 - 9.64654i) q^{96} +(5.83968 + 10.1146i) q^{97} +(4.68442 - 8.11365i) q^{98} +(0.714674 + 0.313893i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + q^{2} - 2 q^{3} - 17 q^{4} - 6 q^{5} + 2 q^{6} + q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 32 q + q^{2} - 2 q^{3} - 17 q^{4} - 6 q^{5} + 2 q^{6} + q^{7} - 36 q^{8} - 10 q^{9} - 8 q^{10} + 7 q^{11} - 3 q^{12} - 4 q^{13} - 2 q^{14} + q^{15} - 11 q^{16} - 7 q^{17} + 6 q^{18} + 7 q^{19} - 3 q^{20} + 11 q^{21} + 16 q^{22} + 5 q^{23} + 27 q^{24} + 18 q^{25} - 4 q^{26} - 5 q^{27} - 10 q^{28} - 20 q^{29} - 5 q^{30} - 10 q^{31} + 17 q^{32} + 34 q^{33} + 26 q^{34} - 3 q^{35} - 16 q^{36} + 2 q^{37} + 38 q^{38} - 24 q^{40} - 12 q^{41} + 25 q^{42} + 7 q^{43} + 20 q^{44} - 35 q^{45} + 18 q^{47} - 33 q^{48} - 13 q^{49} + q^{50} - 28 q^{51} + 19 q^{52} + 16 q^{53} + 35 q^{54} + 15 q^{55} - 6 q^{56} + 6 q^{57} - 74 q^{59} + 50 q^{60} + 24 q^{61} + 54 q^{62} - 30 q^{63} - 64 q^{64} + 54 q^{65} + 4 q^{66} - 11 q^{67} - 2 q^{68} + 3 q^{69} - 48 q^{70} + 9 q^{71} - 10 q^{73} + 6 q^{74} - 76 q^{75} + 29 q^{76} + 46 q^{77} - 82 q^{78} - 8 q^{79} - 24 q^{80} + 26 q^{81} + 7 q^{82} + 3 q^{83} + 12 q^{84} - 27 q^{85} + 17 q^{86} - 9 q^{87} + 9 q^{88} + 30 q^{89} - 74 q^{90} - q^{91} - 17 q^{92} - 24 q^{93} - 18 q^{94} - 6 q^{95} - 5 q^{96} + 18 q^{98} - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.888985 1.53977i −0.628607 1.08878i −0.987831 0.155529i \(-0.950292\pi\)
0.359224 0.933251i \(-0.383041\pi\)
\(3\) 1.15573 1.29008i 0.667258 0.744827i
\(4\) −0.580589 + 1.00561i −0.290295 + 0.502805i
\(5\) −1.27957 −0.572242 −0.286121 0.958194i \(-0.592366\pi\)
−0.286121 + 0.958194i \(0.592366\pi\)
\(6\) −3.01384 0.632688i −1.23040 0.258294i
\(7\) 0.657761 1.13928i 0.248610 0.430606i −0.714530 0.699605i \(-0.753359\pi\)
0.963140 + 0.268999i \(0.0866928\pi\)
\(8\) −1.49140 −0.527290
\(9\) −0.328599 2.98195i −0.109533 0.993983i
\(10\) 1.13752 + 1.97024i 0.359715 + 0.623045i
\(11\) −0.130095 + 0.225331i −0.0392251 + 0.0679398i −0.884971 0.465645i \(-0.845822\pi\)
0.845746 + 0.533585i \(0.179156\pi\)
\(12\) 0.626313 + 1.91121i 0.180801 + 0.551720i
\(13\) 0.933961 1.61767i 0.259034 0.448660i −0.706949 0.707264i \(-0.749929\pi\)
0.965983 + 0.258604i \(0.0832625\pi\)
\(14\) −2.33896 −0.625113
\(15\) −1.47883 + 1.65075i −0.381833 + 0.426221i
\(16\) 2.48701 + 4.30763i 0.621753 + 1.07691i
\(17\) −0.0508308 + 0.0880415i −0.0123283 + 0.0213532i −0.872124 0.489285i \(-0.837258\pi\)
0.859795 + 0.510639i \(0.170591\pi\)
\(18\) −4.29939 + 3.15688i −1.01338 + 0.744083i
\(19\) 3.11089 + 3.05326i 0.713687 + 0.700465i
\(20\) 0.742905 1.28675i 0.166119 0.287726i
\(21\) −0.709563 2.16525i −0.154839 0.472497i
\(22\) 0.462610 0.0986287
\(23\) 0.611950 1.05993i 0.127600 0.221010i −0.795146 0.606418i \(-0.792606\pi\)
0.922746 + 0.385408i \(0.125939\pi\)
\(24\) −1.72365 + 1.92402i −0.351838 + 0.392739i
\(25\) −3.36270 −0.672540
\(26\) −3.32111 −0.651323
\(27\) −4.22672 3.02240i −0.813432 0.581660i
\(28\) 0.763778 + 1.32290i 0.144340 + 0.250005i
\(29\) 6.52642 1.21193 0.605963 0.795493i \(-0.292788\pi\)
0.605963 + 0.795493i \(0.292788\pi\)
\(30\) 3.85642 + 0.809570i 0.704084 + 0.147806i
\(31\) −0.617667 1.06983i −0.110936 0.192147i 0.805212 0.592987i \(-0.202052\pi\)
−0.916148 + 0.400840i \(0.868718\pi\)
\(32\) 2.93043 5.07566i 0.518032 0.897258i
\(33\) 0.140340 + 0.428253i 0.0244301 + 0.0745493i
\(34\) 0.180751 0.0309986
\(35\) −0.841652 + 1.45778i −0.142265 + 0.246411i
\(36\) 3.18946 + 1.40084i 0.531576 + 0.233474i
\(37\) 8.59418 1.41287 0.706437 0.707776i \(-0.250301\pi\)
0.706437 + 0.707776i \(0.250301\pi\)
\(38\) 1.93577 7.50434i 0.314023 1.21737i
\(39\) −1.00751 3.07446i −0.161331 0.492308i
\(40\) 1.90835 0.301737
\(41\) 8.21490 1.28295 0.641476 0.767143i \(-0.278322\pi\)
0.641476 + 0.767143i \(0.278322\pi\)
\(42\) −2.70319 + 3.01744i −0.417112 + 0.465601i
\(43\) −1.53770 2.66338i −0.234498 0.406162i 0.724629 0.689139i \(-0.242011\pi\)
−0.959127 + 0.282977i \(0.908678\pi\)
\(44\) −0.151063 0.261649i −0.0227736 0.0394451i
\(45\) 0.420466 + 3.81562i 0.0626794 + 0.568799i
\(46\) −2.17606 −0.320842
\(47\) 1.58093 0.230602 0.115301 0.993331i \(-0.463217\pi\)
0.115301 + 0.993331i \(0.463217\pi\)
\(48\) 8.43148 + 1.77000i 1.21698 + 0.255477i
\(49\) 2.63470 + 4.56344i 0.376386 + 0.651919i
\(50\) 2.98939 + 5.17777i 0.422763 + 0.732248i
\(51\) 0.0548339 + 0.167327i 0.00767828 + 0.0234305i
\(52\) 1.08449 + 1.87840i 0.150392 + 0.260487i
\(53\) −2.59998 4.50330i −0.357135 0.618575i 0.630346 0.776314i \(-0.282913\pi\)
−0.987481 + 0.157739i \(0.949580\pi\)
\(54\) −0.896298 + 9.19502i −0.121971 + 1.25128i
\(55\) 0.166466 0.288327i 0.0224462 0.0388780i
\(56\) −0.980985 + 1.69912i −0.131090 + 0.227054i
\(57\) 7.53427 0.484562i 0.997938 0.0641818i
\(58\) −5.80189 10.0492i −0.761826 1.31952i
\(59\) 8.02123 1.04428 0.522138 0.852861i \(-0.325135\pi\)
0.522138 + 0.852861i \(0.325135\pi\)
\(60\) −0.801412 2.44553i −0.103462 0.315717i
\(61\) −14.1310 −1.80928 −0.904642 0.426171i \(-0.859862\pi\)
−0.904642 + 0.426171i \(0.859862\pi\)
\(62\) −1.09819 + 1.90213i −0.139471 + 0.241570i
\(63\) −3.61340 1.58705i −0.455246 0.199949i
\(64\) −0.472395 −0.0590494
\(65\) −1.19507 + 2.06992i −0.148230 + 0.256742i
\(66\) 0.534649 0.596802i 0.0658108 0.0734613i
\(67\) 0.390956 0.677156i 0.0477629 0.0827277i −0.841156 0.540793i \(-0.818124\pi\)
0.888918 + 0.458065i \(0.151457\pi\)
\(68\) −0.0590236 0.102232i −0.00715766 0.0123974i
\(69\) −0.660144 2.01445i −0.0794720 0.242511i
\(70\) 2.99287 0.357716
\(71\) −8.19574 + 14.1954i −0.972656 + 1.68469i −0.285193 + 0.958470i \(0.592058\pi\)
−0.687463 + 0.726219i \(0.741276\pi\)
\(72\) 0.490073 + 4.44728i 0.0577556 + 0.524117i
\(73\) −0.397074 + 0.687753i −0.0464740 + 0.0804954i −0.888327 0.459212i \(-0.848132\pi\)
0.841853 + 0.539707i \(0.181465\pi\)
\(74\) −7.64010 13.2330i −0.888143 1.53831i
\(75\) −3.88635 + 4.33814i −0.448758 + 0.500925i
\(76\) −4.87653 + 1.35565i −0.559377 + 0.155504i
\(77\) 0.171143 + 0.296428i 0.0195035 + 0.0337811i
\(78\) −3.83829 + 4.28449i −0.434601 + 0.485123i
\(79\) −5.82382 10.0871i −0.655230 1.13489i −0.981836 0.189732i \(-0.939238\pi\)
0.326606 0.945161i \(-0.394095\pi\)
\(80\) −3.18231 5.51192i −0.355793 0.616251i
\(81\) −8.78405 + 1.95973i −0.976005 + 0.217748i
\(82\) −7.30292 12.6490i −0.806473 1.39685i
\(83\) −3.03265 + 5.25271i −0.332877 + 0.576560i −0.983075 0.183205i \(-0.941353\pi\)
0.650198 + 0.759765i \(0.274686\pi\)
\(84\) 2.58936 + 0.543579i 0.282523 + 0.0593093i
\(85\) 0.0650416 0.112655i 0.00705475 0.0122192i
\(86\) −2.73399 + 4.73542i −0.294814 + 0.510633i
\(87\) 7.54275 8.41959i 0.808668 0.902675i
\(88\) 0.194023 0.336058i 0.0206830 0.0358240i
\(89\) 5.75551 + 9.96883i 0.610082 + 1.05669i 0.991226 + 0.132178i \(0.0421970\pi\)
−0.381144 + 0.924516i \(0.624470\pi\)
\(90\) 5.50137 4.03945i 0.579896 0.425795i
\(91\) −1.22865 2.12808i −0.128797 0.223083i
\(92\) 0.710583 + 1.23077i 0.0740834 + 0.128316i
\(93\) −2.09402 0.439592i −0.217140 0.0455836i
\(94\) −1.40542 2.43426i −0.144958 0.251075i
\(95\) −3.98060 3.90686i −0.408401 0.400835i
\(96\) −3.16122 9.64654i −0.322640 0.984546i
\(97\) 5.83968 + 10.1146i 0.592930 + 1.02698i 0.993835 + 0.110865i \(0.0353622\pi\)
−0.400906 + 0.916119i \(0.631304\pi\)
\(98\) 4.68442 8.11365i 0.473198 0.819603i
\(99\) 0.714674 + 0.313893i 0.0718275 + 0.0315474i
\(100\) 1.95235 3.38156i 0.195235 0.338156i
\(101\) −13.7351 −1.36670 −0.683349 0.730092i \(-0.739477\pi\)
−0.683349 + 0.730092i \(0.739477\pi\)
\(102\) 0.208899 0.233183i 0.0206840 0.0230886i
\(103\) −3.88901 6.73596i −0.383195 0.663714i 0.608322 0.793691i \(-0.291843\pi\)
−0.991517 + 0.129977i \(0.958510\pi\)
\(104\) −1.39291 + 2.41259i −0.136586 + 0.236574i
\(105\) 0.907936 + 2.77059i 0.0886055 + 0.270382i
\(106\) −4.62269 + 8.00673i −0.448995 + 0.777682i
\(107\) 2.71691 0.262654 0.131327 0.991339i \(-0.458076\pi\)
0.131327 + 0.991339i \(0.458076\pi\)
\(108\) 5.49334 2.49566i 0.528596 0.240145i
\(109\) −9.03891 + 15.6558i −0.865770 + 1.49956i 0.000509715 1.00000i \(0.499838\pi\)
−0.866280 + 0.499559i \(0.833496\pi\)
\(110\) −0.591942 −0.0564394
\(111\) 9.93251 11.0872i 0.942752 1.05235i
\(112\) 6.54344 0.618297
\(113\) 5.83591 + 10.1081i 0.548997 + 0.950890i 0.998344 + 0.0575326i \(0.0183233\pi\)
−0.449347 + 0.893357i \(0.648343\pi\)
\(114\) −7.44397 11.1703i −0.697191 1.04619i
\(115\) −0.783034 + 1.35625i −0.0730183 + 0.126471i
\(116\) −3.78917 + 6.56304i −0.351816 + 0.609363i
\(117\) −5.13070 2.25346i −0.474333 0.208332i
\(118\) −7.13075 12.3508i −0.656439 1.13699i
\(119\) 0.0668690 + 0.115820i 0.00612987 + 0.0106172i
\(120\) 2.20553 2.46192i 0.201337 0.224742i
\(121\) 5.46615 + 9.46765i 0.496923 + 0.860696i
\(122\) 12.5622 + 21.7584i 1.13733 + 1.96991i
\(123\) 9.49417 10.5979i 0.856060 0.955577i
\(124\) 1.43444 0.128817
\(125\) 10.7007 0.957097
\(126\) 0.768580 + 6.97466i 0.0684706 + 0.621352i
\(127\) 2.39063 + 4.14069i 0.212134 + 0.367427i 0.952382 0.304907i \(-0.0986253\pi\)
−0.740248 + 0.672334i \(0.765292\pi\)
\(128\) −5.44091 9.42393i −0.480913 0.832966i
\(129\) −5.21313 1.09438i −0.458991 0.0963548i
\(130\) 4.24959 0.372714
\(131\) −11.5587 −1.00989 −0.504945 0.863151i \(-0.668487\pi\)
−0.504945 + 0.863151i \(0.668487\pi\)
\(132\) −0.512135 0.107511i −0.0445757 0.00935766i
\(133\) 5.52472 1.53585i 0.479054 0.133175i
\(134\) −1.39022 −0.120096
\(135\) 5.40838 + 3.86737i 0.465480 + 0.332850i
\(136\) 0.0758090 0.131305i 0.00650057 0.0112593i
\(137\) 11.8095 1.00895 0.504476 0.863426i \(-0.331686\pi\)
0.504476 + 0.863426i \(0.331686\pi\)
\(138\) −2.51493 + 2.80728i −0.214085 + 0.238972i
\(139\) 2.61207 4.52424i 0.221553 0.383741i −0.733727 0.679445i \(-0.762221\pi\)
0.955280 + 0.295704i \(0.0955542\pi\)
\(140\) −0.977308 1.69275i −0.0825976 0.143063i
\(141\) 1.82712 2.03952i 0.153871 0.171759i
\(142\) 29.1436 2.44568
\(143\) 0.243007 + 0.420900i 0.0203213 + 0.0351974i
\(144\) 12.0279 8.83162i 1.00233 0.735969i
\(145\) −8.35102 −0.693515
\(146\) 1.41197 0.116856
\(147\) 8.93217 + 1.87511i 0.736713 + 0.154656i
\(148\) −4.98969 + 8.64239i −0.410150 + 0.710400i
\(149\) −13.2345 −1.08422 −0.542108 0.840309i \(-0.682374\pi\)
−0.542108 + 0.840309i \(0.682374\pi\)
\(150\) 10.1346 + 2.12754i 0.827490 + 0.173713i
\(151\) 7.38449 12.7903i 0.600942 1.04086i −0.391737 0.920077i \(-0.628126\pi\)
0.992679 0.120784i \(-0.0385409\pi\)
\(152\) −4.63958 4.55363i −0.376320 0.369348i
\(153\) 0.279238 + 0.122644i 0.0225751 + 0.00991521i
\(154\) 0.304287 0.527040i 0.0245201 0.0424701i
\(155\) 0.790349 + 1.36892i 0.0634824 + 0.109955i
\(156\) 3.67666 + 0.771832i 0.294368 + 0.0617960i
\(157\) −0.0780549 −0.00622946 −0.00311473 0.999995i \(-0.500991\pi\)
−0.00311473 + 0.999995i \(0.500991\pi\)
\(158\) −10.3546 + 17.9346i −0.823765 + 1.42680i
\(159\) −8.81446 1.85040i −0.699032 0.146746i
\(160\) −3.74969 + 6.49466i −0.296439 + 0.513448i
\(161\) −0.805034 1.39436i −0.0634456 0.109891i
\(162\) 10.8264 + 11.7832i 0.850604 + 0.925777i
\(163\) −19.5891 −1.53434 −0.767170 0.641444i \(-0.778336\pi\)
−0.767170 + 0.641444i \(0.778336\pi\)
\(164\) −4.76948 + 8.26099i −0.372434 + 0.645075i
\(165\) −0.179576 0.547980i −0.0139799 0.0426602i
\(166\) 10.7839 0.836996
\(167\) 11.6324 20.1479i 0.900140 1.55909i 0.0728285 0.997344i \(-0.476797\pi\)
0.827311 0.561744i \(-0.189869\pi\)
\(168\) 1.05824 + 3.22926i 0.0816451 + 0.249143i
\(169\) 4.75544 + 8.23666i 0.365803 + 0.633589i
\(170\) −0.231284 −0.0177387
\(171\) 8.08242 10.2798i 0.618078 0.786117i
\(172\) 3.57110 0.272294
\(173\) 2.86145 + 4.95618i 0.217552 + 0.376811i 0.954059 0.299619i \(-0.0968595\pi\)
−0.736507 + 0.676430i \(0.763526\pi\)
\(174\) −19.6696 4.12919i −1.49115 0.313033i
\(175\) −2.21185 + 3.83104i −0.167200 + 0.289599i
\(176\) −1.29419 −0.0975532
\(177\) 9.27034 10.3480i 0.696801 0.777804i
\(178\) 10.2331 17.7243i 0.767005 1.32849i
\(179\) −7.56033 −0.565085 −0.282543 0.959255i \(-0.591178\pi\)
−0.282543 + 0.959255i \(0.591178\pi\)
\(180\) −4.08114 1.79248i −0.304190 0.133604i
\(181\) −4.37626 7.57990i −0.325285 0.563410i 0.656285 0.754513i \(-0.272127\pi\)
−0.981570 + 0.191103i \(0.938793\pi\)
\(182\) −2.18450 + 3.78366i −0.161926 + 0.280463i
\(183\) −16.3315 + 18.2300i −1.20726 + 1.34760i
\(184\) −0.912663 + 1.58078i −0.0672824 + 0.116536i
\(185\) −10.9969 −0.808505
\(186\) 1.18468 + 3.61509i 0.0868651 + 0.265071i
\(187\) −0.0132256 0.0229075i −0.000967154 0.00167516i
\(188\) −0.917870 + 1.58980i −0.0669425 + 0.115948i
\(189\) −6.22351 + 2.82738i −0.452694 + 0.205662i
\(190\) −2.47696 + 9.60234i −0.179697 + 0.696627i
\(191\) 1.36408 2.36265i 0.0987011 0.170955i −0.812446 0.583036i \(-0.801865\pi\)
0.911147 + 0.412081i \(0.135198\pi\)
\(192\) −0.545959 + 0.609426i −0.0394012 + 0.0439816i
\(193\) −24.5813 −1.76940 −0.884699 0.466164i \(-0.845636\pi\)
−0.884699 + 0.466164i \(0.845636\pi\)
\(194\) 10.3828 17.9835i 0.745440 1.29114i
\(195\) 1.28919 + 3.93399i 0.0923205 + 0.281719i
\(196\) −6.11871 −0.437051
\(197\) 4.62417 0.329458 0.164729 0.986339i \(-0.447325\pi\)
0.164729 + 0.986339i \(0.447325\pi\)
\(198\) −0.152013 1.37948i −0.0108031 0.0980352i
\(199\) 3.26083 + 5.64792i 0.231154 + 0.400370i 0.958148 0.286273i \(-0.0924165\pi\)
−0.726994 + 0.686644i \(0.759083\pi\)
\(200\) 5.01513 0.354623
\(201\) −0.421745 1.28697i −0.0297476 0.0907758i
\(202\) 12.2103 + 21.1489i 0.859116 + 1.48803i
\(203\) 4.29283 7.43540i 0.301297 0.521862i
\(204\) −0.200102 0.0420069i −0.0140099 0.00294107i
\(205\) −10.5115 −0.734158
\(206\) −6.91454 + 11.9763i −0.481759 + 0.834431i
\(207\) −3.36174 1.47651i −0.233657 0.102625i
\(208\) 9.29108 0.644220
\(209\) −1.09270 + 0.303766i −0.0755839 + 0.0210120i
\(210\) 3.45893 3.86103i 0.238689 0.266436i
\(211\) 5.21704 0.359156 0.179578 0.983744i \(-0.442527\pi\)
0.179578 + 0.983744i \(0.442527\pi\)
\(212\) 6.03808 0.414697
\(213\) 8.84120 + 26.9792i 0.605789 + 1.84858i
\(214\) −2.41530 4.18341i −0.165106 0.285972i
\(215\) 1.96760 + 3.40799i 0.134189 + 0.232423i
\(216\) 6.30372 + 4.50760i 0.428914 + 0.306703i
\(217\) −1.62511 −0.110320
\(218\) 32.1418 2.17692
\(219\) 0.428346 + 1.30711i 0.0289449 + 0.0883263i
\(220\) 0.193296 + 0.334799i 0.0130320 + 0.0225721i
\(221\) 0.0949478 + 0.164454i 0.00638688 + 0.0110624i
\(222\) −25.9015 5.43744i −1.73839 0.364937i
\(223\) −2.46764 4.27407i −0.165245 0.286213i 0.771497 0.636233i \(-0.219508\pi\)
−0.936742 + 0.350020i \(0.886175\pi\)
\(224\) −3.85505 6.67714i −0.257576 0.446135i
\(225\) 1.10498 + 10.0274i 0.0736653 + 0.668493i
\(226\) 10.3761 17.9719i 0.690207 1.19547i
\(227\) −7.33746 + 12.7089i −0.487004 + 0.843516i −0.999888 0.0149416i \(-0.995244\pi\)
0.512884 + 0.858458i \(0.328577\pi\)
\(228\) −3.88703 + 7.85787i −0.257425 + 0.520400i
\(229\) 0.589497 + 1.02104i 0.0389551 + 0.0674722i 0.884846 0.465884i \(-0.154264\pi\)
−0.845891 + 0.533357i \(0.820930\pi\)
\(230\) 2.78442 0.183599
\(231\) 0.580209 + 0.121802i 0.0381749 + 0.00801397i
\(232\) −9.73351 −0.639036
\(233\) 10.8188 18.7387i 0.708761 1.22761i −0.256555 0.966530i \(-0.582588\pi\)
0.965317 0.261081i \(-0.0840790\pi\)
\(234\) 1.09131 + 9.90338i 0.0713414 + 0.647404i
\(235\) −2.02291 −0.131960
\(236\) −4.65704 + 8.06623i −0.303147 + 0.525067i
\(237\) −19.7439 4.14479i −1.28251 0.269233i
\(238\) 0.118891 0.205925i 0.00770656 0.0133482i
\(239\) −8.89153 15.4006i −0.575145 0.996180i −0.996026 0.0890644i \(-0.971612\pi\)
0.420881 0.907116i \(-0.361721\pi\)
\(240\) −10.7887 2.26484i −0.696406 0.146195i
\(241\) −2.65337 −0.170919 −0.0854594 0.996342i \(-0.527236\pi\)
−0.0854594 + 0.996342i \(0.527236\pi\)
\(242\) 9.71865 16.8332i 0.624739 1.08208i
\(243\) −7.62374 + 13.5970i −0.489063 + 0.872249i
\(244\) 8.20429 14.2102i 0.525226 0.909717i
\(245\) −3.37129 5.83924i −0.215384 0.373055i
\(246\) −24.7584 5.19747i −1.57854 0.331379i
\(247\) 7.84460 2.18076i 0.499140 0.138759i
\(248\) 0.921189 + 1.59555i 0.0584956 + 0.101317i
\(249\) 3.27149 + 9.98305i 0.207322 + 0.632650i
\(250\) −9.51273 16.4765i −0.601638 1.04207i
\(251\) 3.23211 + 5.59818i 0.204009 + 0.353354i 0.949817 0.312807i \(-0.101269\pi\)
−0.745807 + 0.666162i \(0.767936\pi\)
\(252\) 3.69385 2.71225i 0.232691 0.170856i
\(253\) 0.159223 + 0.275783i 0.0100103 + 0.0173383i
\(254\) 4.25047 7.36203i 0.266698 0.461935i
\(255\) −0.0701639 0.214107i −0.00439383 0.0134079i
\(256\) −10.1462 + 17.5737i −0.634136 + 1.09836i
\(257\) 8.36616 14.4906i 0.521867 0.903899i −0.477810 0.878463i \(-0.658569\pi\)
0.999676 0.0254362i \(-0.00809745\pi\)
\(258\) 2.94931 + 8.99990i 0.183616 + 0.560309i
\(259\) 5.65292 9.79114i 0.351255 0.608392i
\(260\) −1.38769 2.40355i −0.0860608 0.149062i
\(261\) −2.14458 19.4615i −0.132746 1.20463i
\(262\) 10.2755 + 17.7978i 0.634825 + 1.09955i
\(263\) −10.4792 18.1506i −0.646178 1.11921i −0.984028 0.178013i \(-0.943033\pi\)
0.337851 0.941200i \(-0.390300\pi\)
\(264\) −0.209304 0.638697i −0.0128818 0.0393091i
\(265\) 3.32686 + 5.76229i 0.204367 + 0.353974i
\(266\) −7.27624 7.14144i −0.446135 0.437870i
\(267\) 19.5123 + 4.09618i 1.19414 + 0.250682i
\(268\) 0.453970 + 0.786298i 0.0277306 + 0.0480308i
\(269\) 8.04348 13.9317i 0.490420 0.849432i −0.509520 0.860459i \(-0.670177\pi\)
0.999939 + 0.0110273i \(0.00351018\pi\)
\(270\) 1.14688 11.7657i 0.0697967 0.716037i
\(271\) 13.0212 22.5533i 0.790979 1.37002i −0.134383 0.990929i \(-0.542905\pi\)
0.925362 0.379086i \(-0.123761\pi\)
\(272\) −0.505667 −0.0306605
\(273\) −4.16536 0.874424i −0.252099 0.0529225i
\(274\) −10.4984 18.1838i −0.634234 1.09853i
\(275\) 0.437470 0.757720i 0.0263804 0.0456922i
\(276\) 2.40902 + 0.505720i 0.145006 + 0.0304408i
\(277\) −7.36125 + 12.7501i −0.442295 + 0.766077i −0.997859 0.0653962i \(-0.979169\pi\)
0.555564 + 0.831473i \(0.312502\pi\)
\(278\) −9.28836 −0.557079
\(279\) −2.98722 + 2.19340i −0.178840 + 0.131315i
\(280\) 1.25524 2.17414i 0.0750149 0.129930i
\(281\) 17.7201 1.05709 0.528545 0.848905i \(-0.322738\pi\)
0.528545 + 0.848905i \(0.322738\pi\)
\(282\) −4.76467 1.00023i −0.283732 0.0595631i
\(283\) −13.7058 −0.814723 −0.407361 0.913267i \(-0.633551\pi\)
−0.407361 + 0.913267i \(0.633551\pi\)
\(284\) −9.51672 16.4834i −0.564713 0.978112i
\(285\) −9.64063 + 0.620032i −0.571062 + 0.0367275i
\(286\) 0.432059 0.748348i 0.0255482 0.0442508i
\(287\) 5.40344 9.35904i 0.318955 0.552447i
\(288\) −16.0983 7.07054i −0.948601 0.416636i
\(289\) 8.49483 + 14.7135i 0.499696 + 0.865499i
\(290\) 7.42393 + 12.8586i 0.435948 + 0.755085i
\(291\) 19.7977 + 4.15608i 1.16056 + 0.243634i
\(292\) −0.461074 0.798604i −0.0269823 0.0467347i
\(293\) 14.2271 + 24.6420i 0.831153 + 1.43960i 0.897124 + 0.441778i \(0.145652\pi\)
−0.0659708 + 0.997822i \(0.521014\pi\)
\(294\) −5.05334 15.4204i −0.294717 0.899337i
\(295\) −10.2637 −0.597578
\(296\) −12.8174 −0.744994
\(297\) 1.23091 0.559212i 0.0714248 0.0324487i
\(298\) 11.7653 + 20.3781i 0.681546 + 1.18047i
\(299\) −1.14307 1.97986i −0.0661057 0.114498i
\(300\) −2.10610 6.42683i −0.121596 0.371053i
\(301\) −4.04577 −0.233194
\(302\) −26.2588 −1.51103
\(303\) −15.8740 + 17.7194i −0.911940 + 1.01795i
\(304\) −5.41548 + 20.9940i −0.310599 + 1.20409i
\(305\) 18.0816 1.03535
\(306\) −0.0593947 0.538991i −0.00339537 0.0308121i
\(307\) −4.96283 + 8.59587i −0.283244 + 0.490592i −0.972182 0.234228i \(-0.924744\pi\)
0.688938 + 0.724820i \(0.258077\pi\)
\(308\) −0.397454 −0.0226471
\(309\) −13.1845 2.76780i −0.750042 0.157454i
\(310\) 1.40522 2.43391i 0.0798110 0.138237i
\(311\) −5.07553 8.79108i −0.287807 0.498496i 0.685479 0.728092i \(-0.259593\pi\)
−0.973286 + 0.229596i \(0.926260\pi\)
\(312\) 1.50261 + 4.58525i 0.0850683 + 0.259589i
\(313\) 25.9255 1.46540 0.732699 0.680552i \(-0.238260\pi\)
0.732699 + 0.680552i \(0.238260\pi\)
\(314\) 0.0693896 + 0.120186i 0.00391588 + 0.00678251i
\(315\) 4.62361 + 2.03074i 0.260511 + 0.114419i
\(316\) 13.5250 0.760839
\(317\) −24.3048 −1.36509 −0.682546 0.730843i \(-0.739127\pi\)
−0.682546 + 0.730843i \(0.739127\pi\)
\(318\) 4.98674 + 15.2172i 0.279643 + 0.853338i
\(319\) −0.849054 + 1.47060i −0.0475379 + 0.0823381i
\(320\) 0.604463 0.0337905
\(321\) 3.14000 3.50503i 0.175258 0.195632i
\(322\) −1.43133 + 2.47913i −0.0797647 + 0.138157i
\(323\) −0.426942 + 0.118688i −0.0237557 + 0.00660397i
\(324\) 3.12919 9.97112i 0.173844 0.553951i
\(325\) −3.14063 + 5.43973i −0.174211 + 0.301742i
\(326\) 17.4145 + 30.1627i 0.964498 + 1.67056i
\(327\) 9.75076 + 29.7547i 0.539218 + 1.64544i
\(328\) −12.2517 −0.676487
\(329\) 1.03987 1.80111i 0.0573301 0.0992986i
\(330\) −0.684122 + 0.763651i −0.0376597 + 0.0420376i
\(331\) −4.85091 + 8.40202i −0.266630 + 0.461817i −0.967989 0.250991i \(-0.919244\pi\)
0.701359 + 0.712808i \(0.252577\pi\)
\(332\) −3.52145 6.09933i −0.193265 0.334744i
\(333\) −2.82404 25.6274i −0.154756 1.40437i
\(334\) −41.3640 −2.26334
\(335\) −0.500256 + 0.866469i −0.0273319 + 0.0473402i
\(336\) 7.56241 8.44154i 0.412563 0.460524i
\(337\) 33.7366 1.83775 0.918876 0.394546i \(-0.129098\pi\)
0.918876 + 0.394546i \(0.129098\pi\)
\(338\) 8.45502 14.6445i 0.459893 0.796557i
\(339\) 19.7849 + 4.15340i 1.07457 + 0.225582i
\(340\) 0.0755249 + 0.130813i 0.00409591 + 0.00709432i
\(341\) 0.321421 0.0174059
\(342\) −23.0137 3.30645i −1.24444 0.178792i
\(343\) 16.1407 0.871514
\(344\) 2.29333 + 3.97217i 0.123648 + 0.214165i
\(345\) 0.844701 + 2.57763i 0.0454772 + 0.138775i
\(346\) 5.08757 8.81193i 0.273510 0.473732i
\(347\) −29.2979 −1.57279 −0.786396 0.617723i \(-0.788055\pi\)
−0.786396 + 0.617723i \(0.788055\pi\)
\(348\) 4.08758 + 12.4734i 0.219118 + 0.668644i
\(349\) −1.69824 + 2.94144i −0.0909049 + 0.157452i −0.907892 0.419204i \(-0.862309\pi\)
0.816987 + 0.576656i \(0.195643\pi\)
\(350\) 7.86521 0.420413
\(351\) −8.83681 + 4.01462i −0.471674 + 0.214285i
\(352\) 0.762468 + 1.32063i 0.0406397 + 0.0703900i
\(353\) −3.31809 + 5.74710i −0.176604 + 0.305887i −0.940715 0.339197i \(-0.889845\pi\)
0.764111 + 0.645085i \(0.223178\pi\)
\(354\) −24.1747 5.07494i −1.28487 0.269730i
\(355\) 10.4870 18.1641i 0.556594 0.964049i
\(356\) −13.3663 −0.708414
\(357\) 0.226700 + 0.0475905i 0.0119982 + 0.00251875i
\(358\) 6.72102 + 11.6411i 0.355217 + 0.615254i
\(359\) −18.5021 + 32.0466i −0.976505 + 1.69136i −0.301629 + 0.953425i \(0.597530\pi\)
−0.674876 + 0.737931i \(0.735803\pi\)
\(360\) −0.627083 5.69061i −0.0330502 0.299922i
\(361\) 0.355254 + 18.9967i 0.0186976 + 0.999825i
\(362\) −7.78086 + 13.4768i −0.408953 + 0.708327i
\(363\) 18.5314 + 3.89024i 0.972645 + 0.204185i
\(364\) 2.85335 0.149556
\(365\) 0.508085 0.880029i 0.0265944 0.0460628i
\(366\) 42.5885 + 8.94050i 2.22614 + 0.467327i
\(367\) 14.7101 0.767859 0.383929 0.923363i \(-0.374571\pi\)
0.383929 + 0.923363i \(0.374571\pi\)
\(368\) 6.08771 0.317344
\(369\) −2.69941 24.4964i −0.140526 1.27523i
\(370\) 9.77605 + 16.9326i 0.508233 + 0.880285i
\(371\) −6.84066 −0.355149
\(372\) 1.65782 1.85054i 0.0859541 0.0959462i
\(373\) −0.728793 1.26231i −0.0377355 0.0653598i 0.846541 0.532324i \(-0.178681\pi\)
−0.884276 + 0.466964i \(0.845348\pi\)
\(374\) −0.0235148 + 0.0407288i −0.00121592 + 0.00210604i
\(375\) 12.3670 13.8047i 0.638631 0.712871i
\(376\) −2.35780 −0.121594
\(377\) 6.09542 10.5576i 0.313930 0.543743i
\(378\) 9.88612 + 7.06926i 0.508487 + 0.363604i
\(379\) 30.8963 1.58704 0.793519 0.608546i \(-0.208247\pi\)
0.793519 + 0.608546i \(0.208247\pi\)
\(380\) 6.23987 1.73465i 0.320099 0.0889859i
\(381\) 8.10473 + 1.70141i 0.415218 + 0.0871656i
\(382\) −4.85058 −0.248177
\(383\) 18.4547 0.942990 0.471495 0.881869i \(-0.343715\pi\)
0.471495 + 0.881869i \(0.343715\pi\)
\(384\) −18.4458 3.87228i −0.941308 0.197606i
\(385\) −0.218989 0.379300i −0.0111607 0.0193309i
\(386\) 21.8524 + 37.8494i 1.11226 + 1.92648i
\(387\) −7.43679 + 5.46054i −0.378033 + 0.277575i
\(388\) −13.5618 −0.688497
\(389\) −0.838973 −0.0425376 −0.0212688 0.999774i \(-0.506771\pi\)
−0.0212688 + 0.999774i \(0.506771\pi\)
\(390\) 4.91136 5.48230i 0.248696 0.277607i
\(391\) 0.0622118 + 0.107754i 0.00314618 + 0.00544935i
\(392\) −3.92939 6.80591i −0.198464 0.343750i
\(393\) −13.3587 + 14.9117i −0.673858 + 0.752193i
\(394\) −4.11081 7.12014i −0.207100 0.358707i
\(395\) 7.45199 + 12.9072i 0.374950 + 0.649433i
\(396\) −0.730586 + 0.536441i −0.0367133 + 0.0269572i
\(397\) 10.4063 18.0243i 0.522279 0.904613i −0.477385 0.878694i \(-0.658415\pi\)
0.999664 0.0259191i \(-0.00825123\pi\)
\(398\) 5.79766 10.0418i 0.290610 0.503352i
\(399\) 4.40370 8.90234i 0.220461 0.445674i
\(400\) −8.36307 14.4853i −0.418153 0.724263i
\(401\) −34.0303 −1.69939 −0.849697 0.527271i \(-0.823215\pi\)
−0.849697 + 0.527271i \(0.823215\pi\)
\(402\) −1.60671 + 1.79349i −0.0801353 + 0.0894510i
\(403\) −2.30751 −0.114945
\(404\) 7.97447 13.8122i 0.396745 0.687182i
\(405\) 11.2398 2.50762i 0.558511 0.124604i
\(406\) −15.2650 −0.757591
\(407\) −1.11806 + 1.93653i −0.0554201 + 0.0959904i
\(408\) −0.0817793 0.249552i −0.00404868 0.0123547i
\(409\) 15.7351 27.2540i 0.778051 1.34762i −0.155013 0.987912i \(-0.549542\pi\)
0.933064 0.359711i \(-0.117125\pi\)
\(410\) 9.34461 + 16.1853i 0.461497 + 0.799337i
\(411\) 13.6485 15.2351i 0.673231 0.751494i
\(412\) 9.03166 0.444958
\(413\) 5.27605 9.13839i 0.259618 0.449671i
\(414\) 0.715051 + 6.48890i 0.0351428 + 0.318912i
\(415\) 3.88050 6.72122i 0.190486 0.329932i
\(416\) −5.47381 9.48092i −0.268376 0.464841i
\(417\) −2.81778 8.59854i −0.137987 0.421072i
\(418\) 1.43913 + 1.41247i 0.0703900 + 0.0690859i
\(419\) 9.72553 + 16.8451i 0.475123 + 0.822938i 0.999594 0.0284908i \(-0.00907012\pi\)
−0.524471 + 0.851428i \(0.675737\pi\)
\(420\) −3.31327 0.695547i −0.161671 0.0339392i
\(421\) 9.96050 + 17.2521i 0.485445 + 0.840815i 0.999860 0.0167261i \(-0.00532433\pi\)
−0.514415 + 0.857541i \(0.671991\pi\)
\(422\) −4.63787 8.03303i −0.225768 0.391042i
\(423\) −0.519492 4.71425i −0.0252586 0.229215i
\(424\) 3.87761 + 6.71622i 0.188313 + 0.326168i
\(425\) 0.170928 0.296057i 0.00829125 0.0143609i
\(426\) 33.6820 37.5975i 1.63190 1.82160i
\(427\) −9.29480 + 16.0991i −0.449807 + 0.779088i
\(428\) −1.57741 + 2.73215i −0.0762470 + 0.132064i
\(429\) 0.823843 + 0.172947i 0.0397755 + 0.00834997i
\(430\) 3.49834 6.05930i 0.168705 0.292205i
\(431\) 1.45784 + 2.52505i 0.0702215 + 0.121627i 0.898998 0.437952i \(-0.144296\pi\)
−0.828777 + 0.559579i \(0.810963\pi\)
\(432\) 2.50747 25.7239i 0.120641 1.23764i
\(433\) −16.0100 27.7302i −0.769393 1.33263i −0.937893 0.346926i \(-0.887226\pi\)
0.168500 0.985702i \(-0.446108\pi\)
\(434\) 1.44470 + 2.50229i 0.0693478 + 0.120114i
\(435\) −9.65149 + 10.7735i −0.462753 + 0.516548i
\(436\) −10.4958 18.1792i −0.502657 0.870627i
\(437\) 5.13994 1.42888i 0.245877 0.0683526i
\(438\) 1.63185 1.82155i 0.0779729 0.0870372i
\(439\) −5.64478 9.77704i −0.269411 0.466633i 0.699299 0.714829i \(-0.253496\pi\)
−0.968710 + 0.248196i \(0.920162\pi\)
\(440\) −0.248267 + 0.430011i −0.0118357 + 0.0205000i
\(441\) 12.7422 9.35608i 0.606770 0.445528i
\(442\) 0.168814 0.292395i 0.00802968 0.0139078i
\(443\) −38.4359 −1.82614 −0.913071 0.407800i \(-0.866296\pi\)
−0.913071 + 0.407800i \(0.866296\pi\)
\(444\) 5.38265 + 16.4253i 0.255449 + 0.779511i
\(445\) −7.36458 12.7558i −0.349115 0.604684i
\(446\) −4.38738 + 7.59917i −0.207749 + 0.359831i
\(447\) −15.2955 + 17.0736i −0.723452 + 0.807553i
\(448\) −0.310723 + 0.538188i −0.0146803 + 0.0254270i
\(449\) −0.523696 −0.0247147 −0.0123574 0.999924i \(-0.503934\pi\)
−0.0123574 + 0.999924i \(0.503934\pi\)
\(450\) 14.4575 10.6156i 0.681535 0.500425i
\(451\) −1.06872 + 1.85107i −0.0503239 + 0.0871635i
\(452\) −13.5531 −0.637483
\(453\) −7.96605 24.3087i −0.374278 1.14212i
\(454\) 26.0916 1.22454
\(455\) 1.57214 + 2.72303i 0.0737030 + 0.127657i
\(456\) −11.2366 + 0.722676i −0.526202 + 0.0338424i
\(457\) −10.7106 + 18.5513i −0.501022 + 0.867795i 0.498978 + 0.866615i \(0.333709\pi\)
−0.999999 + 0.00118016i \(0.999624\pi\)
\(458\) 1.04811 1.81538i 0.0489749 0.0848270i
\(459\) 0.480943 0.218496i 0.0224485 0.0101985i
\(460\) −0.909242 1.57485i −0.0423936 0.0734279i
\(461\) 0.504860 + 0.874443i 0.0235137 + 0.0407269i 0.877543 0.479498i \(-0.159181\pi\)
−0.854029 + 0.520225i \(0.825848\pi\)
\(462\) −0.328250 1.00167i −0.0152716 0.0466017i
\(463\) 5.44085 + 9.42382i 0.252858 + 0.437962i 0.964311 0.264771i \(-0.0852963\pi\)
−0.711454 + 0.702733i \(0.751963\pi\)
\(464\) 16.2313 + 28.1134i 0.753518 + 1.30513i
\(465\) 2.67945 + 0.562489i 0.124256 + 0.0260848i
\(466\) −38.4709 −1.78213
\(467\) −0.227947 −0.0105481 −0.00527407 0.999986i \(-0.501679\pi\)
−0.00527407 + 0.999986i \(0.501679\pi\)
\(468\) 5.24493 3.85115i 0.242447 0.178019i
\(469\) −0.514311 0.890813i −0.0237487 0.0411339i
\(470\) 1.79834 + 3.11481i 0.0829511 + 0.143676i
\(471\) −0.0902100 + 0.100697i −0.00415666 + 0.00463986i
\(472\) −11.9629 −0.550635
\(473\) 0.800190 0.0367928
\(474\) 11.1700 + 34.0857i 0.513057 + 1.56561i
\(475\) −10.4610 10.2672i −0.479983 0.471090i
\(476\) −0.155294 −0.00711787
\(477\) −12.5742 + 9.23279i −0.575735 + 0.422740i
\(478\) −15.8089 + 27.3818i −0.723081 + 1.25241i
\(479\) −13.6303 −0.622786 −0.311393 0.950281i \(-0.600796\pi\)
−0.311393 + 0.950281i \(0.600796\pi\)
\(480\) 4.04500 + 12.3434i 0.184628 + 0.563398i
\(481\) 8.02662 13.9025i 0.365983 0.633900i
\(482\) 2.35881 + 4.08558i 0.107441 + 0.186093i
\(483\) −2.72923 0.572940i −0.124184 0.0260697i
\(484\) −12.6944 −0.577016
\(485\) −7.47229 12.9424i −0.339299 0.587683i
\(486\) 27.7136 0.348760i 1.25712 0.0158201i
\(487\) −18.8745 −0.855286 −0.427643 0.903948i \(-0.640656\pi\)
−0.427643 + 0.903948i \(0.640656\pi\)
\(488\) 21.0749 0.954017
\(489\) −22.6397 + 25.2715i −1.02380 + 1.14282i
\(490\) −5.99405 + 10.3820i −0.270783 + 0.469011i
\(491\) −0.829442 −0.0374322 −0.0187161 0.999825i \(-0.505958\pi\)
−0.0187161 + 0.999825i \(0.505958\pi\)
\(492\) 5.14510 + 15.7004i 0.231959 + 0.707830i
\(493\) −0.331743 + 0.574596i −0.0149410 + 0.0258785i
\(494\) −10.3316 10.1402i −0.464841 0.456229i
\(495\) −0.914477 0.401648i −0.0411027 0.0180527i
\(496\) 3.07229 5.32136i 0.137950 0.238936i
\(497\) 10.7817 + 18.6744i 0.483625 + 0.837663i
\(498\) 12.4633 13.9121i 0.558492 0.623417i
\(499\) 1.50254 0.0672629 0.0336314 0.999434i \(-0.489293\pi\)
0.0336314 + 0.999434i \(0.489293\pi\)
\(500\) −6.21269 + 10.7607i −0.277840 + 0.481233i
\(501\) −12.5485 38.2920i −0.560624 1.71076i
\(502\) 5.74660 9.95340i 0.256483 0.444242i
\(503\) −4.60299 7.97262i −0.205237 0.355481i 0.744971 0.667097i \(-0.232463\pi\)
−0.950208 + 0.311615i \(0.899130\pi\)
\(504\) 5.38903 + 2.36692i 0.240046 + 0.105431i
\(505\) 17.5751 0.782081
\(506\) 0.283094 0.490333i 0.0125851 0.0217980i
\(507\) 16.1219 + 3.38443i 0.715999 + 0.150308i
\(508\) −5.55190 −0.246326
\(509\) −1.22085 + 2.11458i −0.0541133 + 0.0937271i −0.891813 0.452404i \(-0.850567\pi\)
0.837700 + 0.546131i \(0.183900\pi\)
\(510\) −0.267301 + 0.298374i −0.0118363 + 0.0132122i
\(511\) 0.522360 + 0.904754i 0.0231078 + 0.0400240i
\(512\) 14.3155 0.632664
\(513\) −3.92069 22.3076i −0.173103 0.984904i
\(514\) −29.7496 −1.31220
\(515\) 4.97626 + 8.61914i 0.219280 + 0.379805i
\(516\) 4.12721 4.60699i 0.181690 0.202812i
\(517\) −0.205671 + 0.356232i −0.00904538 + 0.0156671i
\(518\) −20.1014 −0.883206
\(519\) 9.70090 + 2.03649i 0.425822 + 0.0893918i
\(520\) 1.78233 3.08708i 0.0781602 0.135377i
\(521\) 4.12120 0.180553 0.0902764 0.995917i \(-0.471225\pi\)
0.0902764 + 0.995917i \(0.471225\pi\)
\(522\) −28.0596 + 20.6031i −1.22814 + 0.901773i
\(523\) −15.9501 27.6263i −0.697448 1.20802i −0.969348 0.245690i \(-0.920985\pi\)
0.271900 0.962325i \(-0.412348\pi\)
\(524\) 6.71087 11.6236i 0.293166 0.507778i
\(525\) 2.38605 + 7.28109i 0.104136 + 0.317773i
\(526\) −18.6318 + 32.2712i −0.812384 + 1.40709i
\(527\) 0.125586 0.00547061
\(528\) −1.49573 + 1.66960i −0.0650932 + 0.0726602i
\(529\) 10.7510 + 18.6213i 0.467436 + 0.809623i
\(530\) 5.91505 10.2452i 0.256934 0.445022i
\(531\) −2.63577 23.9189i −0.114383 1.03799i
\(532\) −1.66313 + 6.44741i −0.0721059 + 0.279531i
\(533\) 7.67239 13.2890i 0.332328 0.575609i
\(534\) −11.0390 33.6859i −0.477705 1.45773i
\(535\) −3.47648 −0.150301
\(536\) −0.583072 + 1.00991i −0.0251849 + 0.0436215i
\(537\) −8.73766 + 9.75341i −0.377058 + 0.420891i
\(538\) −28.6021 −1.23313
\(539\) −1.37104 −0.0590550
\(540\) −7.02911 + 3.19337i −0.302485 + 0.137421i
\(541\) −7.44884 12.9018i −0.320251 0.554690i 0.660289 0.751012i \(-0.270434\pi\)
−0.980540 + 0.196321i \(0.937100\pi\)
\(542\) −46.3024 −1.98886
\(543\) −14.8364 3.11457i −0.636691 0.133659i
\(544\) 0.297912 + 0.515999i 0.0127729 + 0.0221233i
\(545\) 11.5659 20.0328i 0.495430 0.858110i
\(546\) 2.35653 + 7.19104i 0.100850 + 0.307748i
\(547\) −7.85484 −0.335849 −0.167924 0.985800i \(-0.553706\pi\)
−0.167924 + 0.985800i \(0.553706\pi\)
\(548\) −6.85645 + 11.8757i −0.292893 + 0.507306i
\(549\) 4.64342 + 42.1378i 0.198177 + 1.79840i
\(550\) −1.55562 −0.0663317
\(551\) 20.3030 + 19.9268i 0.864936 + 0.848912i
\(552\) 0.984539 + 3.00435i 0.0419048 + 0.127874i
\(553\) −15.3227 −0.651588
\(554\) 26.1762 1.11212
\(555\) −12.7093 + 14.1868i −0.539482 + 0.602196i
\(556\) 3.03308 + 5.25344i 0.128631 + 0.222796i
\(557\) −12.9954 22.5087i −0.550632 0.953722i −0.998229 0.0594871i \(-0.981053\pi\)
0.447597 0.894235i \(-0.352280\pi\)
\(558\) 6.03291 + 2.64972i 0.255394 + 0.112172i
\(559\) −5.74462 −0.242972
\(560\) −8.37279 −0.353815
\(561\) −0.0448376 0.00941265i −0.00189305 0.000397402i
\(562\) −15.7529 27.2848i −0.664494 1.15094i
\(563\) 0.182015 + 0.315259i 0.00767101 + 0.0132866i 0.869835 0.493342i \(-0.164225\pi\)
−0.862164 + 0.506629i \(0.830892\pi\)
\(564\) 0.990156 + 3.02149i 0.0416931 + 0.127228i
\(565\) −7.46747 12.9340i −0.314159 0.544139i
\(566\) 12.1842 + 21.1037i 0.512141 + 0.887054i
\(567\) −3.54513 + 11.2965i −0.148881 + 0.474408i
\(568\) 12.2231 21.1711i 0.512871 0.888319i
\(569\) −6.09470 + 10.5563i −0.255503 + 0.442544i −0.965032 0.262132i \(-0.915574\pi\)
0.709529 + 0.704676i \(0.248908\pi\)
\(570\) 9.52508 + 14.2931i 0.398962 + 0.598673i
\(571\) −0.379660 0.657591i −0.0158883 0.0275193i 0.857972 0.513697i \(-0.171724\pi\)
−0.873860 + 0.486177i \(0.838391\pi\)
\(572\) −0.564349 −0.0235966
\(573\) −1.47150 4.49034i −0.0614730 0.187587i
\(574\) −19.2143 −0.801990
\(575\) −2.05780 + 3.56422i −0.0858163 + 0.148638i
\(576\) 0.155229 + 1.40866i 0.00646786 + 0.0586941i
\(577\) −10.8385 −0.451212 −0.225606 0.974219i \(-0.572436\pi\)
−0.225606 + 0.974219i \(0.572436\pi\)
\(578\) 15.1036 26.1601i 0.628225 1.08812i
\(579\) −28.4092 + 31.7117i −1.18064 + 1.31789i
\(580\) 4.84851 8.39787i 0.201324 0.348703i
\(581\) 3.98952 + 6.91006i 0.165513 + 0.286678i
\(582\) −11.2005 34.1786i −0.464274 1.41675i
\(583\) 1.35298 0.0560345
\(584\) 0.592197 1.02571i 0.0245053 0.0424444i
\(585\) 6.56510 + 2.88346i 0.271433 + 0.119216i
\(586\) 25.2953 43.8127i 1.04494 1.80989i
\(587\) 6.63595 + 11.4938i 0.273895 + 0.474400i 0.969856 0.243680i \(-0.0783546\pi\)
−0.695961 + 0.718080i \(0.745021\pi\)
\(588\) −7.07155 + 7.89361i −0.291626 + 0.325527i
\(589\) 1.34497 5.21402i 0.0554187 0.214840i
\(590\) 9.12431 + 15.8038i 0.375642 + 0.650631i
\(591\) 5.34426 5.96553i 0.219834 0.245389i
\(592\) 21.3738 + 37.0205i 0.878458 + 1.52153i
\(593\) −0.533785 0.924543i −0.0219199 0.0379664i 0.854857 0.518863i \(-0.173645\pi\)
−0.876777 + 0.480897i \(0.840311\pi\)
\(594\) −1.95532 1.39819i −0.0802277 0.0573684i
\(595\) −0.0855636 0.148201i −0.00350777 0.00607563i
\(596\) 7.68383 13.3088i 0.314742 0.545149i
\(597\) 11.0549 + 2.32072i 0.452446 + 0.0949808i
\(598\) −2.03235 + 3.52014i −0.0831091 + 0.143949i
\(599\) −6.67115 + 11.5548i −0.272576 + 0.472115i −0.969521 0.245010i \(-0.921209\pi\)
0.696945 + 0.717125i \(0.254542\pi\)
\(600\) 5.79611 6.46990i 0.236625 0.264133i
\(601\) 22.5595 39.0742i 0.920220 1.59387i 0.121147 0.992635i \(-0.461343\pi\)
0.799074 0.601233i \(-0.205324\pi\)
\(602\) 3.59663 + 6.22955i 0.146588 + 0.253897i
\(603\) −2.14771 0.943298i −0.0874616 0.0384141i
\(604\) 8.57471 + 14.8518i 0.348900 + 0.604313i
\(605\) −6.99433 12.1145i −0.284360 0.492526i
\(606\) 41.3955 + 8.69006i 1.68158 + 0.353010i
\(607\) 12.5161 + 21.6785i 0.508012 + 0.879903i 0.999957 + 0.00927687i \(0.00295296\pi\)
−0.491944 + 0.870627i \(0.663714\pi\)
\(608\) 24.6135 6.84244i 0.998210 0.277498i
\(609\) −4.63091 14.1314i −0.187654 0.572631i
\(610\) −16.0743 27.8414i −0.650827 1.12727i
\(611\) 1.47652 2.55742i 0.0597338 0.103462i
\(612\) −0.285455 + 0.209599i −0.0115388 + 0.00847252i
\(613\) 10.4697 18.1341i 0.422869 0.732430i −0.573350 0.819310i \(-0.694357\pi\)
0.996219 + 0.0868805i \(0.0276898\pi\)
\(614\) 17.6475 0.712196
\(615\) −12.1485 + 13.5607i −0.489873 + 0.546821i
\(616\) −0.255242 0.442092i −0.0102840 0.0178124i
\(617\) 9.25883 16.0368i 0.372746 0.645616i −0.617241 0.786774i \(-0.711750\pi\)
0.989987 + 0.141159i \(0.0450828\pi\)
\(618\) 7.45909 + 22.7616i 0.300049 + 0.915607i
\(619\) 13.2353 22.9241i 0.531970 0.921398i −0.467334 0.884081i \(-0.654785\pi\)
0.999303 0.0373175i \(-0.0118813\pi\)
\(620\) −1.83547 −0.0737144
\(621\) −5.79006 + 2.63046i −0.232347 + 0.105557i
\(622\) −9.02415 + 15.6303i −0.361835 + 0.626717i
\(623\) 15.1430 0.606691
\(624\) 10.7379 11.9862i 0.429861 0.479832i
\(625\) 3.12123 0.124849
\(626\) −23.0474 39.9193i −0.921160 1.59550i
\(627\) −0.870983 + 1.76074i −0.0347837 + 0.0703173i
\(628\) 0.0453178 0.0784927i 0.00180838 0.00313220i
\(629\) −0.436849 + 0.756644i −0.0174183 + 0.0301694i
\(630\) −0.983453 8.92457i −0.0391817 0.355563i
\(631\) 7.09305 + 12.2855i 0.282370 + 0.489079i 0.971968 0.235113i \(-0.0755462\pi\)
−0.689598 + 0.724192i \(0.742213\pi\)
\(632\) 8.68564 + 15.0440i 0.345496 + 0.598417i
\(633\) 6.02947 6.73039i 0.239650 0.267509i
\(634\) 21.6066 + 37.4237i 0.858107 + 1.48628i
\(635\) −3.05898 5.29831i −0.121392 0.210257i
\(636\) 6.97836 7.78959i 0.276710 0.308877i
\(637\) 9.84282 0.389987
\(638\) 3.01919 0.119531
\(639\) 45.0232 + 19.7747i 1.78109 + 0.782274i
\(640\) 6.96203 + 12.0586i 0.275198 + 0.476658i
\(641\) 8.29318 + 14.3642i 0.327561 + 0.567352i 0.982027 0.188739i \(-0.0604400\pi\)
−0.654466 + 0.756091i \(0.727107\pi\)
\(642\) −8.18834 1.71896i −0.323168 0.0678419i
\(643\) −22.0545 −0.869745 −0.434872 0.900492i \(-0.643207\pi\)
−0.434872 + 0.900492i \(0.643207\pi\)
\(644\) 1.86958 0.0736716
\(645\) 6.67058 + 1.40034i 0.262654 + 0.0551382i
\(646\) 0.562297 + 0.551880i 0.0221233 + 0.0217134i
\(647\) −20.3310 −0.799292 −0.399646 0.916669i \(-0.630867\pi\)
−0.399646 + 0.916669i \(0.630867\pi\)
\(648\) 13.1005 2.92274i 0.514637 0.114816i
\(649\) −1.04352 + 1.80743i −0.0409618 + 0.0709479i
\(650\) 11.1679 0.438040
\(651\) −1.87818 + 2.09652i −0.0736117 + 0.0821690i
\(652\) 11.3732 19.6990i 0.445411 0.771474i
\(653\) 10.5732 + 18.3133i 0.413761 + 0.716655i 0.995297 0.0968655i \(-0.0308817\pi\)
−0.581537 + 0.813520i \(0.697548\pi\)
\(654\) 37.1471 41.4654i 1.45257 1.62143i
\(655\) 14.7902 0.577901
\(656\) 20.4305 + 35.3867i 0.797679 + 1.38162i
\(657\) 2.18132 + 0.958060i 0.0851015 + 0.0373775i
\(658\) −3.69773 −0.144152
\(659\) −31.4873 −1.22657 −0.613286 0.789861i \(-0.710153\pi\)
−0.613286 + 0.789861i \(0.710153\pi\)
\(660\) 0.655314 + 0.137568i 0.0255081 + 0.00535484i
\(661\) −1.49130 + 2.58300i −0.0580047 + 0.100467i −0.893570 0.448925i \(-0.851807\pi\)
0.835565 + 0.549392i \(0.185140\pi\)
\(662\) 17.2495 0.670423
\(663\) 0.321893 + 0.0675741i 0.0125013 + 0.00262436i
\(664\) 4.52290 7.83389i 0.175523 0.304014i
\(665\) −7.06927 + 1.96522i −0.274135 + 0.0762082i
\(666\) −36.9497 + 27.1307i −1.43177 + 1.05130i
\(667\) 3.99385 6.91754i 0.154642 0.267848i
\(668\) 13.5073 + 23.3953i 0.522611 + 0.905190i
\(669\) −8.36579 1.75621i −0.323440 0.0678990i
\(670\) 1.77888 0.0687241
\(671\) 1.83837 3.18414i 0.0709693 0.122922i
\(672\) −13.0694 2.74363i −0.504163 0.105838i
\(673\) −22.7026 + 39.3221i −0.875122 + 1.51576i −0.0184895 + 0.999829i \(0.505886\pi\)
−0.856633 + 0.515927i \(0.827448\pi\)
\(674\) −29.9914 51.9466i −1.15522 2.00091i
\(675\) 14.2132 + 10.1634i 0.547065 + 0.391190i
\(676\) −11.0438 −0.424762
\(677\) 17.5918 30.4700i 0.676109 1.17106i −0.300034 0.953928i \(-0.596998\pi\)
0.976143 0.217127i \(-0.0696686\pi\)
\(678\) −11.1932 34.1565i −0.429874 1.31177i
\(679\) 15.3645 0.589634
\(680\) −0.0970030 + 0.168014i −0.00371990 + 0.00644305i
\(681\) 7.91532 + 24.1538i 0.303316 + 0.925577i
\(682\) −0.285739 0.494914i −0.0109415 0.0189512i
\(683\) 13.9565 0.534031 0.267015 0.963692i \(-0.413963\pi\)
0.267015 + 0.963692i \(0.413963\pi\)
\(684\) 5.64491 + 14.0961i 0.215839 + 0.538978i
\(685\) −15.1111 −0.577364
\(686\) −14.3488 24.8529i −0.547840 0.948887i
\(687\) 1.99852 + 0.419543i 0.0762481 + 0.0160066i
\(688\) 7.64858 13.2477i 0.291599 0.505065i
\(689\) −9.71311 −0.370040
\(690\) 3.21803 3.59212i 0.122508 0.136750i
\(691\) 5.37036 9.30173i 0.204298 0.353854i −0.745611 0.666382i \(-0.767842\pi\)
0.949909 + 0.312527i \(0.101176\pi\)
\(692\) −6.64531 −0.252617
\(693\) 0.827695 0.607745i 0.0314415 0.0230863i
\(694\) 26.0454 + 45.1119i 0.988668 + 1.71242i
\(695\) −3.34233 + 5.78908i −0.126782 + 0.219592i
\(696\) −11.2493 + 12.5570i −0.426402 + 0.475971i
\(697\) −0.417570 + 0.723252i −0.0158166 + 0.0273951i
\(698\) 6.03885 0.228574
\(699\) −11.6708 35.6138i −0.441430 1.34704i
\(700\) −2.56835 4.44852i −0.0970747 0.168138i
\(701\) −13.3387 + 23.1033i −0.503795 + 0.872599i 0.496195 + 0.868211i \(0.334730\pi\)
−0.999990 + 0.00438802i \(0.998603\pi\)
\(702\) 14.0374 + 10.0377i 0.529807 + 0.378849i
\(703\) 26.7355 + 26.2402i 1.00835 + 0.989669i
\(704\) 0.0614562 0.106445i 0.00231622 0.00401181i
\(705\) −2.33793 + 2.60971i −0.0880515 + 0.0982874i
\(706\) 11.7989 0.444059
\(707\) −9.03444 + 15.6481i −0.339775 + 0.588508i
\(708\) 5.02380 + 15.3303i 0.188806 + 0.576147i
\(709\) 23.1688 0.870123 0.435061 0.900401i \(-0.356727\pi\)
0.435061 + 0.900401i \(0.356727\pi\)
\(710\) −37.2913 −1.39952
\(711\) −28.1657 + 20.6810i −1.05629 + 0.775596i
\(712\) −8.58376 14.8675i −0.321690 0.557184i
\(713\) −1.51193 −0.0566221
\(714\) −0.128254 0.391372i −0.00479980 0.0146467i
\(715\) −0.310945 0.538572i −0.0116287 0.0201414i
\(716\) 4.38944 7.60274i 0.164041 0.284128i
\(717\) −30.1441 6.32807i −1.12575 0.236326i
\(718\) 65.7925 2.45535
\(719\) −7.72298 + 13.3766i −0.288019 + 0.498863i −0.973337 0.229381i \(-0.926330\pi\)
0.685318 + 0.728244i \(0.259663\pi\)
\(720\) −15.3906 + 11.3007i −0.573572 + 0.421152i
\(721\) −10.2322 −0.381065
\(722\) 28.9347 17.4348i 1.07684 0.648855i
\(723\) −3.06657 + 3.42305i −0.114047 + 0.127305i
\(724\) 10.1632 0.377714
\(725\) −21.9464 −0.815068
\(726\) −10.4840 31.9924i −0.389099 1.18735i
\(727\) 18.5288 + 32.0927i 0.687193 + 1.19025i 0.972742 + 0.231890i \(0.0744909\pi\)
−0.285549 + 0.958364i \(0.592176\pi\)
\(728\) 1.83240 + 3.17381i 0.0679134 + 0.117629i
\(729\) 8.73025 + 25.5496i 0.323343 + 0.946282i
\(730\) −1.80672 −0.0668697
\(731\) 0.312651 0.0115638
\(732\) −8.85041 27.0073i −0.327121 0.998218i
\(733\) 18.8660 + 32.6769i 0.696832 + 1.20695i 0.969559 + 0.244857i \(0.0787409\pi\)
−0.272727 + 0.962091i \(0.587926\pi\)
\(734\) −13.0770 22.6501i −0.482682 0.836029i
\(735\) −11.4294 2.39934i −0.421578 0.0885008i
\(736\) −3.58656 6.21210i −0.132202 0.228981i
\(737\) 0.101723 + 0.176189i 0.00374700 + 0.00649000i
\(738\) −35.3191 + 25.9334i −1.30011 + 0.954622i
\(739\) 2.29341 3.97230i 0.0843643 0.146123i −0.820756 0.571279i \(-0.806447\pi\)
0.905120 + 0.425156i \(0.139781\pi\)
\(740\) 6.38466 11.0586i 0.234705 0.406521i
\(741\) 6.25285 12.6405i 0.229704 0.464360i
\(742\) 6.08125 + 10.5330i 0.223250 + 0.386680i
\(743\) −5.67781 −0.208299 −0.104149 0.994562i \(-0.533212\pi\)
−0.104149 + 0.994562i \(0.533212\pi\)
\(744\) 3.12302 + 0.655608i 0.114495 + 0.0240357i
\(745\) 16.9345 0.620434
\(746\) −1.29577 + 2.24434i −0.0474416 + 0.0821713i
\(747\) 16.6598 + 7.31718i 0.609552 + 0.267722i
\(748\) 0.0307146 0.00112304
\(749\) 1.78708 3.09531i 0.0652985 0.113100i
\(750\) −32.2501 6.77019i −1.17761 0.247212i
\(751\) −24.9720 + 43.2529i −0.911243 + 1.57832i −0.0989320 + 0.995094i \(0.531543\pi\)
−0.812311 + 0.583225i \(0.801791\pi\)
\(752\) 3.93179 + 6.81005i 0.143377 + 0.248337i
\(753\) 10.9575 + 2.30029i 0.399314 + 0.0838271i
\(754\) −21.6750 −0.789355
\(755\) −9.44898 + 16.3661i −0.343884 + 0.595624i
\(756\) 0.770061 7.89997i 0.0280069 0.287319i
\(757\) −10.2071 + 17.6792i −0.370984 + 0.642563i −0.989717 0.143038i \(-0.954313\pi\)
0.618733 + 0.785601i \(0.287646\pi\)
\(758\) −27.4664 47.5731i −0.997623 1.72793i
\(759\) 0.539799 + 0.113319i 0.0195935 + 0.00411321i
\(760\) 5.93667 + 5.82669i 0.215346 + 0.211356i
\(761\) 5.85476 + 10.1407i 0.212235 + 0.367601i 0.952414 0.304809i \(-0.0985925\pi\)
−0.740179 + 0.672410i \(0.765259\pi\)
\(762\) −4.58521 13.9919i −0.166105 0.506874i
\(763\) 11.8909 + 20.5956i 0.430479 + 0.745611i
\(764\) 1.58394 + 2.74346i 0.0573048 + 0.0992548i
\(765\) −0.357305 0.156932i −0.0129184 0.00567390i
\(766\) −16.4059 28.4159i −0.592770 1.02671i
\(767\) 7.49151 12.9757i 0.270503 0.468525i
\(768\) 10.9452 + 33.3997i 0.394952 + 1.20521i
\(769\) −22.3655 + 38.7381i −0.806520 + 1.39693i 0.108741 + 0.994070i \(0.465318\pi\)
−0.915260 + 0.402863i \(0.868015\pi\)
\(770\) −0.389356 + 0.674385i −0.0140314 + 0.0243031i
\(771\) −9.02503 27.5402i −0.325029 0.991834i
\(772\) 14.2716 24.7191i 0.513646 0.889662i
\(773\) −1.53754 2.66310i −0.0553014 0.0957849i 0.837049 0.547127i \(-0.184279\pi\)
−0.892351 + 0.451342i \(0.850945\pi\)
\(774\) 15.0192 + 6.59658i 0.539853 +