Properties

Label 171.2.g.c.106.3
Level $171$
Weight $2$
Character 171.106
Analytic conductor $1.365$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 171.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.36544187456\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 106.3
Character \(\chi\) \(=\) 171.106
Dual form 171.2.g.c.121.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.978515 - 1.69484i) q^{2} +(-1.73022 - 0.0795352i) q^{3} +(-0.914982 + 1.58480i) q^{4} -0.196235 q^{5} +(1.55825 + 3.01027i) q^{6} +(-2.23368 + 3.86885i) q^{7} -0.332766 q^{8} +(2.98735 + 0.275227i) q^{9} +O(q^{10})\) \(q+(-0.978515 - 1.69484i) q^{2} +(-1.73022 - 0.0795352i) q^{3} +(-0.914982 + 1.58480i) q^{4} -0.196235 q^{5} +(1.55825 + 3.01027i) q^{6} +(-2.23368 + 3.86885i) q^{7} -0.332766 q^{8} +(2.98735 + 0.275227i) q^{9} +(0.192018 + 0.332586i) q^{10} +(0.0755474 - 0.130852i) q^{11} +(1.70917 - 2.66928i) q^{12} +(-0.234555 + 0.406262i) q^{13} +8.74277 q^{14} +(0.339530 + 0.0156075i) q^{15} +(2.15558 + 3.73357i) q^{16} +(0.441434 - 0.764587i) q^{17} +(-2.45670 - 5.33238i) q^{18} +(-0.132216 + 4.35689i) q^{19} +(0.179551 - 0.310992i) q^{20} +(4.17248 - 6.51633i) q^{21} -0.295697 q^{22} +(-2.57631 + 4.46230i) q^{23} +(0.575759 + 0.0264666i) q^{24} -4.96149 q^{25} +0.918063 q^{26} +(-5.14689 - 0.713804i) q^{27} +(-4.08756 - 7.07986i) q^{28} -1.57810 q^{29} +(-0.305782 - 0.590720i) q^{30} +(-1.37848 - 2.38759i) q^{31} +(3.88577 - 6.73035i) q^{32} +(-0.141121 + 0.220394i) q^{33} -1.72780 q^{34} +(0.438326 - 0.759203i) q^{35} +(-3.16955 + 4.48251i) q^{36} -1.36950 q^{37} +(7.51360 - 4.03920i) q^{38} +(0.438145 - 0.684268i) q^{39} +0.0653001 q^{40} -8.13338 q^{41} +(-15.1269 - 0.695358i) q^{42} +(4.09593 + 7.09436i) q^{43} +(0.138249 + 0.239454i) q^{44} +(-0.586221 - 0.0540091i) q^{45} +10.0838 q^{46} -11.8802 q^{47} +(-3.43269 - 6.63136i) q^{48} +(-6.47868 - 11.2214i) q^{49} +(4.85489 + 8.40892i) q^{50} +(-0.824592 + 1.28780i) q^{51} +(-0.429228 - 0.743444i) q^{52} +(5.86701 + 10.1620i) q^{53} +(3.82653 + 9.42161i) q^{54} +(-0.0148250 + 0.0256777i) q^{55} +(0.743293 - 1.28742i) q^{56} +(0.575290 - 7.52788i) q^{57} +(1.54420 + 2.67463i) q^{58} +1.58868 q^{59} +(-0.335398 + 0.523804i) q^{60} +9.13530 q^{61} +(-2.69772 + 4.67258i) q^{62} +(-7.73760 + 10.9428i) q^{63} -6.58680 q^{64} +(0.0460278 - 0.0797226i) q^{65} +(0.511622 + 0.0235183i) q^{66} +(6.46880 - 11.2043i) q^{67} +(0.807809 + 1.39917i) q^{68} +(4.81250 - 7.51586i) q^{69} -1.71563 q^{70} +(3.90988 - 6.77211i) q^{71} +(-0.994087 - 0.0915862i) q^{72} +(5.72527 - 9.91646i) q^{73} +(1.34008 + 2.32108i) q^{74} +(8.58449 + 0.394613i) q^{75} +(-6.78381 - 4.19601i) q^{76} +(0.337498 + 0.584564i) q^{77} +(-1.58845 - 0.0730183i) q^{78} +(0.964341 + 1.67029i) q^{79} +(-0.422999 - 0.732656i) q^{80} +(8.84850 + 1.64440i) q^{81} +(7.95863 + 13.7848i) q^{82} +(-1.40773 + 2.43826i) q^{83} +(6.50930 + 12.5748i) q^{84} +(-0.0866247 + 0.150038i) q^{85} +(8.01585 - 13.8839i) q^{86} +(2.73047 + 0.125515i) q^{87} +(-0.0251396 + 0.0435430i) q^{88} +(4.84774 + 8.39654i) q^{89} +(0.482089 + 1.04640i) q^{90} +(-1.04784 - 1.81492i) q^{91} +(-4.71455 - 8.16584i) q^{92} +(2.19517 + 4.24070i) q^{93} +(11.6250 + 20.1350i) q^{94} +(0.0259454 - 0.854973i) q^{95} +(-7.25855 + 11.3360i) q^{96} +(-7.61343 - 13.1868i) q^{97} +(-12.6790 + 21.9606i) q^{98} +(0.261700 - 0.370108i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + q^{2} - 2 q^{3} - 17 q^{4} - 6 q^{5} + 2 q^{6} + q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 32 q + q^{2} - 2 q^{3} - 17 q^{4} - 6 q^{5} + 2 q^{6} + q^{7} - 36 q^{8} - 10 q^{9} - 8 q^{10} + 7 q^{11} - 3 q^{12} - 4 q^{13} - 2 q^{14} + q^{15} - 11 q^{16} - 7 q^{17} + 6 q^{18} + 7 q^{19} - 3 q^{20} + 11 q^{21} + 16 q^{22} + 5 q^{23} + 27 q^{24} + 18 q^{25} - 4 q^{26} - 5 q^{27} - 10 q^{28} - 20 q^{29} - 5 q^{30} - 10 q^{31} + 17 q^{32} + 34 q^{33} + 26 q^{34} - 3 q^{35} - 16 q^{36} + 2 q^{37} + 38 q^{38} - 24 q^{40} - 12 q^{41} + 25 q^{42} + 7 q^{43} + 20 q^{44} - 35 q^{45} + 18 q^{47} - 33 q^{48} - 13 q^{49} + q^{50} - 28 q^{51} + 19 q^{52} + 16 q^{53} + 35 q^{54} + 15 q^{55} - 6 q^{56} + 6 q^{57} - 74 q^{59} + 50 q^{60} + 24 q^{61} + 54 q^{62} - 30 q^{63} - 64 q^{64} + 54 q^{65} + 4 q^{66} - 11 q^{67} - 2 q^{68} + 3 q^{69} - 48 q^{70} + 9 q^{71} - 10 q^{73} + 6 q^{74} - 76 q^{75} + 29 q^{76} + 46 q^{77} - 82 q^{78} - 8 q^{79} - 24 q^{80} + 26 q^{81} + 7 q^{82} + 3 q^{83} + 12 q^{84} - 27 q^{85} + 17 q^{86} - 9 q^{87} + 9 q^{88} + 30 q^{89} - 74 q^{90} - q^{91} - 17 q^{92} - 24 q^{93} - 18 q^{94} - 6 q^{95} - 5 q^{96} + 18 q^{98} - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.978515 1.69484i −0.691914 1.19843i −0.971210 0.238226i \(-0.923434\pi\)
0.279295 0.960205i \(-0.409899\pi\)
\(3\) −1.73022 0.0795352i −0.998945 0.0459197i
\(4\) −0.914982 + 1.58480i −0.457491 + 0.792398i
\(5\) −0.196235 −0.0877587 −0.0438794 0.999037i \(-0.513972\pi\)
−0.0438794 + 0.999037i \(0.513972\pi\)
\(6\) 1.55825 + 3.01027i 0.636153 + 1.22894i
\(7\) −2.23368 + 3.86885i −0.844253 + 1.46229i 0.0420154 + 0.999117i \(0.486622\pi\)
−0.886268 + 0.463172i \(0.846711\pi\)
\(8\) −0.332766 −0.117650
\(9\) 2.98735 + 0.275227i 0.995783 + 0.0917424i
\(10\) 0.192018 + 0.332586i 0.0607215 + 0.105173i
\(11\) 0.0755474 0.130852i 0.0227784 0.0394534i −0.854412 0.519597i \(-0.826082\pi\)
0.877190 + 0.480144i \(0.159415\pi\)
\(12\) 1.70917 2.66928i 0.493395 0.770554i
\(13\) −0.234555 + 0.406262i −0.0650539 + 0.112677i −0.896718 0.442603i \(-0.854055\pi\)
0.831664 + 0.555279i \(0.187389\pi\)
\(14\) 8.74277 2.33660
\(15\) 0.339530 + 0.0156075i 0.0876662 + 0.00402985i
\(16\) 2.15558 + 3.73357i 0.538895 + 0.933394i
\(17\) 0.441434 0.764587i 0.107064 0.185440i −0.807516 0.589846i \(-0.799188\pi\)
0.914579 + 0.404406i \(0.132522\pi\)
\(18\) −2.45670 5.33238i −0.579049 1.25685i
\(19\) −0.132216 + 4.35689i −0.0303325 + 0.999540i
\(20\) 0.179551 0.310992i 0.0401488 0.0695398i
\(21\) 4.17248 6.51633i 0.910510 1.42198i
\(22\) −0.295697 −0.0630428
\(23\) −2.57631 + 4.46230i −0.537197 + 0.930453i 0.461856 + 0.886955i \(0.347184\pi\)
−0.999054 + 0.0434982i \(0.986150\pi\)
\(24\) 0.575759 + 0.0264666i 0.117526 + 0.00540247i
\(25\) −4.96149 −0.992298
\(26\) 0.918063 0.180047
\(27\) −5.14689 0.713804i −0.990520 0.137372i
\(28\) −4.08756 7.07986i −0.772476 1.33797i
\(29\) −1.57810 −0.293047 −0.146523 0.989207i \(-0.546808\pi\)
−0.146523 + 0.989207i \(0.546808\pi\)
\(30\) −0.305782 0.590720i −0.0558280 0.107850i
\(31\) −1.37848 2.38759i −0.247582 0.428824i 0.715273 0.698845i \(-0.246302\pi\)
−0.962854 + 0.270022i \(0.912969\pi\)
\(32\) 3.88577 6.73035i 0.686913 1.18977i
\(33\) −0.141121 + 0.220394i −0.0245661 + 0.0383658i
\(34\) −1.72780 −0.296315
\(35\) 0.438326 0.759203i 0.0740906 0.128329i
\(36\) −3.16955 + 4.48251i −0.528258 + 0.747085i
\(37\) −1.36950 −0.225145 −0.112572 0.993644i \(-0.535909\pi\)
−0.112572 + 0.993644i \(0.535909\pi\)
\(38\) 7.51360 4.03920i 1.21887 0.655245i
\(39\) 0.438145 0.684268i 0.0701594 0.109571i
\(40\) 0.0653001 0.0103249
\(41\) −8.13338 −1.27022 −0.635110 0.772422i \(-0.719045\pi\)
−0.635110 + 0.772422i \(0.719045\pi\)
\(42\) −15.1269 0.695358i −2.33414 0.107296i
\(43\) 4.09593 + 7.09436i 0.624623 + 1.08188i 0.988614 + 0.150477i \(0.0480808\pi\)
−0.363990 + 0.931403i \(0.618586\pi\)
\(44\) 0.138249 + 0.239454i 0.0208418 + 0.0360991i
\(45\) −0.586221 0.0540091i −0.0873886 0.00805120i
\(46\) 10.0838 1.48678
\(47\) −11.8802 −1.73291 −0.866453 0.499259i \(-0.833606\pi\)
−0.866453 + 0.499259i \(0.833606\pi\)
\(48\) −3.43269 6.63136i −0.495465 0.957155i
\(49\) −6.47868 11.2214i −0.925526 1.60306i
\(50\) 4.85489 + 8.40892i 0.686586 + 1.18920i
\(51\) −0.824592 + 1.28780i −0.115466 + 0.180328i
\(52\) −0.429228 0.743444i −0.0595232 0.103097i
\(53\) 5.86701 + 10.1620i 0.805895 + 1.39585i 0.915685 + 0.401897i \(0.131649\pi\)
−0.109790 + 0.993955i \(0.535018\pi\)
\(54\) 3.82653 + 9.42161i 0.520724 + 1.28212i
\(55\) −0.0148250 + 0.0256777i −0.00199900 + 0.00346238i
\(56\) 0.743293 1.28742i 0.0993267 0.172039i
\(57\) 0.575290 7.52788i 0.0761990 0.997093i
\(58\) 1.54420 + 2.67463i 0.202763 + 0.351196i
\(59\) 1.58868 0.206829 0.103414 0.994638i \(-0.467023\pi\)
0.103414 + 0.994638i \(0.467023\pi\)
\(60\) −0.335398 + 0.523804i −0.0432997 + 0.0676228i
\(61\) 9.13530 1.16966 0.584828 0.811158i \(-0.301162\pi\)
0.584828 + 0.811158i \(0.301162\pi\)
\(62\) −2.69772 + 4.67258i −0.342610 + 0.593419i
\(63\) −7.73760 + 10.9428i −0.974846 + 1.37867i
\(64\) −6.58680 −0.823350
\(65\) 0.0460278 0.0797226i 0.00570905 0.00988837i
\(66\) 0.511622 + 0.0235183i 0.0629763 + 0.00289490i
\(67\) 6.46880 11.2043i 0.790289 1.36882i −0.135499 0.990778i \(-0.543264\pi\)
0.925788 0.378044i \(-0.123403\pi\)
\(68\) 0.807809 + 1.39917i 0.0979612 + 0.169674i
\(69\) 4.81250 7.51586i 0.579357 0.904804i
\(70\) −1.71563 −0.205057
\(71\) 3.90988 6.77211i 0.464017 0.803702i −0.535139 0.844764i \(-0.679741\pi\)
0.999157 + 0.0410621i \(0.0130742\pi\)
\(72\) −0.994087 0.0915862i −0.117154 0.0107935i
\(73\) 5.72527 9.91646i 0.670092 1.16063i −0.307785 0.951456i \(-0.599588\pi\)
0.977878 0.209178i \(-0.0670788\pi\)
\(74\) 1.34008 + 2.32108i 0.155781 + 0.269821i
\(75\) 8.58449 + 0.394613i 0.991252 + 0.0455660i
\(76\) −6.78381 4.19601i −0.778156 0.481316i
\(77\) 0.337498 + 0.584564i 0.0384615 + 0.0666172i
\(78\) −1.58845 0.0730183i −0.179857 0.00826769i
\(79\) 0.964341 + 1.67029i 0.108497 + 0.187922i 0.915162 0.403087i \(-0.132063\pi\)
−0.806665 + 0.591009i \(0.798730\pi\)
\(80\) −0.422999 0.732656i −0.0472928 0.0819134i
\(81\) 8.84850 + 1.64440i 0.983167 + 0.182711i
\(82\) 7.95863 + 13.7848i 0.878884 + 1.52227i
\(83\) −1.40773 + 2.43826i −0.154518 + 0.267633i −0.932884 0.360178i \(-0.882716\pi\)
0.778365 + 0.627812i \(0.216049\pi\)
\(84\) 6.50930 + 12.5748i 0.710222 + 1.37203i
\(85\) −0.0866247 + 0.150038i −0.00939576 + 0.0162739i
\(86\) 8.01585 13.8839i 0.864372 1.49714i
\(87\) 2.73047 + 0.125515i 0.292738 + 0.0134566i
\(88\) −0.0251396 + 0.0435430i −0.00267989 + 0.00464170i
\(89\) 4.84774 + 8.39654i 0.513860 + 0.890031i 0.999871 + 0.0160786i \(0.00511821\pi\)
−0.486011 + 0.873953i \(0.661548\pi\)
\(90\) 0.482089 + 1.04640i 0.0508167 + 0.110300i
\(91\) −1.04784 1.81492i −0.109844 0.190255i
\(92\) −4.71455 8.16584i −0.491526 0.851348i
\(93\) 2.19517 + 4.24070i 0.227629 + 0.439740i
\(94\) 11.6250 + 20.1350i 1.19902 + 2.07677i
\(95\) 0.0259454 0.854973i 0.00266194 0.0877184i
\(96\) −7.25855 + 11.3360i −0.740822 + 1.15697i
\(97\) −7.61343 13.1868i −0.773026 1.33892i −0.935897 0.352274i \(-0.885409\pi\)
0.162871 0.986647i \(-0.447925\pi\)
\(98\) −12.6790 + 21.9606i −1.28077 + 2.21836i
\(99\) 0.261700 0.370108i 0.0263019 0.0371972i
\(100\) 4.53968 7.86295i 0.453968 0.786295i
\(101\) −14.6934 −1.46204 −0.731022 0.682354i \(-0.760956\pi\)
−0.731022 + 0.682354i \(0.760956\pi\)
\(102\) 2.98948 + 0.137421i 0.296003 + 0.0136067i
\(103\) 5.86742 + 10.1627i 0.578134 + 1.00136i 0.995693 + 0.0927076i \(0.0295522\pi\)
−0.417560 + 0.908650i \(0.637114\pi\)
\(104\) 0.0780519 0.135190i 0.00765362 0.0132565i
\(105\) −0.818785 + 1.27873i −0.0799052 + 0.124791i
\(106\) 11.4819 19.8872i 1.11522 1.93162i
\(107\) −7.10478 −0.686845 −0.343422 0.939181i \(-0.611586\pi\)
−0.343422 + 0.939181i \(0.611586\pi\)
\(108\) 5.84055 7.50365i 0.562007 0.722039i
\(109\) −5.92520 + 10.2627i −0.567531 + 0.982992i 0.429278 + 0.903172i \(0.358768\pi\)
−0.996809 + 0.0798200i \(0.974565\pi\)
\(110\) 0.0580260 0.00553256
\(111\) 2.36955 + 0.108924i 0.224907 + 0.0103386i
\(112\) −19.2595 −1.81985
\(113\) −4.99898 8.65848i −0.470264 0.814521i 0.529158 0.848524i \(-0.322508\pi\)
−0.999422 + 0.0340022i \(0.989175\pi\)
\(114\) −13.3215 + 6.39112i −1.24767 + 0.598583i
\(115\) 0.505561 0.875656i 0.0471438 0.0816554i
\(116\) 1.44394 2.50097i 0.134066 0.232209i
\(117\) −0.812513 + 1.14909i −0.0751168 + 0.106233i
\(118\) −1.55455 2.69255i −0.143108 0.247870i
\(119\) 1.97205 + 3.41569i 0.180777 + 0.313116i
\(120\) −0.112984 0.00519366i −0.0103140 0.000474114i
\(121\) 5.48859 + 9.50651i 0.498962 + 0.864228i
\(122\) −8.93903 15.4828i −0.809301 1.40175i
\(123\) 14.0726 + 0.646890i 1.26888 + 0.0583281i
\(124\) 5.04512 0.453065
\(125\) 1.95479 0.174842
\(126\) 26.1177 + 2.40625i 2.32675 + 0.214366i
\(127\) 1.43057 + 2.47782i 0.126943 + 0.219871i 0.922491 0.386020i \(-0.126150\pi\)
−0.795548 + 0.605891i \(0.792817\pi\)
\(128\) −1.32625 2.29714i −0.117225 0.203040i
\(129\) −6.52262 12.6006i −0.574285 1.10942i
\(130\) −0.180156 −0.0158007
\(131\) 2.70228 0.236100 0.118050 0.993008i \(-0.462336\pi\)
0.118050 + 0.993008i \(0.462336\pi\)
\(132\) −0.220157 0.425305i −0.0191622 0.0370181i
\(133\) −16.5609 10.2434i −1.43601 0.888219i
\(134\) −25.3192 −2.18725
\(135\) 1.01000 + 0.140073i 0.0869268 + 0.0120556i
\(136\) −0.146894 + 0.254428i −0.0125961 + 0.0218170i
\(137\) 15.8061 1.35041 0.675205 0.737630i \(-0.264055\pi\)
0.675205 + 0.737630i \(0.264055\pi\)
\(138\) −17.4473 0.802018i −1.48521 0.0682723i
\(139\) −1.23741 + 2.14325i −0.104956 + 0.181788i −0.913720 0.406344i \(-0.866803\pi\)
0.808765 + 0.588133i \(0.200137\pi\)
\(140\) 0.802120 + 1.38931i 0.0677915 + 0.117418i
\(141\) 20.5554 + 0.944894i 1.73108 + 0.0795744i
\(142\) −15.3035 −1.28424
\(143\) 0.0354401 + 0.0613840i 0.00296365 + 0.00513319i
\(144\) 5.41189 + 11.7468i 0.450991 + 0.978897i
\(145\) 0.309679 0.0257174
\(146\) −22.4090 −1.85459
\(147\) 10.3171 + 19.9308i 0.850938 + 1.64387i
\(148\) 1.25307 2.17038i 0.103002 0.178404i
\(149\) 16.6974 1.36790 0.683952 0.729527i \(-0.260260\pi\)
0.683952 + 0.729527i \(0.260260\pi\)
\(150\) −7.73125 14.9354i −0.631254 1.21947i
\(151\) −5.32769 + 9.22783i −0.433561 + 0.750950i −0.997177 0.0750871i \(-0.976077\pi\)
0.563616 + 0.826037i \(0.309410\pi\)
\(152\) 0.0439970 1.44982i 0.00356863 0.117596i
\(153\) 1.52915 2.16259i 0.123625 0.174835i
\(154\) 0.660494 1.14401i 0.0532241 0.0921868i
\(155\) 0.270504 + 0.468528i 0.0217274 + 0.0376330i
\(156\) 0.683530 + 1.32046i 0.0547262 + 0.105722i
\(157\) −8.73989 −0.697519 −0.348760 0.937212i \(-0.613397\pi\)
−0.348760 + 0.937212i \(0.613397\pi\)
\(158\) 1.88724 3.26880i 0.150141 0.260052i
\(159\) −9.34300 18.0491i −0.740948 1.43139i
\(160\) −0.762522 + 1.32073i −0.0602826 + 0.104413i
\(161\) −11.5093 19.9347i −0.907061 1.57108i
\(162\) −5.87140 16.6058i −0.461301 1.30468i
\(163\) −6.73838 −0.527791 −0.263895 0.964551i \(-0.585007\pi\)
−0.263895 + 0.964551i \(0.585007\pi\)
\(164\) 7.44190 12.8897i 0.581114 1.00652i
\(165\) 0.0276929 0.0432490i 0.00215589 0.00336693i
\(166\) 5.50993 0.427654
\(167\) −5.38887 + 9.33380i −0.417004 + 0.722271i −0.995636 0.0933167i \(-0.970253\pi\)
0.578633 + 0.815588i \(0.303586\pi\)
\(168\) −1.38846 + 2.16841i −0.107122 + 0.167296i
\(169\) 6.38997 + 11.0677i 0.491536 + 0.851365i
\(170\) 0.339054 0.0260043
\(171\) −1.59411 + 12.9792i −0.121905 + 0.992542i
\(172\) −14.9908 −1.14304
\(173\) 10.8789 + 18.8428i 0.827109 + 1.43259i 0.900297 + 0.435276i \(0.143349\pi\)
−0.0731880 + 0.997318i \(0.523317\pi\)
\(174\) −2.45908 4.75053i −0.186422 0.360136i
\(175\) 11.0824 19.1953i 0.837751 1.45103i
\(176\) 0.651394 0.0491007
\(177\) −2.74877 0.126356i −0.206610 0.00949750i
\(178\) 9.48718 16.4323i 0.711094 1.23165i
\(179\) −14.4126 −1.07725 −0.538623 0.842547i \(-0.681055\pi\)
−0.538623 + 0.842547i \(0.681055\pi\)
\(180\) 0.621975 0.879623i 0.0463593 0.0655632i
\(181\) 0.775446 + 1.34311i 0.0576384 + 0.0998327i 0.893405 0.449252i \(-0.148310\pi\)
−0.835766 + 0.549085i \(0.814976\pi\)
\(182\) −2.05066 + 3.55185i −0.152005 + 0.263281i
\(183\) −15.8061 0.726578i −1.16842 0.0537102i
\(184\) 0.857307 1.48490i 0.0632015 0.109468i
\(185\) 0.268744 0.0197584
\(186\) 5.03929 7.87005i 0.369499 0.577060i
\(187\) −0.0666985 0.115525i −0.00487747 0.00844803i
\(188\) 10.8702 18.8277i 0.792789 1.37315i
\(189\) 14.2581 18.3182i 1.03713 1.33245i
\(190\) −1.47443 + 0.792630i −0.106966 + 0.0575034i
\(191\) 2.32553 4.02794i 0.168270 0.291452i −0.769542 0.638596i \(-0.779515\pi\)
0.937812 + 0.347145i \(0.112849\pi\)
\(192\) 11.3966 + 0.523882i 0.822482 + 0.0378080i
\(193\) 9.20254 0.662413 0.331207 0.943558i \(-0.392544\pi\)
0.331207 + 0.943558i \(0.392544\pi\)
\(194\) −14.8997 + 25.8070i −1.06974 + 1.85284i
\(195\) −0.0859792 + 0.134277i −0.00615710 + 0.00961578i
\(196\) 23.7115 1.69368
\(197\) 22.3492 1.59232 0.796158 0.605089i \(-0.206862\pi\)
0.796158 + 0.605089i \(0.206862\pi\)
\(198\) −0.883350 0.0813839i −0.0627770 0.00578370i
\(199\) −9.48803 16.4337i −0.672588 1.16496i −0.977168 0.212470i \(-0.931849\pi\)
0.304579 0.952487i \(-0.401484\pi\)
\(200\) 1.65101 0.116744
\(201\) −12.0836 + 18.8714i −0.852311 + 1.33109i
\(202\) 14.3777 + 24.9029i 1.01161 + 1.75216i
\(203\) 3.52499 6.10545i 0.247406 0.428519i
\(204\) −1.28641 2.48512i −0.0900665 0.173993i
\(205\) 1.59605 0.111473
\(206\) 11.4827 19.8886i 0.800038 1.38571i
\(207\) −8.92447 + 12.6214i −0.620294 + 0.877245i
\(208\) −2.02241 −0.140229
\(209\) 0.560119 + 0.346453i 0.0387443 + 0.0239646i
\(210\) 2.96843 + 0.136453i 0.204841 + 0.00941616i
\(211\) 6.91716 0.476197 0.238099 0.971241i \(-0.423476\pi\)
0.238099 + 0.971241i \(0.423476\pi\)
\(212\) −21.4728 −1.47476
\(213\) −7.30359 + 11.4063i −0.500434 + 0.781546i
\(214\) 6.95213 + 12.0414i 0.475238 + 0.823136i
\(215\) −0.803763 1.39216i −0.0548162 0.0949444i
\(216\) 1.71271 + 0.237530i 0.116535 + 0.0161618i
\(217\) 12.3163 0.836086
\(218\) 23.1916 1.57073
\(219\) −10.6947 + 16.7023i −0.722681 + 1.12864i
\(220\) −0.0271292 0.0469892i −0.00182905 0.00316801i
\(221\) 0.207082 + 0.358676i 0.0139298 + 0.0241271i
\(222\) −2.13403 4.12258i −0.143227 0.276689i
\(223\) −6.26352 10.8487i −0.419436 0.726485i 0.576446 0.817135i \(-0.304439\pi\)
−0.995883 + 0.0906498i \(0.971106\pi\)
\(224\) 17.3591 + 30.0669i 1.15986 + 2.00893i
\(225\) −14.8217 1.36554i −0.988114 0.0910359i
\(226\) −9.78314 + 16.9449i −0.650765 + 1.12716i
\(227\) 2.70163 4.67937i 0.179314 0.310581i −0.762332 0.647186i \(-0.775946\pi\)
0.941646 + 0.336606i \(0.109279\pi\)
\(228\) 11.4038 + 7.79959i 0.755233 + 0.516541i
\(229\) −4.76720 8.25703i −0.315025 0.545640i 0.664417 0.747362i \(-0.268680\pi\)
−0.979443 + 0.201722i \(0.935346\pi\)
\(230\) −1.97879 −0.130478
\(231\) −0.537454 1.03827i −0.0353619 0.0683131i
\(232\) 0.525139 0.0344771
\(233\) 0.398324 0.689917i 0.0260951 0.0451980i −0.852683 0.522429i \(-0.825026\pi\)
0.878778 + 0.477231i \(0.158359\pi\)
\(234\) 2.74257 + 0.252676i 0.179288 + 0.0165179i
\(235\) 2.33131 0.152078
\(236\) −1.45361 + 2.51773i −0.0946222 + 0.163890i
\(237\) −1.53568 2.96667i −0.0997531 0.192706i
\(238\) 3.85936 6.68460i 0.250165 0.433299i
\(239\) 4.00503 + 6.93691i 0.259064 + 0.448711i 0.965991 0.258574i \(-0.0832527\pi\)
−0.706928 + 0.707286i \(0.749919\pi\)
\(240\) 0.673611 + 1.30130i 0.0434814 + 0.0839987i
\(241\) −16.5909 −1.06871 −0.534356 0.845260i \(-0.679446\pi\)
−0.534356 + 0.845260i \(0.679446\pi\)
\(242\) 10.7413 18.6045i 0.690478 1.19594i
\(243\) −15.1791 3.54895i −0.973740 0.227665i
\(244\) −8.35864 + 14.4776i −0.535107 + 0.926832i
\(245\) 1.27134 + 2.20203i 0.0812230 + 0.140682i
\(246\) −12.6738 24.4837i −0.808055 1.56102i
\(247\) −1.73903 1.07565i −0.110652 0.0684418i
\(248\) 0.458709 + 0.794508i 0.0291281 + 0.0504513i
\(249\) 2.62961 4.10677i 0.166645 0.260256i
\(250\) −1.91279 3.31305i −0.120975 0.209536i
\(251\) 11.2878 + 19.5511i 0.712480 + 1.23405i 0.963923 + 0.266180i \(0.0857615\pi\)
−0.251443 + 0.967872i \(0.580905\pi\)
\(252\) −10.2624 22.2750i −0.646470 1.40319i
\(253\) 0.389267 + 0.674230i 0.0244730 + 0.0423885i
\(254\) 2.79967 4.84917i 0.175667 0.304264i
\(255\) 0.161813 0.252710i 0.0101331 0.0158253i
\(256\) −9.18232 + 15.9042i −0.573895 + 0.994015i
\(257\) −9.13747 + 15.8266i −0.569980 + 0.987234i 0.426587 + 0.904446i \(0.359716\pi\)
−0.996567 + 0.0827879i \(0.973618\pi\)
\(258\) −14.9735 + 23.3846i −0.932208 + 1.45586i
\(259\) 3.05904 5.29841i 0.190079 0.329227i
\(260\) 0.0842293 + 0.145889i 0.00522368 + 0.00904768i
\(261\) −4.71435 0.434337i −0.291811 0.0268848i
\(262\) −2.64422 4.57993i −0.163361 0.282949i
\(263\) 6.87838 + 11.9137i 0.424139 + 0.734631i 0.996340 0.0854830i \(-0.0272433\pi\)
−0.572200 + 0.820114i \(0.693910\pi\)
\(264\) 0.0469603 0.0733397i 0.00289021 0.00451375i
\(265\) −1.15131 1.99413i −0.0707244 0.122498i
\(266\) −1.15593 + 38.0913i −0.0708749 + 2.33553i
\(267\) −7.71986 14.9135i −0.472448 0.912689i
\(268\) 11.8377 + 20.5034i 0.723100 + 1.25245i
\(269\) −6.63512 + 11.4924i −0.404551 + 0.700702i −0.994269 0.106907i \(-0.965905\pi\)
0.589718 + 0.807609i \(0.299239\pi\)
\(270\) −0.750897 1.84885i −0.0456981 0.112517i
\(271\) −11.4102 + 19.7630i −0.693119 + 1.20052i 0.277691 + 0.960670i \(0.410431\pi\)
−0.970811 + 0.239847i \(0.922903\pi\)
\(272\) 3.80619 0.230784
\(273\) 1.66866 + 3.22356i 0.100992 + 0.195099i
\(274\) −15.4665 26.7888i −0.934368 1.61837i
\(275\) −0.374828 + 0.649221i −0.0226030 + 0.0391495i
\(276\) 7.50775 + 14.5037i 0.451914 + 0.873020i
\(277\) 2.60433 4.51083i 0.156479 0.271030i −0.777118 0.629355i \(-0.783319\pi\)
0.933597 + 0.358326i \(0.116652\pi\)
\(278\) 4.84328 0.290481
\(279\) −3.46086 7.51196i −0.207196 0.449729i
\(280\) −0.145860 + 0.252637i −0.00871679 + 0.0150979i
\(281\) −9.52031 −0.567934 −0.283967 0.958834i \(-0.591651\pi\)
−0.283967 + 0.958834i \(0.591651\pi\)
\(282\) −18.5123 35.7627i −1.10239 2.12964i
\(283\) 10.5770 0.628737 0.314368 0.949301i \(-0.398207\pi\)
0.314368 + 0.949301i \(0.398207\pi\)
\(284\) 7.15494 + 12.3927i 0.424568 + 0.735373i
\(285\) −0.112892 + 1.47723i −0.00668713 + 0.0875036i
\(286\) 0.0693573 0.120130i 0.00410118 0.00710346i
\(287\) 18.1674 31.4669i 1.07239 1.85743i
\(288\) 13.4605 19.0364i 0.793169 1.12173i
\(289\) 8.11027 + 14.0474i 0.477075 + 0.826318i
\(290\) −0.303025 0.524855i −0.0177942 0.0308205i
\(291\) 12.1241 + 23.4217i 0.710728 + 1.37301i
\(292\) 10.4770 + 18.1468i 0.613122 + 1.06196i
\(293\) 7.26863 + 12.5896i 0.424638 + 0.735494i 0.996387 0.0849345i \(-0.0270681\pi\)
−0.571749 + 0.820429i \(0.693735\pi\)
\(294\) 23.6841 36.9884i 1.38128 2.15721i
\(295\) −0.311754 −0.0181510
\(296\) 0.455724 0.0264884
\(297\) −0.482237 + 0.619555i −0.0279822 + 0.0359502i
\(298\) −16.3386 28.2993i −0.946472 1.63934i
\(299\) −1.20857 2.09331i −0.0698936 0.121059i
\(300\) −8.48004 + 13.2436i −0.489595 + 0.764619i
\(301\) −36.5960 −2.10936
\(302\) 20.8529 1.19995
\(303\) 25.4228 + 1.16864i 1.46050 + 0.0671366i
\(304\) −16.5518 + 8.89799i −0.949310 + 0.510335i
\(305\) −1.79266 −0.102648
\(306\) −5.16154 0.475538i −0.295066 0.0271847i
\(307\) 11.2958 19.5649i 0.644687 1.11663i −0.339687 0.940539i \(-0.610321\pi\)
0.984374 0.176092i \(-0.0563456\pi\)
\(308\) −1.23522 −0.0703831
\(309\) −9.34366 18.0504i −0.531542 1.02685i
\(310\) 0.529385 0.916922i 0.0300671 0.0520777i
\(311\) −16.6494 28.8377i −0.944103 1.63523i −0.757538 0.652791i \(-0.773598\pi\)
−0.186564 0.982443i \(-0.559735\pi\)
\(312\) −0.145800 + 0.227701i −0.00825428 + 0.0128910i
\(313\) 14.7578 0.834158 0.417079 0.908870i \(-0.363054\pi\)
0.417079 + 0.908870i \(0.363054\pi\)
\(314\) 8.55211 + 14.8127i 0.482623 + 0.835928i
\(315\) 1.51839 2.14736i 0.0855513 0.120990i
\(316\) −3.52942 −0.198545
\(317\) 7.61430 0.427662 0.213831 0.976871i \(-0.431406\pi\)
0.213831 + 0.976871i \(0.431406\pi\)
\(318\) −21.4480 + 33.4962i −1.20274 + 1.87837i
\(319\) −0.119222 + 0.206498i −0.00667513 + 0.0115617i
\(320\) 1.29256 0.0722562
\(321\) 12.2929 + 0.565080i 0.686120 + 0.0315397i
\(322\) −22.5241 + 39.0128i −1.25522 + 2.17410i
\(323\) 3.27286 + 2.02437i 0.182107 + 0.112639i
\(324\) −10.7023 + 12.5185i −0.594570 + 0.695470i
\(325\) 1.16374 2.01566i 0.0645529 0.111809i
\(326\) 6.59361 + 11.4205i 0.365186 + 0.632521i
\(327\) 11.0682 17.2856i 0.612071 0.955894i
\(328\) 2.70651 0.149442
\(329\) 26.5366 45.9628i 1.46301 2.53401i
\(330\) −0.100398 0.00461511i −0.00552672 0.000254053i
\(331\) −0.881101 + 1.52611i −0.0484297 + 0.0838826i −0.889224 0.457472i \(-0.848755\pi\)
0.840794 + 0.541355i \(0.182088\pi\)
\(332\) −2.57609 4.46192i −0.141381 0.244880i
\(333\) −4.09118 0.376925i −0.224195 0.0206553i
\(334\) 21.0924 1.15412
\(335\) −1.26940 + 2.19867i −0.0693548 + 0.120126i
\(336\) 33.3233 + 1.53181i 1.81794 + 0.0835671i
\(337\) −14.8632 −0.809652 −0.404826 0.914394i \(-0.632668\pi\)
−0.404826 + 0.914394i \(0.632668\pi\)
\(338\) 12.5054 21.6599i 0.680202 1.17814i
\(339\) 7.96069 + 15.3787i 0.432366 + 0.835256i
\(340\) −0.158520 0.274565i −0.00859695 0.0148904i
\(341\) −0.416561 −0.0225580
\(342\) 23.5574 9.99855i 1.27384 0.540660i
\(343\) 26.6137 1.43701
\(344\) −1.36298 2.36076i −0.0734872 0.127284i
\(345\) −0.944378 + 1.47487i −0.0508436 + 0.0794044i
\(346\) 21.2904 36.8760i 1.14458 1.98247i
\(347\) −17.8141 −0.956310 −0.478155 0.878275i \(-0.658694\pi\)
−0.478155 + 0.878275i \(0.658694\pi\)
\(348\) −2.69725 + 4.21240i −0.144588 + 0.225808i
\(349\) −8.22239 + 14.2416i −0.440134 + 0.762335i −0.997699 0.0677984i \(-0.978403\pi\)
0.557565 + 0.830134i \(0.311736\pi\)
\(350\) −43.3772 −2.31861
\(351\) 1.49722 1.92356i 0.0799158 0.102672i
\(352\) −0.587119 1.01692i −0.0312936 0.0542021i
\(353\) 5.08611 8.80940i 0.270706 0.468877i −0.698337 0.715770i \(-0.746076\pi\)
0.969043 + 0.246892i \(0.0794094\pi\)
\(354\) 2.47556 + 4.78236i 0.131575 + 0.254180i
\(355\) −0.767254 + 1.32892i −0.0407216 + 0.0705319i
\(356\) −17.7424 −0.940345
\(357\) −3.14042 6.06675i −0.166209 0.321087i
\(358\) 14.1029 + 24.4269i 0.745362 + 1.29100i
\(359\) 17.4994 30.3098i 0.923580 1.59969i 0.129752 0.991546i \(-0.458582\pi\)
0.793828 0.608142i \(-0.208085\pi\)
\(360\) 0.195074 + 0.0179724i 0.0102813 + 0.000947227i
\(361\) −18.9650 1.15210i −0.998160 0.0606370i
\(362\) 1.51757 2.62851i 0.0797617 0.138151i
\(363\) −8.74038 16.8849i −0.458751 0.886229i
\(364\) 3.83503 0.201010
\(365\) −1.12350 + 1.94595i −0.0588064 + 0.101856i
\(366\) 14.2351 + 27.4998i 0.744080 + 1.43744i
\(367\) 1.71482 0.0895127 0.0447564 0.998998i \(-0.485749\pi\)
0.0447564 + 0.998998i \(0.485749\pi\)
\(368\) −22.2137 −1.15797
\(369\) −24.2972 2.23853i −1.26486 0.116533i
\(370\) −0.262970 0.455477i −0.0136711 0.0236791i
\(371\) −52.4201 −2.72152
\(372\) −8.72919 0.401265i −0.452587 0.0208046i
\(373\) 16.8990 + 29.2699i 0.874996 + 1.51554i 0.856767 + 0.515703i \(0.172469\pi\)
0.0182282 + 0.999834i \(0.494197\pi\)
\(374\) −0.130531 + 0.226086i −0.00674959 + 0.0116906i
\(375\) −3.38222 0.155474i −0.174657 0.00802867i
\(376\) 3.95332 0.203877
\(377\) 0.370153 0.641123i 0.0190638 0.0330195i
\(378\) −44.9981 6.24062i −2.31445 0.320983i
\(379\) 16.5713 0.851211 0.425605 0.904909i \(-0.360061\pi\)
0.425605 + 0.904909i \(0.360061\pi\)
\(380\) 1.33122 + 0.823403i 0.0682900 + 0.0422397i
\(381\) −2.27813 4.40096i −0.116712 0.225468i
\(382\) −9.10227 −0.465713
\(383\) −11.6835 −0.597001 −0.298501 0.954409i \(-0.596487\pi\)
−0.298501 + 0.954409i \(0.596487\pi\)
\(384\) 2.11201 + 4.08004i 0.107778 + 0.208209i
\(385\) −0.0662288 0.114712i −0.00337533 0.00584624i
\(386\) −9.00482 15.5968i −0.458333 0.793856i
\(387\) 10.2834 + 22.3206i 0.522735 + 1.13462i
\(388\) 27.8646 1.41461
\(389\) 25.6990 1.30299 0.651496 0.758652i \(-0.274142\pi\)
0.651496 + 0.758652i \(0.274142\pi\)
\(390\) 0.311710 + 0.0143287i 0.0157840 + 0.000725563i
\(391\) 2.27454 + 3.93962i 0.115029 + 0.199235i
\(392\) 2.15588 + 3.73410i 0.108889 + 0.188601i
\(393\) −4.67556 0.214927i −0.235851 0.0108416i
\(394\) −21.8690 37.8783i −1.10175 1.90828i
\(395\) −0.189237 0.327768i −0.00952155 0.0164918i
\(396\) 0.347094 + 0.753384i 0.0174421 + 0.0378589i
\(397\) 1.27823 2.21396i 0.0641525 0.111115i −0.832165 0.554528i \(-0.812899\pi\)
0.896318 + 0.443412i \(0.146232\pi\)
\(398\) −18.5683 + 32.1613i −0.930747 + 1.61210i
\(399\) 27.8393 + 19.0406i 1.39371 + 0.953223i
\(400\) −10.6949 18.5241i −0.534745 0.926205i
\(401\) −22.4419 −1.12069 −0.560347 0.828258i \(-0.689332\pi\)
−0.560347 + 0.828258i \(0.689332\pi\)
\(402\) 43.8080 + 2.01377i 2.18494 + 0.100438i
\(403\) 1.29331 0.0644246
\(404\) 13.4442 23.2860i 0.668872 1.15852i
\(405\) −1.73638 0.322688i −0.0862815 0.0160345i
\(406\) −13.7970 −0.684734
\(407\) −0.103462 + 0.179202i −0.00512844 + 0.00888272i
\(408\) 0.274396 0.428535i 0.0135846 0.0212156i
\(409\) −4.28942 + 7.42950i −0.212098 + 0.367365i −0.952371 0.304942i \(-0.901363\pi\)
0.740273 + 0.672307i \(0.234696\pi\)
\(410\) −1.56176 2.70504i −0.0771297 0.133593i
\(411\) −27.3482 1.25714i −1.34898 0.0620103i
\(412\) −21.4743 −1.05796
\(413\) −3.54861 + 6.14637i −0.174616 + 0.302443i
\(414\) 30.1239 + 2.77534i 1.48051 + 0.136401i
\(415\) 0.276245 0.478470i 0.0135603 0.0234872i
\(416\) 1.82285 + 3.15728i 0.0893728 + 0.154798i
\(417\) 2.31146 3.60989i 0.113192 0.176777i
\(418\) 0.0390959 1.28832i 0.00191224 0.0630138i
\(419\) −10.3066 17.8516i −0.503511 0.872106i −0.999992 0.00405866i \(-0.998708\pi\)
0.496481 0.868048i \(-0.334625\pi\)
\(420\) −1.27735 2.46762i −0.0623282 0.120408i
\(421\) −3.56881 6.18136i −0.173933 0.301261i 0.765858 0.643009i \(-0.222314\pi\)
−0.939792 + 0.341748i \(0.888981\pi\)
\(422\) −6.76854 11.7235i −0.329488 0.570689i
\(423\) −35.4903 3.26976i −1.72560 0.158981i
\(424\) −1.95234 3.38155i −0.0948139 0.164223i
\(425\) −2.19017 + 3.79349i −0.106239 + 0.184011i
\(426\) 26.4785 + 1.21717i 1.28289 + 0.0589719i
\(427\) −20.4054 + 35.3431i −0.987485 + 1.71037i
\(428\) 6.50074 11.2596i 0.314225 0.544254i
\(429\) −0.0564371 0.109027i −0.00272481 0.00526387i
\(430\) −1.57299 + 2.72449i −0.0758562 + 0.131387i
\(431\) 3.59358 + 6.22427i 0.173097 + 0.299813i 0.939501 0.342546i \(-0.111289\pi\)
−0.766404 + 0.642359i \(0.777956\pi\)
\(432\) −8.42949 20.7550i −0.405564 0.998573i
\(433\) −12.0394 20.8529i −0.578578 1.00213i −0.995643 0.0932498i \(-0.970274\pi\)
0.417065 0.908877i \(-0.363059\pi\)
\(434\) −12.0517 20.8741i −0.578500 1.00199i
\(435\) −0.535813 0.0246303i −0.0256903 0.00118093i
\(436\) −10.8429 18.7804i −0.519280 0.899420i
\(437\) −19.1011 11.8147i −0.913730 0.565173i
\(438\) 38.7727 + 1.78231i 1.85263 + 0.0851619i
\(439\) 7.12727 + 12.3448i 0.340166 + 0.589184i 0.984463 0.175591i \(-0.0561835\pi\)
−0.644297 + 0.764775i \(0.722850\pi\)
\(440\) 0.00493326 0.00854465i 0.000235184 0.000407350i
\(441\) −16.2656 35.3054i −0.774554 1.68121i
\(442\) 0.405265 0.701939i 0.0192765 0.0333878i
\(443\) 11.9991 0.570093 0.285047 0.958514i \(-0.407991\pi\)
0.285047 + 0.958514i \(0.407991\pi\)
\(444\) −2.34071 + 3.65558i −0.111085 + 0.173486i
\(445\) −0.951295 1.64769i −0.0450957 0.0781080i
\(446\) −12.2579 + 21.2313i −0.580428 + 1.00533i
\(447\) −28.8902 1.32803i −1.36646 0.0628136i
\(448\) 14.7128 25.4834i 0.695116 1.20398i
\(449\) −16.5849 −0.782689 −0.391345 0.920244i \(-0.627990\pi\)
−0.391345 + 0.920244i \(0.627990\pi\)
\(450\) 12.1889 + 26.4566i 0.574590 + 1.24717i
\(451\) −0.614456 + 1.06427i −0.0289336 + 0.0501145i
\(452\) 18.2959 0.860566
\(453\) 9.95203 15.5425i 0.467587 0.730249i
\(454\) −10.5744 −0.496279
\(455\) 0.205623 + 0.356150i 0.00963977 + 0.0166966i
\(456\) −0.191437 + 2.50502i −0.00896484 + 0.117308i
\(457\) −1.23271 + 2.13512i −0.0576639 + 0.0998768i −0.893416 0.449230i \(-0.851699\pi\)
0.835752 + 0.549106i \(0.185032\pi\)
\(458\) −9.32955 + 16.1593i −0.435941 + 0.755072i
\(459\) −2.81778 + 3.62015i −0.131523 + 0.168974i
\(460\) 0.925157 + 1.60242i 0.0431357 + 0.0747132i
\(461\) 13.2340 + 22.9219i 0.616368 + 1.06758i 0.990143 + 0.140062i \(0.0447300\pi\)
−0.373775 + 0.927520i \(0.621937\pi\)
\(462\) −1.23379 + 1.92686i −0.0574011 + 0.0896455i
\(463\) −7.78625 13.4862i −0.361858 0.626756i 0.626409 0.779495i \(-0.284524\pi\)
−0.988267 + 0.152739i \(0.951191\pi\)
\(464\) −3.40173 5.89197i −0.157921 0.273528i
\(465\) −0.430769 0.832172i −0.0199764 0.0385911i
\(466\) −1.55906 −0.0722222
\(467\) −0.796236 −0.0368454 −0.0184227 0.999830i \(-0.505864\pi\)
−0.0184227 + 0.999830i \(0.505864\pi\)
\(468\) −1.07764 2.33906i −0.0498138 0.108123i
\(469\) 28.8985 + 50.0536i 1.33441 + 2.31126i
\(470\) −2.28122 3.95118i −0.105225 0.182255i
\(471\) 15.1220 + 0.695129i 0.696783 + 0.0320298i
\(472\) −0.528658 −0.0243335
\(473\) 1.23775 0.0569117
\(474\) −3.52534 + 5.50566i −0.161924 + 0.252883i
\(475\) 0.655989 21.6167i 0.0300989 0.991842i
\(476\) −7.21756 −0.330816
\(477\) 14.7299 + 31.9720i 0.674438 + 1.46390i
\(478\) 7.83795 13.5757i 0.358500 0.620940i
\(479\) 10.0567 0.459503 0.229751 0.973249i \(-0.426209\pi\)
0.229751 + 0.973249i \(0.426209\pi\)
\(480\) 1.42438 2.22450i 0.0650136 0.101534i
\(481\) 0.321224 0.556376i 0.0146466 0.0253686i
\(482\) 16.2344 + 28.1188i 0.739457 + 1.28078i
\(483\) 18.3282 + 35.4069i 0.833961 + 1.61107i
\(484\) −20.0878 −0.913083
\(485\) 1.49402 + 2.58771i 0.0678398 + 0.117502i
\(486\) 8.83808 + 29.1988i 0.400904 + 1.32448i
\(487\) −17.6239 −0.798614 −0.399307 0.916817i \(-0.630749\pi\)
−0.399307 + 0.916817i \(0.630749\pi\)
\(488\) −3.03992 −0.137610
\(489\) 11.6589 + 0.535939i 0.527234 + 0.0242360i
\(490\) 2.48805 4.30943i 0.112399 0.194680i
\(491\) 16.3828 0.739346 0.369673 0.929162i \(-0.379470\pi\)
0.369673 + 0.929162i \(0.379470\pi\)
\(492\) −13.9013 + 21.7102i −0.626720 + 0.978773i
\(493\) −0.696630 + 1.20660i −0.0313746 + 0.0543424i
\(494\) −0.121383 + 3.99990i −0.00546127 + 0.179964i
\(495\) −0.0513547 + 0.0726279i −0.00230822 + 0.00326438i
\(496\) 5.94283 10.2933i 0.266841 0.462182i
\(497\) 17.4669 + 30.2535i 0.783496 + 1.35706i
\(498\) −9.53341 0.438233i −0.427203 0.0196377i
\(499\) 18.0196 0.806669 0.403334 0.915053i \(-0.367851\pi\)
0.403334 + 0.915053i \(0.367851\pi\)
\(500\) −1.78860 + 3.09794i −0.0799885 + 0.138544i
\(501\) 10.0663 15.7210i 0.449730 0.702361i
\(502\) 22.0906 38.2620i 0.985950 1.70772i
\(503\) 18.7382 + 32.4554i 0.835493 + 1.44712i 0.893628 + 0.448808i \(0.148151\pi\)
−0.0581348 + 0.998309i \(0.518515\pi\)
\(504\) 2.57481 3.64140i 0.114691 0.162201i
\(505\) 2.88335 0.128307
\(506\) 0.761806 1.31949i 0.0338664 0.0586584i
\(507\) −10.1758 19.6579i −0.451923 0.873038i
\(508\) −5.23578 −0.232300
\(509\) −18.8240 + 32.6042i −0.834361 + 1.44516i 0.0601885 + 0.998187i \(0.480830\pi\)
−0.894550 + 0.446969i \(0.852504\pi\)
\(510\) −0.586639 0.0269667i −0.0259768 0.00119411i
\(511\) 25.5769 + 44.3005i 1.13145 + 1.95974i
\(512\) 30.6351 1.35389
\(513\) 3.79047 22.3301i 0.167353 0.985897i
\(514\) 35.7646 1.57751
\(515\) −1.15139 1.99427i −0.0507363 0.0878778i
\(516\) 25.9374 + 1.19230i 1.14183 + 0.0524879i
\(517\) −0.897519 + 1.55455i −0.0394728 + 0.0683689i
\(518\) −11.9732 −0.526074
\(519\) −17.3243 33.4676i −0.760452 1.46906i
\(520\) −0.0153165 + 0.0265289i −0.000671672 + 0.00116337i
\(521\) −25.6456 −1.12355 −0.561776 0.827289i \(-0.689882\pi\)
−0.561776 + 0.827289i \(0.689882\pi\)
\(522\) 3.87693 + 8.41506i 0.169689 + 0.368317i
\(523\) 8.31030 + 14.3939i 0.363384 + 0.629399i 0.988515 0.151120i \(-0.0482880\pi\)
−0.625132 + 0.780519i \(0.714955\pi\)
\(524\) −2.47254 + 4.28257i −0.108013 + 0.187085i
\(525\) −20.7017 + 32.3307i −0.903498 + 1.41103i
\(526\) 13.4612 23.3155i 0.586936 1.01660i
\(527\) −2.43403 −0.106028
\(528\) −1.12706 0.0518087i −0.0490489 0.00225469i
\(529\) −1.77472 3.07391i −0.0771618 0.133648i
\(530\) −2.25315 + 3.90256i −0.0978704 + 0.169516i
\(531\) 4.74594 + 0.437248i 0.205956 + 0.0189750i
\(532\) 31.3866 16.8730i 1.36078 0.731537i
\(533\) 1.90773 3.30428i 0.0826328 0.143124i
\(534\) −17.7219 + 27.6769i −0.766901 + 1.19770i
\(535\) 1.39420 0.0602766
\(536\) −2.15259 + 3.72840i −0.0929779 + 0.161042i
\(537\) 24.9370 + 1.14631i 1.07611 + 0.0494667i
\(538\) 25.9703 1.11966
\(539\) −1.95779 −0.0843280
\(540\) −1.14612 + 1.47248i −0.0493210 + 0.0633652i
\(541\) −10.5384 18.2531i −0.453083 0.784763i 0.545493 0.838116i \(-0.316343\pi\)
−0.998576 + 0.0533527i \(0.983009\pi\)
\(542\) 44.6601 1.91832
\(543\) −1.23487 2.38556i −0.0529934 0.102374i
\(544\) −3.43062 5.94201i −0.147087 0.254762i
\(545\) 1.16273 2.01390i 0.0498058 0.0862662i
\(546\) 3.83060 5.98240i 0.163935 0.256023i
\(547\) 44.3793 1.89752 0.948761 0.315996i \(-0.102339\pi\)
0.948761 + 0.315996i \(0.102339\pi\)
\(548\) −14.4623 + 25.0495i −0.617800 + 1.07006i
\(549\) 27.2903 + 2.51428i 1.16472 + 0.107307i
\(550\) 1.46710 0.0625573
\(551\) 0.208651 6.87563i 0.00888883 0.292912i
\(552\) −1.60143 + 2.50102i −0.0681616 + 0.106451i
\(553\) −8.61613 −0.366395
\(554\) −10.1935 −0.433080
\(555\) −0.464987 0.0213746i −0.0197376 0.000907300i
\(556\) −2.26441 3.92207i −0.0960324 0.166333i
\(557\) −4.03714 6.99254i −0.171059 0.296283i 0.767731 0.640772i \(-0.221386\pi\)
−0.938790 + 0.344489i \(0.888052\pi\)
\(558\) −9.34504 + 13.2161i −0.395607 + 0.559484i
\(559\) −3.84289 −0.162537
\(560\) 3.77939 0.159708
\(561\) 0.106215 + 0.205189i 0.00448440 + 0.00866309i
\(562\) 9.31576 + 16.1354i 0.392962 + 0.680629i
\(563\) −2.37128 4.10718i −0.0999376 0.173097i 0.811721 0.584045i \(-0.198531\pi\)
−0.911659 + 0.410948i \(0.865198\pi\)
\(564\) −20.3053 + 31.7115i −0.855007 + 1.33530i
\(565\) 0.980972 + 1.69909i 0.0412698 + 0.0714814i
\(566\) −10.3497 17.9263i −0.435032 0.753497i
\(567\) −26.1267 + 30.5605i −1.09722 + 1.28342i
\(568\) −1.30107 + 2.25353i −0.0545919 + 0.0945559i
\(569\) 8.96716 15.5316i 0.375923 0.651118i −0.614542 0.788884i \(-0.710659\pi\)
0.990465 + 0.137767i \(0.0439924\pi\)
\(570\) 2.61413 1.25416i 0.109494 0.0525309i
\(571\) −16.8027 29.1031i −0.703170 1.21793i −0.967348 0.253453i \(-0.918434\pi\)
0.264178 0.964474i \(-0.414900\pi\)
\(572\) −0.129708 −0.00542337
\(573\) −4.34406 + 6.78428i −0.181476 + 0.283417i
\(574\) −71.1082 −2.96800
\(575\) 12.7823 22.1396i 0.533060 0.923287i
\(576\) −19.6771 1.81287i −0.819878 0.0755362i
\(577\) −21.7618 −0.905954 −0.452977 0.891522i \(-0.649638\pi\)
−0.452977 + 0.891522i \(0.649638\pi\)
\(578\) 15.8720 27.4912i 0.660190 1.14348i
\(579\) −15.9224 0.731925i −0.661714 0.0304178i
\(580\) −0.283350 + 0.490777i −0.0117655 + 0.0203784i
\(581\) −6.28884 10.8926i −0.260905 0.451901i
\(582\) 27.8324 43.4669i 1.15369 1.80176i
\(583\) 1.77295 0.0734280
\(584\) −1.90517 + 3.29986i −0.0788366 + 0.136549i
\(585\) 0.159443 0.225491i 0.00659216 0.00932290i
\(586\) 14.2249 24.6383i 0.587626 1.01780i
\(587\) −21.9847 38.0786i −0.907406 1.57167i −0.817654 0.575710i \(-0.804726\pi\)
−0.0897523 0.995964i \(-0.528608\pi\)
\(588\) −41.0262 1.88590i −1.69189 0.0777732i
\(589\) 10.5847 5.69019i 0.436136 0.234460i
\(590\) 0.305056 + 0.528372i 0.0125589 + 0.0217527i
\(591\) −38.6691 1.77755i −1.59064 0.0731186i
\(592\) −2.95207 5.11314i −0.121329 0.210149i
\(593\) −7.81848 13.5420i −0.321066 0.556103i 0.659642 0.751580i \(-0.270708\pi\)
−0.980708 + 0.195477i \(0.937375\pi\)
\(594\) 1.52192 + 0.211070i 0.0624451 + 0.00866030i
\(595\) −0.386984 0.670276i −0.0158648 0.0274786i
\(596\) −15.2778 + 26.4619i −0.625803 + 1.08392i
\(597\) 15.1093 + 29.1887i 0.618384 + 1.19461i
\(598\) −2.36521 + 4.09667i −0.0967207 + 0.167525i
\(599\) 6.72485 11.6478i 0.274770 0.475916i −0.695307 0.718713i \(-0.744732\pi\)
0.970077 + 0.242797i \(0.0780649\pi\)
\(600\) −2.85662 0.131314i −0.116621 0.00536086i
\(601\) 20.6960 35.8466i 0.844208 1.46221i −0.0420990 0.999113i \(-0.513404\pi\)
0.886307 0.463098i \(-0.153262\pi\)
\(602\) 35.8098 + 62.0243i 1.45950 + 2.52792i
\(603\) 22.4083 31.6907i 0.912535 1.29055i
\(604\) −9.74948 16.8866i −0.396701 0.687106i
\(605\) −1.07705 1.86551i −0.0437883 0.0758436i
\(606\) −22.8959 44.2311i −0.930084 1.79676i
\(607\) 3.77674 + 6.54150i 0.153293 + 0.265511i 0.932436 0.361335i \(-0.117679\pi\)
−0.779143 + 0.626846i \(0.784345\pi\)
\(608\) 28.8096 + 17.8197i 1.16839 + 0.722686i
\(609\) −6.58461 + 10.2834i −0.266822 + 0.416706i
\(610\) 1.75415 + 3.03827i 0.0710233 + 0.123016i
\(611\) 2.78656 4.82647i 0.112732 0.195258i
\(612\) 2.02812 + 4.40213i 0.0819818 + 0.177945i
\(613\) 2.01301 3.48663i 0.0813047 0.140824i −0.822506 0.568757i \(-0.807425\pi\)
0.903811 + 0.427933i \(0.140758\pi\)
\(614\) −44.2125 −1.78427
\(615\) −2.76152 0.126942i −0.111355 0.00511880i
\(616\) −0.112308 0.194523i −0.00452501 0.00783755i
\(617\) −12.1705 + 21.0800i −0.489968 + 0.848649i −0.999933 0.0115460i \(-0.996325\pi\)
0.509966 + 0.860195i \(0.329658\pi\)
\(618\) −21.4495 + 33.4985i −0.862825 + 1.34751i
\(619\) −8.47222 + 14.6743i −0.340527 + 0.589811i −0.984531 0.175212i \(-0.943939\pi\)
0.644003 + 0.765023i \(0.277272\pi\)
\(620\) −0.990027 −0.0397604
\(621\) 16.4452 21.1280i 0.659922 0.847836i
\(622\) −32.5834 + 56.4361i −1.30648 + 2.26288i
\(623\) −43.3133 −1.73531
\(624\) 3.49922 + 0.160853i 0.140081 + 0.00643926i
\(625\) 24.4239 0.976955
\(626\) −14.4407 25.0120i −0.577166 0.999680i
\(627\) −0.941577 0.643990i −0.0376030 0.0257185i
\(628\) 7.99684 13.8509i 0.319109 0.552712i
\(629\) −0.604546 + 1.04710i −0.0241048 + 0.0417508i
\(630\) −5.12519 0.472189i −0.204193 0.0188125i
\(631\) 5.70293 + 9.87777i 0.227030 + 0.393228i 0.956927 0.290330i \(-0.0937651\pi\)
−0.729896 + 0.683558i \(0.760432\pi\)
\(632\) −0.320900 0.555815i −0.0127647 0.0221091i
\(633\) −11.9682 0.550158i −0.475695 0.0218668i
\(634\) −7.45070 12.9050i −0.295905 0.512523i
\(635\) −0.280727 0.486234i −0.0111403 0.0192956i
\(636\) 37.1528 + 1.70784i 1.47320 + 0.0677204i
\(637\) 6.07844 0.240836
\(638\) 0.466641 0.0184745
\(639\) 13.5440 19.1546i 0.535794 0.757742i
\(640\) 0.260256 + 0.450777i 0.0102875 + 0.0178185i
\(641\) 13.7058 + 23.7392i 0.541348 + 0.937642i 0.998827 + 0.0484213i \(0.0154190\pi\)
−0.457479 + 0.889220i \(0.651248\pi\)
\(642\) −11.0710 21.3873i −0.436938 0.844090i
\(643\) 6.05186 0.238662 0.119331 0.992855i \(-0.461925\pi\)
0.119331 + 0.992855i \(0.461925\pi\)
\(644\) 42.1232 1.65989
\(645\) 1.27996 + 2.47267i 0.0503985 + 0.0973614i
\(646\) 0.228443 7.52784i 0.00898797 0.296179i
\(647\) 24.3919 0.958945 0.479473 0.877557i \(-0.340828\pi\)
0.479473 + 0.877557i \(0.340828\pi\)
\(648\) −2.94448 0.547200i −0.115670 0.0214960i
\(649\) 0.120021 0.207882i 0.00471122 0.00816008i
\(650\) −4.55496 −0.178660
\(651\) −21.3100 0.979580i −0.835204 0.0383928i
\(652\) 6.16550 10.6790i 0.241460 0.418220i
\(653\) 20.0350 + 34.7016i 0.784029 + 1.35798i 0.929578 + 0.368626i \(0.120172\pi\)
−0.145549 + 0.989351i \(0.546495\pi\)
\(654\) −40.1266 1.84455i −1.56907 0.0721274i
\(655\) −0.530281 −0.0207198
\(656\) −17.5322 30.3666i −0.684515 1.18562i
\(657\) 19.8327 28.0482i 0.773746 1.09426i
\(658\) −103.866 −4.04911
\(659\) −20.1868 −0.786368 −0.393184 0.919460i \(-0.628626\pi\)
−0.393184 + 0.919460i \(0.628626\pi\)
\(660\) 0.0432024 + 0.0834596i 0.00168165 + 0.00324866i
\(661\) −10.2656 + 17.7805i −0.399284 + 0.691581i −0.993638 0.112623i \(-0.964075\pi\)
0.594353 + 0.804204i \(0.297408\pi\)
\(662\) 3.44868 0.134037
\(663\) −0.329770 0.637059i −0.0128072 0.0247413i
\(664\) 0.468444 0.811368i 0.0181791 0.0314872i
\(665\) 3.24981 + 2.01012i 0.126022 + 0.0779490i
\(666\) 3.36446 + 7.30271i 0.130370 + 0.282974i
\(667\) 4.06568 7.04197i 0.157424 0.272666i
\(668\) −9.86144 17.0805i −0.381551 0.660865i
\(669\) 9.97444 + 19.2689i 0.385634 + 0.744979i
\(670\) 4.96851 0.191950
\(671\) 0.690148 1.19537i 0.0266429 0.0461468i
\(672\) −27.6438 53.4032i −1.06638 2.06007i
\(673\) −5.67978 + 9.83766i −0.218939 + 0.379214i −0.954484 0.298262i \(-0.903593\pi\)
0.735545 + 0.677476i \(0.236926\pi\)
\(674\) 14.5439 + 25.1908i 0.560210 + 0.970312i
\(675\) 25.5363 + 3.54153i 0.982891 + 0.136314i
\(676\) −23.3868 −0.899493
\(677\) 5.92995 10.2710i 0.227907 0.394746i −0.729281 0.684214i \(-0.760145\pi\)
0.957187 + 0.289469i \(0.0934786\pi\)
\(678\) 18.2747 28.5404i 0.701837 1.09609i
\(679\) 68.0239 2.61052
\(680\) 0.0288257 0.0499276i 0.00110542 0.00191464i
\(681\) −5.04661 + 7.88148i −0.193386 + 0.302019i
\(682\) 0.407611 + 0.706003i 0.0156082 + 0.0270343i
\(683\) −27.7320 −1.06114 −0.530568 0.847642i \(-0.678021\pi\)
−0.530568 + 0.847642i \(0.678021\pi\)
\(684\) −19.1107 14.4020i −0.730717 0.550676i
\(685\) −3.10171 −0.118510
\(686\) −26.0419 45.1059i −0.994286 1.72215i
\(687\) 7.59160 + 14.6657i 0.289638 + 0.559530i
\(688\) −17.6582 + 30.5849i −0.673213 + 1.16604i
\(689\) −5.50455 −0.209707
\(690\) 3.42376 + 0.157384i 0.130340 + 0.00599149i
\(691\) 17.9088 31.0190i 0.681284 1.18002i −0.293306 0.956019i \(-0.594755\pi\)
0.974589 0.223999i \(-0.0719113\pi\)
\(692\) −39.8161 −1.51358
\(693\) 0.847336 + 1.83918i 0.0321876 + 0.0698648i
\(694\) 17.4313 + 30.1920i 0.661685 + 1.14607i
\(695\) 0.242822 0.420580i 0.00921077 0.0159535i
\(696\) −0.908608 0.0417670i −0.0344407 0.00158318i
\(697\) −3.59035 + 6.21867i −0.135994 + 0.235549i
\(698\) 32.1829 1.21814
\(699\) −0.744062 + 1.16203i −0.0281430 + 0.0439520i
\(700\) 20.2804 + 35.1267i 0.766527 + 1.32766i
\(701\) −16.9108 + 29.2903i −0.638711 + 1.10628i 0.347006 + 0.937863i \(0.387199\pi\)
−0.985716 + 0.168416i \(0.946135\pi\)
\(702\) −4.72517 0.655317i −0.178340 0.0247334i
\(703\) 0.181070 5.96678i 0.00682920 0.225041i
\(704\) −0.497616 + 0.861896i −0.0187546 + 0.0324839i
\(705\) −4.03368 0.185421i −0.151917 0.00698335i
\(706\) −19.9073 −0.749223
\(707\) 32.8203 56.8465i 1.23434 2.13793i
\(708\) 2.71533 4.24063i 0.102048 0.159373i
\(709\) −8.01078 −0.300851 −0.150426 0.988621i \(-0.548064\pi\)
−0.150426 + 0.988621i \(0.548064\pi\)
\(710\) 3.00308 0.112703
\(711\) 2.42111 + 5.25514i 0.0907989 + 0.197083i
\(712\) −1.61316 2.79408i −0.0604558 0.104713i
\(713\) 14.2055 0.532000
\(714\) −7.20921 + 11.2589i −0.269798 + 0.421354i
\(715\) −0.00695457 0.0120457i −0.000260086 0.000450482i
\(716\) 13.1872 22.8410i 0.492830 0.853607i
\(717\) −6.37786 12.3209i −0.238186 0.460134i
\(718\) −68.4935 −2.55615
\(719\) −3.19388 + 5.53196i −0.119112 + 0.206307i −0.919416 0.393287i \(-0.871338\pi\)
0.800304 + 0.599594i \(0.204671\pi\)
\(720\) −1.06200 2.30512i −0.0395784 0.0859068i
\(721\) −52.4238 −1.95236
\(722\) 16.6049 + 33.2700i 0.617972 + 1.23818i
\(723\) 28.7059 + 1.31956i 1.06758 + 0.0490749i
\(724\) −2.83808 −0.105476
\(725\) 7.82975 0.290790
\(726\) −20.0646 + 31.3357i −0.744667 + 1.16298i
\(727\) 5.78070 + 10.0125i 0.214394 + 0.371342i 0.953085 0.302703i \(-0.0978889\pi\)
−0.738691 + 0.674045i \(0.764556\pi\)
\(728\) 0.348687 + 0.603943i 0.0129232 + 0.0223836i
\(729\) 25.9810 + 7.34774i 0.962258 + 0.272139i
\(730\) 4.39743 0.162756
\(731\) 7.23233 0.267498
\(732\) 15.6138 24.3847i 0.577102 0.901283i
\(733\) 9.39109 + 16.2658i 0.346868 + 0.600792i 0.985691 0.168561i \(-0.0539120\pi\)
−0.638824 + 0.769353i \(0.720579\pi\)
\(734\) −1.67797 2.90634i −0.0619351 0.107275i
\(735\) −2.02457 3.91112i −0.0746772 0.144264i
\(736\) 20.0219 + 34.6789i 0.738016 + 1.27828i
\(737\) −0.977402 1.69291i −0.0360031 0.0623591i
\(738\) 19.9813 + 43.3703i 0.735520 + 1.59648i
\(739\) 4.38969 7.60316i 0.161477 0.279687i −0.773921 0.633282i \(-0.781708\pi\)
0.935399 + 0.353595i \(0.115041\pi\)
\(740\) −0.245896 + 0.425904i −0.00903930 + 0.0156565i
\(741\) 2.92335 + 1.99942i 0.107392 + 0.0734506i
\(742\) 51.2939 + 88.8436i 1.88306 + 3.26155i
\(743\) 36.0307 1.32184 0.660918 0.750458i \(-0.270167\pi\)
0.660918 + 0.750458i \(0.270167\pi\)
\(744\) −0.730478 1.41116i −0.0267806 0.0517356i
\(745\) −3.27660 −0.120045
\(746\) 33.0718 57.2820i 1.21084 2.09724i
\(747\) −4.87645 + 6.89648i −0.178420 + 0.252329i
\(748\) 0.244112 0.00892560
\(749\) 15.8698 27.4873i 0.579871 1.00437i
\(750\) 3.04605 + 5.88445i 0.111226 + 0.214870i
\(751\) −12.4311 + 21.5313i −0.453617 + 0.785688i −0.998608 0.0527544i \(-0.983200\pi\)
0.544990 + 0.838442i \(0.316533\pi\)
\(752\) −25.6087 44.3556i −0.933854 1.61748i
\(753\) −17.9754 34.7255i −0.655061 1.26547i
\(754\) −1.44880 −0.0527622
\(755\) 1.04548 1.81082i 0.0380488 0.0659024i
\(756\) 15.9846 + 39.3570i 0.581354 + 1.43140i
\(757\) 7.93827 13.7495i 0.288521 0.499734i −0.684936 0.728604i \(-0.740170\pi\)
0.973457 + 0.228870i \(0.0735031\pi\)
\(758\) −16.2153 28.0857i −0.588965 1.02012i
\(759\) −0.619894 1.19753i −0.0225007 0.0434675i
\(760\) −0.00863373 + 0.284506i −0.000313178 + 0.0103201i
\(761\) 24.0436 + 41.6448i 0.871581 + 1.50962i 0.860361 + 0.509685i \(0.170238\pi\)
0.0112194 + 0.999937i \(0.496429\pi\)
\(762\) −5.22973 + 8.16747i −0.189453 + 0.295876i
\(763\) −26.4700 45.8474i −0.958279 1.65979i
\(764\) 4.25564 + 7.37099i 0.153964 + 0.266673i
\(765\) −0.300073 + 0.424375i −0.0108492 + 0.0153433i
\(766\) 11.4325 + 19.8017i 0.413074 + 0.715465i
\(767\) −0.372633 + 0.645420i −0.0134550 + 0.0233048i
\(768\) 17.1524 26.7876i 0.618934 0.966613i
\(769\) 0.639031 1.10683i 0.0230441 0.0399135i −0.854273 0.519824i \(-0.825998\pi\)
0.877317 + 0.479910i \(0.159331\pi\)
\(770\) −0.129612 + 0.224494i −0.00467088 + 0.00809020i
\(771\) 17.0686 26.6568i 0.614712 0.960020i
\(772\) −8.42015 + 14.5841i −0.303048 + 0.524895i
\(773\) −7.15330 12.3899i −0.257286 0.445633i 0.708228 0.705984i \(-0.249495\pi\)
−0.965514 + 0.260351i \(0.916162\pi\)
\(774\) 27.7674