Properties

Label 171.2.g.c.106.16
Level $171$
Weight $2$
Character 171.106
Analytic conductor $1.365$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,2,Mod(106,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.106");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 171.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.36544187456\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 106.16
Character \(\chi\) \(=\) 171.106
Dual form 171.2.g.c.121.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.30515 + 2.26059i) q^{2} +(1.63157 - 0.581354i) q^{3} +(-2.40684 + 4.16877i) q^{4} -2.00201 q^{5} +(3.44365 + 2.92956i) q^{6} +(0.257107 - 0.445323i) q^{7} -7.34455 q^{8} +(2.32405 - 1.89704i) q^{9} +O(q^{10})\) \(q+(1.30515 + 2.26059i) q^{2} +(1.63157 - 0.581354i) q^{3} +(-2.40684 + 4.16877i) q^{4} -2.00201 q^{5} +(3.44365 + 2.92956i) q^{6} +(0.257107 - 0.445323i) q^{7} -7.34455 q^{8} +(2.32405 - 1.89704i) q^{9} +(-2.61292 - 4.52572i) q^{10} +(2.04883 - 3.54868i) q^{11} +(-1.50340 + 8.20087i) q^{12} +(-1.85122 + 3.20641i) q^{13} +1.34226 q^{14} +(-3.26642 + 1.16388i) q^{15} +(-4.77208 - 8.26548i) q^{16} +(3.60664 - 6.24688i) q^{17} +(7.32168 + 2.77780i) q^{18} +(0.559954 + 4.32278i) q^{19} +(4.81851 - 8.34591i) q^{20} +(0.160599 - 0.876047i) q^{21} +10.6961 q^{22} +(-0.174335 + 0.301956i) q^{23} +(-11.9832 + 4.26979i) q^{24} -0.991962 q^{25} -9.66450 q^{26} +(2.68901 - 4.44626i) q^{27} +(1.23763 + 2.14364i) q^{28} -7.54782 q^{29} +(-6.89422 - 5.86500i) q^{30} +(-0.773246 - 1.33930i) q^{31} +(5.11201 - 8.85425i) q^{32} +(1.27977 - 6.98102i) q^{33} +18.8288 q^{34} +(-0.514731 + 0.891541i) q^{35} +(2.31471 + 14.2543i) q^{36} -6.82195 q^{37} +(-9.04121 + 6.90771i) q^{38} +(-1.15634 + 6.30770i) q^{39} +14.7039 q^{40} -2.92203 q^{41} +(2.18999 - 0.780327i) q^{42} +(-0.200878 - 0.347931i) q^{43} +(9.86241 + 17.0822i) q^{44} +(-4.65278 + 3.79790i) q^{45} -0.910132 q^{46} +6.16199 q^{47} +(-12.5912 - 10.7115i) q^{48} +(3.36779 + 5.83319i) q^{49} +(-1.29466 - 2.24242i) q^{50} +(2.25284 - 12.2890i) q^{51} +(-8.91119 - 15.4346i) q^{52} +(2.35955 + 4.08687i) q^{53} +(13.5607 + 0.275696i) q^{54} +(-4.10177 + 7.10448i) q^{55} +(-1.88834 + 3.27070i) q^{56} +(3.42667 + 6.72740i) q^{57} +(-9.85105 - 17.0625i) q^{58} -4.30674 q^{59} +(3.00982 - 16.4182i) q^{60} +10.9341 q^{61} +(2.01840 - 3.49598i) q^{62} +(-0.247266 - 1.52270i) q^{63} +7.59946 q^{64} +(3.70616 - 6.41926i) q^{65} +(17.4515 - 6.21824i) q^{66} +(-0.480007 + 0.831396i) q^{67} +(17.3612 + 30.0705i) q^{68} +(-0.108896 + 0.594013i) q^{69} -2.68721 q^{70} +(-3.26848 + 5.66117i) q^{71} +(-17.0691 + 13.9329i) q^{72} +(1.31999 - 2.28629i) q^{73} +(-8.90367 - 15.4216i) q^{74} +(-1.61846 + 0.576681i) q^{75} +(-19.3684 - 8.06993i) q^{76} +(-1.05354 - 1.82478i) q^{77} +(-15.7683 + 5.61850i) q^{78} +(-3.55860 - 6.16367i) q^{79} +(9.55374 + 16.5476i) q^{80} +(1.80246 - 8.81766i) q^{81} +(-3.81369 - 6.60551i) q^{82} +(-8.37625 + 14.5081i) q^{83} +(3.26550 + 2.77800i) q^{84} +(-7.22052 + 12.5063i) q^{85} +(0.524352 - 0.908205i) q^{86} +(-12.3148 + 4.38796i) q^{87} +(-15.0477 + 26.0634i) q^{88} +(-5.10443 - 8.84113i) q^{89} +(-14.6581 - 5.56118i) q^{90} +(0.951926 + 1.64878i) q^{91} +(-0.839190 - 1.45352i) q^{92} +(-2.04021 - 1.73564i) q^{93} +(8.04233 + 13.9297i) q^{94} +(-1.12103 - 8.65425i) q^{95} +(3.19315 - 17.4182i) q^{96} +(9.64219 + 16.7008i) q^{97} +(-8.79095 + 15.2264i) q^{98} +(-1.97040 - 12.1340i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + q^{2} - 2 q^{3} - 17 q^{4} - 6 q^{5} + 2 q^{6} + q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 32 q + q^{2} - 2 q^{3} - 17 q^{4} - 6 q^{5} + 2 q^{6} + q^{7} - 36 q^{8} - 10 q^{9} - 8 q^{10} + 7 q^{11} - 3 q^{12} - 4 q^{13} - 2 q^{14} + q^{15} - 11 q^{16} - 7 q^{17} + 6 q^{18} + 7 q^{19} - 3 q^{20} + 11 q^{21} + 16 q^{22} + 5 q^{23} + 27 q^{24} + 18 q^{25} - 4 q^{26} - 5 q^{27} - 10 q^{28} - 20 q^{29} - 5 q^{30} - 10 q^{31} + 17 q^{32} + 34 q^{33} + 26 q^{34} - 3 q^{35} - 16 q^{36} + 2 q^{37} + 38 q^{38} - 24 q^{40} - 12 q^{41} + 25 q^{42} + 7 q^{43} + 20 q^{44} - 35 q^{45} + 18 q^{47} - 33 q^{48} - 13 q^{49} + q^{50} - 28 q^{51} + 19 q^{52} + 16 q^{53} + 35 q^{54} + 15 q^{55} - 6 q^{56} + 6 q^{57} - 74 q^{59} + 50 q^{60} + 24 q^{61} + 54 q^{62} - 30 q^{63} - 64 q^{64} + 54 q^{65} + 4 q^{66} - 11 q^{67} - 2 q^{68} + 3 q^{69} - 48 q^{70} + 9 q^{71} - 10 q^{73} + 6 q^{74} - 76 q^{75} + 29 q^{76} + 46 q^{77} - 82 q^{78} - 8 q^{79} - 24 q^{80} + 26 q^{81} + 7 q^{82} + 3 q^{83} + 12 q^{84} - 27 q^{85} + 17 q^{86} - 9 q^{87} + 9 q^{88} + 30 q^{89} - 74 q^{90} - q^{91} - 17 q^{92} - 24 q^{93} - 18 q^{94} - 6 q^{95} - 5 q^{96} + 18 q^{98} - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.30515 + 2.26059i 0.922881 + 1.59848i 0.794934 + 0.606696i \(0.207506\pi\)
0.127948 + 0.991781i \(0.459161\pi\)
\(3\) 1.63157 0.581354i 0.941989 0.335645i
\(4\) −2.40684 + 4.16877i −1.20342 + 2.08438i
\(5\) −2.00201 −0.895325 −0.447663 0.894202i \(-0.647743\pi\)
−0.447663 + 0.894202i \(0.647743\pi\)
\(6\) 3.44365 + 2.92956i 1.40586 + 1.19599i
\(7\) 0.257107 0.445323i 0.0971775 0.168316i −0.813338 0.581792i \(-0.802352\pi\)
0.910515 + 0.413475i \(0.135685\pi\)
\(8\) −7.34455 −2.59669
\(9\) 2.32405 1.89704i 0.774685 0.632348i
\(10\) −2.61292 4.52572i −0.826279 1.43116i
\(11\) 2.04883 3.54868i 0.617745 1.06997i −0.372151 0.928172i \(-0.621380\pi\)
0.989896 0.141794i \(-0.0452870\pi\)
\(12\) −1.50340 + 8.20087i −0.433994 + 2.36739i
\(13\) −1.85122 + 3.20641i −0.513437 + 0.889298i 0.486442 + 0.873713i \(0.338294\pi\)
−0.999879 + 0.0155853i \(0.995039\pi\)
\(14\) 1.34226 0.358733
\(15\) −3.26642 + 1.16388i −0.843386 + 0.300512i
\(16\) −4.77208 8.26548i −1.19302 2.06637i
\(17\) 3.60664 6.24688i 0.874738 1.51509i 0.0176966 0.999843i \(-0.494367\pi\)
0.857042 0.515247i \(-0.172300\pi\)
\(18\) 7.32168 + 2.77780i 1.72574 + 0.654734i
\(19\) 0.559954 + 4.32278i 0.128462 + 0.991714i
\(20\) 4.81851 8.34591i 1.07745 1.86620i
\(21\) 0.160599 0.876047i 0.0350455 0.191169i
\(22\) 10.6961 2.28042
\(23\) −0.174335 + 0.301956i −0.0363513 + 0.0629622i −0.883629 0.468188i \(-0.844907\pi\)
0.847277 + 0.531151i \(0.178240\pi\)
\(24\) −11.9832 + 4.26979i −2.44605 + 0.871567i
\(25\) −0.991962 −0.198392
\(26\) −9.66450 −1.89536
\(27\) 2.68901 4.44626i 0.517500 0.855683i
\(28\) 1.23763 + 2.14364i 0.233891 + 0.405110i
\(29\) −7.54782 −1.40160 −0.700798 0.713360i \(-0.747172\pi\)
−0.700798 + 0.713360i \(0.747172\pi\)
\(30\) −6.89422 5.86500i −1.25871 1.07080i
\(31\) −0.773246 1.33930i −0.138879 0.240545i 0.788194 0.615427i \(-0.211017\pi\)
−0.927073 + 0.374882i \(0.877683\pi\)
\(32\) 5.11201 8.85425i 0.903684 1.56523i
\(33\) 1.27977 6.98102i 0.222780 1.21524i
\(34\) 18.8288 3.22912
\(35\) −0.514731 + 0.891541i −0.0870055 + 0.150698i
\(36\) 2.31471 + 14.2543i 0.385785 + 2.37572i
\(37\) −6.82195 −1.12152 −0.560760 0.827978i \(-0.689491\pi\)
−0.560760 + 0.827978i \(0.689491\pi\)
\(38\) −9.04121 + 6.90771i −1.46668 + 1.12058i
\(39\) −1.15634 + 6.30770i −0.185163 + 1.01004i
\(40\) 14.7039 2.32488
\(41\) −2.92203 −0.456345 −0.228172 0.973621i \(-0.573275\pi\)
−0.228172 + 0.973621i \(0.573275\pi\)
\(42\) 2.18999 0.780327i 0.337922 0.120407i
\(43\) −0.200878 0.347931i −0.0306336 0.0530590i 0.850302 0.526295i \(-0.176419\pi\)
−0.880936 + 0.473236i \(0.843086\pi\)
\(44\) 9.86241 + 17.0822i 1.48681 + 2.57524i
\(45\) −4.65278 + 3.79790i −0.693595 + 0.566157i
\(46\) −0.910132 −0.134192
\(47\) 6.16199 0.898819 0.449410 0.893326i \(-0.351634\pi\)
0.449410 + 0.893326i \(0.351634\pi\)
\(48\) −12.5912 10.7115i −1.81738 1.54607i
\(49\) 3.36779 + 5.83319i 0.481113 + 0.833312i
\(50\) −1.29466 2.24242i −0.183093 0.317126i
\(51\) 2.25284 12.2890i 0.315460 1.72080i
\(52\) −8.91119 15.4346i −1.23576 2.14040i
\(53\) 2.35955 + 4.08687i 0.324110 + 0.561374i 0.981332 0.192323i \(-0.0616020\pi\)
−0.657222 + 0.753697i \(0.728269\pi\)
\(54\) 13.5607 + 0.275696i 1.84538 + 0.0375174i
\(55\) −4.10177 + 7.10448i −0.553083 + 0.957968i
\(56\) −1.88834 + 3.27070i −0.252340 + 0.437066i
\(57\) 3.42667 + 6.72740i 0.453874 + 0.891066i
\(58\) −9.85105 17.0625i −1.29351 2.24042i
\(59\) −4.30674 −0.560690 −0.280345 0.959899i \(-0.590449\pi\)
−0.280345 + 0.959899i \(0.590449\pi\)
\(60\) 3.00982 16.4182i 0.388566 2.11958i
\(61\) 10.9341 1.39997 0.699984 0.714159i \(-0.253191\pi\)
0.699984 + 0.714159i \(0.253191\pi\)
\(62\) 2.01840 3.49598i 0.256338 0.443990i
\(63\) −0.247266 1.52270i −0.0311525 0.191842i
\(64\) 7.59946 0.949933
\(65\) 3.70616 6.41926i 0.459693 0.796211i
\(66\) 17.4515 6.21824i 2.14813 0.765413i
\(67\) −0.480007 + 0.831396i −0.0586421 + 0.101571i −0.893856 0.448354i \(-0.852010\pi\)
0.835214 + 0.549925i \(0.185344\pi\)
\(68\) 17.3612 + 30.0705i 2.10535 + 3.64658i
\(69\) −0.108896 + 0.594013i −0.0131095 + 0.0715108i
\(70\) −2.68721 −0.321183
\(71\) −3.26848 + 5.66117i −0.387897 + 0.671857i −0.992166 0.124923i \(-0.960132\pi\)
0.604269 + 0.796780i \(0.293465\pi\)
\(72\) −17.0691 + 13.9329i −2.01162 + 1.64201i
\(73\) 1.31999 2.28629i 0.154493 0.267591i −0.778381 0.627792i \(-0.783959\pi\)
0.932874 + 0.360202i \(0.117292\pi\)
\(74\) −8.90367 15.4216i −1.03503 1.79273i
\(75\) −1.61846 + 0.576681i −0.186883 + 0.0665894i
\(76\) −19.3684 8.06993i −2.22171 0.925684i
\(77\) −1.05354 1.82478i −0.120062 0.207953i
\(78\) −15.7683 + 5.61850i −1.78541 + 0.636170i
\(79\) −3.55860 6.16367i −0.400374 0.693467i 0.593397 0.804910i \(-0.297786\pi\)
−0.993771 + 0.111442i \(0.964453\pi\)
\(80\) 9.55374 + 16.5476i 1.06814 + 1.85007i
\(81\) 1.80246 8.81766i 0.200273 0.979740i
\(82\) −3.81369 6.60551i −0.421152 0.729457i
\(83\) −8.37625 + 14.5081i −0.919413 + 1.59247i −0.119103 + 0.992882i \(0.538002\pi\)
−0.800309 + 0.599587i \(0.795331\pi\)
\(84\) 3.26550 + 2.77800i 0.356296 + 0.303105i
\(85\) −7.22052 + 12.5063i −0.783175 + 1.35650i
\(86\) 0.524352 0.908205i 0.0565424 0.0979343i
\(87\) −12.3148 + 4.38796i −1.32029 + 0.470439i
\(88\) −15.0477 + 26.0634i −1.60409 + 2.77837i
\(89\) −5.10443 8.84113i −0.541068 0.937158i −0.998843 0.0480896i \(-0.984687\pi\)
0.457775 0.889068i \(-0.348647\pi\)
\(90\) −14.6581 5.56118i −1.54509 0.586200i
\(91\) 0.951926 + 1.64878i 0.0997889 + 0.172839i
\(92\) −0.839190 1.45352i −0.0874916 0.151540i
\(93\) −2.04021 1.73564i −0.211560 0.179977i
\(94\) 8.04233 + 13.9297i 0.829503 + 1.43674i
\(95\) −1.12103 8.65425i −0.115016 0.887907i
\(96\) 3.19315 17.4182i 0.325899 1.77774i
\(97\) 9.64219 + 16.7008i 0.979016 + 1.69571i 0.665989 + 0.745962i \(0.268010\pi\)
0.313028 + 0.949744i \(0.398657\pi\)
\(98\) −8.79095 + 15.2264i −0.888021 + 1.53810i
\(99\) −1.97040 12.1340i −0.198033 1.21952i
\(100\) 2.38749 4.13526i 0.238749 0.413526i
\(101\) 5.86938 0.584025 0.292013 0.956414i \(-0.405675\pi\)
0.292013 + 0.956414i \(0.405675\pi\)
\(102\) 30.7206 10.9462i 3.04179 1.08384i
\(103\) −1.43122 2.47895i −0.141022 0.244258i 0.786859 0.617132i \(-0.211706\pi\)
−0.927882 + 0.372874i \(0.878372\pi\)
\(104\) 13.5964 23.5497i 1.33324 2.30923i
\(105\) −0.321520 + 1.75385i −0.0313771 + 0.171159i
\(106\) −6.15915 + 10.6680i −0.598229 + 1.03616i
\(107\) 1.78588 0.172647 0.0863237 0.996267i \(-0.472488\pi\)
0.0863237 + 0.996267i \(0.472488\pi\)
\(108\) 12.0634 + 21.9113i 1.16080 + 2.10841i
\(109\) 6.41088 11.1040i 0.614051 1.06357i −0.376499 0.926417i \(-0.622872\pi\)
0.990550 0.137150i \(-0.0437943\pi\)
\(110\) −21.4137 −2.04172
\(111\) −11.1305 + 3.96597i −1.05646 + 0.376433i
\(112\) −4.90774 −0.463738
\(113\) −8.48305 14.6931i −0.798018 1.38221i −0.920905 0.389787i \(-0.872549\pi\)
0.122887 0.992421i \(-0.460785\pi\)
\(114\) −10.7356 + 16.5266i −1.00548 + 1.54786i
\(115\) 0.349019 0.604519i 0.0325462 0.0563717i
\(116\) 18.1664 31.4651i 1.68671 2.92146i
\(117\) 1.78036 + 10.9637i 0.164594 + 1.01360i
\(118\) −5.62095 9.73576i −0.517450 0.896250i
\(119\) −1.85459 3.21224i −0.170010 0.294465i
\(120\) 23.9904 8.54815i 2.19001 0.780336i
\(121\) −2.89540 5.01498i −0.263218 0.455908i
\(122\) 14.2706 + 24.7175i 1.29200 + 2.23782i
\(123\) −4.76750 + 1.69874i −0.429871 + 0.153170i
\(124\) 7.44431 0.668519
\(125\) 11.9960 1.07295
\(126\) 3.11948 2.54632i 0.277905 0.226844i
\(127\) −3.26687 5.65838i −0.289888 0.502100i 0.683895 0.729581i \(-0.260285\pi\)
−0.973783 + 0.227480i \(0.926951\pi\)
\(128\) −0.305562 0.529250i −0.0270082 0.0467795i
\(129\) −0.530018 0.450893i −0.0466655 0.0396989i
\(130\) 19.3484 1.69697
\(131\) 13.4796 1.17772 0.588860 0.808235i \(-0.299577\pi\)
0.588860 + 0.808235i \(0.299577\pi\)
\(132\) 26.0220 + 22.1373i 2.26493 + 1.92680i
\(133\) 2.06900 + 0.862059i 0.179405 + 0.0747500i
\(134\) −2.50593 −0.216479
\(135\) −5.38342 + 8.90145i −0.463331 + 0.766115i
\(136\) −26.4891 + 45.8805i −2.27143 + 3.93422i
\(137\) 9.08233 0.775955 0.387978 0.921669i \(-0.373174\pi\)
0.387978 + 0.921669i \(0.373174\pi\)
\(138\) −1.48495 + 0.529109i −0.126407 + 0.0450407i
\(139\) −6.19634 + 10.7324i −0.525566 + 0.910308i 0.473990 + 0.880530i \(0.342813\pi\)
−0.999557 + 0.0297774i \(0.990520\pi\)
\(140\) −2.47775 4.29159i −0.209408 0.362706i
\(141\) 10.0537 3.58230i 0.846677 0.301684i
\(142\) −17.0634 −1.43193
\(143\) 7.58567 + 13.1388i 0.634346 + 1.09872i
\(144\) −26.7705 10.1566i −2.23088 0.846382i
\(145\) 15.1108 1.25488
\(146\) 6.89116 0.570317
\(147\) 8.88594 + 7.55938i 0.732900 + 0.623487i
\(148\) 16.4193 28.4391i 1.34966 2.33768i
\(149\) 4.10671 0.336435 0.168218 0.985750i \(-0.446199\pi\)
0.168218 + 0.985750i \(0.446199\pi\)
\(150\) −3.41597 2.90601i −0.278913 0.237275i
\(151\) −2.82872 + 4.89948i −0.230198 + 0.398714i −0.957866 0.287215i \(-0.907271\pi\)
0.727668 + 0.685929i \(0.240604\pi\)
\(152\) −4.11262 31.7489i −0.333577 2.57518i
\(153\) −3.46858 21.3600i −0.280418 1.72686i
\(154\) 2.75005 4.76323i 0.221606 0.383832i
\(155\) 1.54804 + 2.68129i 0.124342 + 0.215366i
\(156\) −23.5122 20.0022i −1.88249 1.60145i
\(157\) 4.39208 0.350526 0.175263 0.984522i \(-0.443922\pi\)
0.175263 + 0.984522i \(0.443922\pi\)
\(158\) 9.28902 16.0891i 0.738995 1.27998i
\(159\) 6.22570 + 5.29628i 0.493730 + 0.420022i
\(160\) −10.2343 + 17.7263i −0.809091 + 1.40139i
\(161\) 0.0896454 + 0.155270i 0.00706505 + 0.0122370i
\(162\) 22.2856 7.43377i 1.75092 0.584052i
\(163\) −2.74759 −0.215208 −0.107604 0.994194i \(-0.534318\pi\)
−0.107604 + 0.994194i \(0.534318\pi\)
\(164\) 7.03286 12.1813i 0.549174 0.951198i
\(165\) −2.56212 + 13.9761i −0.199461 + 1.08803i
\(166\) −43.7291 −3.39403
\(167\) 1.37921 2.38886i 0.106726 0.184855i −0.807716 0.589572i \(-0.799297\pi\)
0.914442 + 0.404717i \(0.132630\pi\)
\(168\) −1.17953 + 6.43418i −0.0910024 + 0.496408i
\(169\) −0.354043 0.613221i −0.0272341 0.0471708i
\(170\) −37.6955 −2.89111
\(171\) 9.50187 + 8.98412i 0.726626 + 0.687033i
\(172\) 1.93392 0.147460
\(173\) 4.28209 + 7.41680i 0.325561 + 0.563889i 0.981626 0.190816i \(-0.0611134\pi\)
−0.656064 + 0.754705i \(0.727780\pi\)
\(174\) −25.9921 22.1118i −1.97045 1.67629i
\(175\) −0.255041 + 0.441744i −0.0192793 + 0.0333927i
\(176\) −39.1087 −2.94793
\(177\) −7.02675 + 2.50374i −0.528163 + 0.188193i
\(178\) 13.3241 23.0780i 0.998684 1.72977i
\(179\) −12.3439 −0.922624 −0.461312 0.887238i \(-0.652621\pi\)
−0.461312 + 0.887238i \(0.652621\pi\)
\(180\) −4.63406 28.5373i −0.345403 2.12704i
\(181\) 2.03095 + 3.51771i 0.150959 + 0.261469i 0.931580 0.363535i \(-0.118430\pi\)
−0.780621 + 0.625005i \(0.785097\pi\)
\(182\) −2.48481 + 4.30382i −0.184187 + 0.319021i
\(183\) 17.8398 6.35658i 1.31875 0.469892i
\(184\) 1.28041 2.21773i 0.0943930 0.163494i
\(185\) 13.6576 1.00413
\(186\) 1.26077 6.87735i 0.0924441 0.504272i
\(187\) −14.7788 25.5976i −1.08073 1.87188i
\(188\) −14.8309 + 25.6879i −1.08166 + 1.87348i
\(189\) −1.28866 2.34064i −0.0937362 0.170257i
\(190\) 18.1006 13.8293i 1.31315 1.00328i
\(191\) −2.88349 + 4.99434i −0.208642 + 0.361378i −0.951287 0.308307i \(-0.900238\pi\)
0.742645 + 0.669685i \(0.233571\pi\)
\(192\) 12.3991 4.41798i 0.894826 0.318840i
\(193\) 13.8699 0.998375 0.499187 0.866494i \(-0.333632\pi\)
0.499187 + 0.866494i \(0.333632\pi\)
\(194\) −25.1690 + 43.5941i −1.80703 + 3.12987i
\(195\) 2.31500 12.6281i 0.165781 0.904315i
\(196\) −32.4229 −2.31592
\(197\) 11.2025 0.798146 0.399073 0.916919i \(-0.369332\pi\)
0.399073 + 0.916919i \(0.369332\pi\)
\(198\) 24.8584 20.2910i 1.76661 1.44202i
\(199\) −4.46911 7.74072i −0.316807 0.548725i 0.663013 0.748608i \(-0.269277\pi\)
−0.979820 + 0.199882i \(0.935944\pi\)
\(200\) 7.28552 0.515164
\(201\) −0.299830 + 1.63554i −0.0211484 + 0.115362i
\(202\) 7.66043 + 13.2683i 0.538986 + 0.933551i
\(203\) −1.94060 + 3.36122i −0.136204 + 0.235911i
\(204\) 45.8076 + 38.9691i 3.20718 + 2.72839i
\(205\) 5.84993 0.408577
\(206\) 3.73592 6.47081i 0.260294 0.450842i
\(207\) 0.167661 + 1.03248i 0.0116533 + 0.0717625i
\(208\) 35.3367 2.45016
\(209\) 16.4874 + 6.86955i 1.14046 + 0.475177i
\(210\) −4.38437 + 1.56222i −0.302551 + 0.107803i
\(211\) −6.64761 −0.457640 −0.228820 0.973469i \(-0.573487\pi\)
−0.228820 + 0.973469i \(0.573487\pi\)
\(212\) −22.7163 −1.56016
\(213\) −2.04161 + 11.1368i −0.139889 + 0.763078i
\(214\) 2.33084 + 4.03713i 0.159333 + 0.275973i
\(215\) 0.402159 + 0.696561i 0.0274270 + 0.0475050i
\(216\) −19.7496 + 32.6558i −1.34379 + 2.22195i
\(217\) −0.795229 −0.0539836
\(218\) 33.4687 2.26678
\(219\) 0.824516 4.49764i 0.0557156 0.303922i
\(220\) −19.7446 34.1987i −1.33118 2.30568i
\(221\) 13.3534 + 23.1287i 0.898245 + 1.55581i
\(222\) −23.4924 19.9853i −1.57671 1.34132i
\(223\) 2.05162 + 3.55351i 0.137387 + 0.237961i 0.926507 0.376278i \(-0.122796\pi\)
−0.789120 + 0.614239i \(0.789463\pi\)
\(224\) −2.62867 4.55299i −0.175635 0.304209i
\(225\) −2.30537 + 1.88179i −0.153692 + 0.125453i
\(226\) 22.1433 38.3534i 1.47295 2.55123i
\(227\) −3.59999 + 6.23536i −0.238939 + 0.413855i −0.960410 0.278590i \(-0.910133\pi\)
0.721471 + 0.692445i \(0.243466\pi\)
\(228\) −36.2924 1.90676i −2.40352 0.126278i
\(229\) 7.67560 + 13.2945i 0.507218 + 0.878527i 0.999965 + 0.00835462i \(0.00265939\pi\)
−0.492747 + 0.870172i \(0.664007\pi\)
\(230\) 1.82209 0.120145
\(231\) −2.77977 2.36478i −0.182895 0.155591i
\(232\) 55.4354 3.63951
\(233\) 6.39691 11.0798i 0.419076 0.725861i −0.576771 0.816906i \(-0.695687\pi\)
0.995847 + 0.0910453i \(0.0290208\pi\)
\(234\) −22.4608 + 18.3340i −1.46831 + 1.19853i
\(235\) −12.3364 −0.804736
\(236\) 10.3656 17.9538i 0.674745 1.16869i
\(237\) −9.38939 7.98767i −0.609906 0.518855i
\(238\) 4.84103 8.38491i 0.313798 0.543513i
\(239\) −8.88997 15.3979i −0.575044 0.996006i −0.996037 0.0889415i \(-0.971652\pi\)
0.420993 0.907064i \(-0.361682\pi\)
\(240\) 25.2076 + 21.4444i 1.62714 + 1.38423i
\(241\) 4.50163 0.289975 0.144988 0.989433i \(-0.453686\pi\)
0.144988 + 0.989433i \(0.453686\pi\)
\(242\) 7.55788 13.0906i 0.485839 0.841497i
\(243\) −2.18535 15.4345i −0.140190 0.990125i
\(244\) −26.3166 + 45.5817i −1.68475 + 2.91807i
\(245\) −6.74235 11.6781i −0.430753 0.746086i
\(246\) −10.0625 8.56026i −0.641559 0.545782i
\(247\) −14.8972 6.20699i −0.947887 0.394941i
\(248\) 5.67914 + 9.83657i 0.360626 + 0.624623i
\(249\) −5.23211 + 28.5406i −0.331572 + 1.80868i
\(250\) 15.6565 + 27.1179i 0.990207 + 1.71509i
\(251\) −3.83039 6.63444i −0.241772 0.418762i 0.719447 0.694547i \(-0.244395\pi\)
−0.961219 + 0.275786i \(0.911062\pi\)
\(252\) 6.94291 + 2.63410i 0.437362 + 0.165933i
\(253\) 0.714363 + 1.23731i 0.0449116 + 0.0777892i
\(254\) 8.52752 14.7701i 0.535064 0.926758i
\(255\) −4.51020 + 24.6026i −0.282440 + 1.54068i
\(256\) 8.39707 14.5442i 0.524817 0.909010i
\(257\) −6.61366 + 11.4552i −0.412549 + 0.714556i −0.995168 0.0981897i \(-0.968695\pi\)
0.582619 + 0.812746i \(0.302028\pi\)
\(258\) 0.327530 1.78664i 0.0203911 0.111231i
\(259\) −1.75397 + 3.03797i −0.108987 + 0.188770i
\(260\) 17.8403 + 30.9003i 1.10641 + 1.91635i
\(261\) −17.5416 + 14.3185i −1.08579 + 0.886296i
\(262\) 17.5930 + 30.4719i 1.08690 + 1.88256i
\(263\) 12.9172 + 22.3733i 0.796509 + 1.37959i 0.921876 + 0.387484i \(0.126656\pi\)
−0.125367 + 0.992110i \(0.540011\pi\)
\(264\) −9.39937 + 51.2725i −0.578491 + 3.15560i
\(265\) −4.72385 8.18194i −0.290184 0.502613i
\(266\) 0.751602 + 5.80228i 0.0460837 + 0.355761i
\(267\) −13.4681 11.4575i −0.824233 0.701185i
\(268\) −2.31060 4.00207i −0.141142 0.244466i
\(269\) 6.05450 10.4867i 0.369150 0.639386i −0.620283 0.784378i \(-0.712982\pi\)
0.989433 + 0.144992i \(0.0463157\pi\)
\(270\) −27.1487 0.551945i −1.65222 0.0335903i
\(271\) 5.22169 9.04423i 0.317195 0.549398i −0.662707 0.748879i \(-0.730592\pi\)
0.979902 + 0.199481i \(0.0639257\pi\)
\(272\) −68.8446 −4.17432
\(273\) 2.51166 + 2.13670i 0.152013 + 0.129319i
\(274\) 11.8538 + 20.5314i 0.716115 + 1.24035i
\(275\) −2.03236 + 3.52015i −0.122556 + 0.212273i
\(276\) −2.21421 1.88366i −0.133280 0.113383i
\(277\) 13.3339 23.0950i 0.801156 1.38764i −0.117700 0.993049i \(-0.537552\pi\)
0.918856 0.394594i \(-0.129115\pi\)
\(278\) −32.3486 −1.94014
\(279\) −4.33778 1.64573i −0.259696 0.0985271i
\(280\) 3.78047 6.54797i 0.225926 0.391316i
\(281\) −22.6920 −1.35369 −0.676847 0.736124i \(-0.736654\pi\)
−0.676847 + 0.736124i \(0.736654\pi\)
\(282\) 21.2198 + 18.0519i 1.26362 + 1.07498i
\(283\) 18.7932 1.11714 0.558570 0.829457i \(-0.311350\pi\)
0.558570 + 0.829457i \(0.311350\pi\)
\(284\) −15.7334 27.2511i −0.933606 1.61705i
\(285\) −6.86023 13.4683i −0.406365 0.797794i
\(286\) −19.8009 + 34.2962i −1.17085 + 2.02798i
\(287\) −0.751276 + 1.30125i −0.0443464 + 0.0768103i
\(288\) −4.91632 30.2755i −0.289697 1.78400i
\(289\) −17.5157 30.3380i −1.03033 1.78459i
\(290\) 19.7219 + 34.1593i 1.15811 + 2.00590i
\(291\) 25.4410 + 21.6430i 1.49138 + 1.26873i
\(292\) 6.35402 + 11.0055i 0.371841 + 0.644048i
\(293\) −3.56903 6.18174i −0.208505 0.361141i 0.742739 0.669581i \(-0.233526\pi\)
−0.951244 + 0.308440i \(0.900193\pi\)
\(294\) −5.49115 + 29.9536i −0.320251 + 1.74693i
\(295\) 8.62213 0.502000
\(296\) 50.1042 2.91224
\(297\) −10.2690 18.6520i −0.595869 1.08230i
\(298\) 5.35988 + 9.28359i 0.310490 + 0.537784i
\(299\) −0.645464 1.11798i −0.0373281 0.0646542i
\(300\) 1.49132 8.13495i 0.0861012 0.469672i
\(301\) −0.206589 −0.0119076
\(302\) −14.7676 −0.849781
\(303\) 9.57632 3.41219i 0.550145 0.196025i
\(304\) 33.0577 25.2569i 1.89599 1.44858i
\(305\) −21.8902 −1.25343
\(306\) 43.7592 35.7191i 2.50155 2.04193i
\(307\) 2.73955 4.74504i 0.156354 0.270814i −0.777197 0.629257i \(-0.783359\pi\)
0.933551 + 0.358444i \(0.116693\pi\)
\(308\) 10.1428 0.577939
\(309\) −3.77629 3.21254i −0.214826 0.182755i
\(310\) −4.04086 + 6.99898i −0.229506 + 0.397515i
\(311\) −16.1999 28.0590i −0.918610 1.59108i −0.801527 0.597958i \(-0.795979\pi\)
−0.117083 0.993122i \(-0.537354\pi\)
\(312\) 8.49281 46.3273i 0.480811 2.62277i
\(313\) 0.877503 0.0495994 0.0247997 0.999692i \(-0.492105\pi\)
0.0247997 + 0.999692i \(0.492105\pi\)
\(314\) 5.73233 + 9.92869i 0.323494 + 0.560308i
\(315\) 0.495028 + 3.04846i 0.0278916 + 0.171761i
\(316\) 34.2599 1.92727
\(317\) −14.1265 −0.793424 −0.396712 0.917943i \(-0.629849\pi\)
−0.396712 + 0.917943i \(0.629849\pi\)
\(318\) −3.84723 + 20.9862i −0.215742 + 1.17685i
\(319\) −15.4642 + 26.7848i −0.865829 + 1.49966i
\(320\) −15.2142 −0.850499
\(321\) 2.91379 1.03823i 0.162632 0.0579482i
\(322\) −0.234002 + 0.405303i −0.0130404 + 0.0225866i
\(323\) 29.0235 + 12.0927i 1.61491 + 0.672858i
\(324\) 32.4206 + 28.7367i 1.80114 + 1.59648i
\(325\) 1.83634 3.18064i 0.101862 0.176430i
\(326\) −3.58602 6.21117i −0.198611 0.344005i
\(327\) 4.00447 21.8439i 0.221448 1.20797i
\(328\) 21.4610 1.18499
\(329\) 1.58429 2.74408i 0.0873450 0.151286i
\(330\) −34.9381 + 12.4490i −1.92328 + 0.685293i
\(331\) −3.58950 + 6.21719i −0.197297 + 0.341728i −0.947651 0.319308i \(-0.896550\pi\)
0.750354 + 0.661036i \(0.229883\pi\)
\(332\) −40.3206 69.8373i −2.21288 3.83282i
\(333\) −15.8546 + 12.9415i −0.868825 + 0.709191i
\(334\) 7.20029 0.393982
\(335\) 0.960977 1.66446i 0.0525038 0.0909393i
\(336\) −8.00734 + 2.85314i −0.436836 + 0.155651i
\(337\) −2.06045 −0.112240 −0.0561200 0.998424i \(-0.517873\pi\)
−0.0561200 + 0.998424i \(0.517873\pi\)
\(338\) 0.924160 1.60069i 0.0502677 0.0870662i
\(339\) −22.3826 19.0411i −1.21565 1.03417i
\(340\) −34.7573 60.2013i −1.88498 3.26488i
\(341\) −6.33699 −0.343167
\(342\) −7.90803 + 33.2055i −0.427617 + 1.79555i
\(343\) 7.06304 0.381368
\(344\) 1.47536 + 2.55540i 0.0795461 + 0.137778i
\(345\) 0.218010 1.18922i 0.0117373 0.0640254i
\(346\) −11.1776 + 19.3601i −0.600909 + 1.04081i
\(347\) −2.55895 −0.137371 −0.0686857 0.997638i \(-0.521881\pi\)
−0.0686857 + 0.997638i \(0.521881\pi\)
\(348\) 11.3474 61.8987i 0.608284 3.31812i
\(349\) −10.7175 + 18.5632i −0.573694 + 0.993667i 0.422488 + 0.906368i \(0.361157\pi\)
−0.996182 + 0.0872985i \(0.972177\pi\)
\(350\) −1.33147 −0.0711699
\(351\) 9.27859 + 16.8531i 0.495254 + 0.899551i
\(352\) −20.9473 36.2817i −1.11649 1.93382i
\(353\) 5.76979 9.99357i 0.307095 0.531904i −0.670631 0.741791i \(-0.733976\pi\)
0.977726 + 0.209887i \(0.0673097\pi\)
\(354\) −14.8309 12.6168i −0.788254 0.670577i
\(355\) 6.54352 11.3337i 0.347294 0.601531i
\(356\) 49.1422 2.60453
\(357\) −4.89334 4.16283i −0.258983 0.220320i
\(358\) −16.1106 27.9044i −0.851473 1.47479i
\(359\) −13.8627 + 24.0110i −0.731648 + 1.26725i 0.224531 + 0.974467i \(0.427915\pi\)
−0.956179 + 0.292784i \(0.905418\pi\)
\(360\) 34.1726 27.8939i 1.80105 1.47014i
\(361\) −18.3729 + 4.84112i −0.966995 + 0.254796i
\(362\) −5.30139 + 9.18228i −0.278635 + 0.482610i
\(363\) −7.63954 6.49905i −0.400972 0.341112i
\(364\) −9.16453 −0.480352
\(365\) −2.64264 + 4.57718i −0.138322 + 0.239581i
\(366\) 37.6532 + 32.0321i 1.96816 + 1.67434i
\(367\) −3.71189 −0.193759 −0.0968795 0.995296i \(-0.530886\pi\)
−0.0968795 + 0.995296i \(0.530886\pi\)
\(368\) 3.32775 0.173471
\(369\) −6.79096 + 5.54322i −0.353523 + 0.288568i
\(370\) 17.8252 + 30.8742i 0.926689 + 1.60507i
\(371\) 2.42663 0.125985
\(372\) 12.1459 4.32778i 0.629737 0.224385i
\(373\) −12.4259 21.5223i −0.643390 1.11438i −0.984671 0.174423i \(-0.944194\pi\)
0.341281 0.939961i \(-0.389139\pi\)
\(374\) 38.5771 66.8174i 1.99477 3.45505i
\(375\) 19.5723 6.97390i 1.01071 0.360131i
\(376\) −45.2571 −2.33396
\(377\) 13.9727 24.2014i 0.719630 1.24644i
\(378\) 3.60934 5.96802i 0.185644 0.306962i
\(379\) −16.6136 −0.853382 −0.426691 0.904398i \(-0.640321\pi\)
−0.426691 + 0.904398i \(0.640321\pi\)
\(380\) 38.7757 + 16.1561i 1.98915 + 0.828788i
\(381\) −8.61966 7.33285i −0.441599 0.375673i
\(382\) −15.0535 −0.770206
\(383\) −2.31253 −0.118165 −0.0590825 0.998253i \(-0.518817\pi\)
−0.0590825 + 0.998253i \(0.518817\pi\)
\(384\) −0.806229 0.685869i −0.0411427 0.0350006i
\(385\) 2.10919 + 3.65323i 0.107494 + 0.186186i
\(386\) 18.1023 + 31.3541i 0.921381 + 1.59588i
\(387\) −1.12689 0.427536i −0.0572831 0.0217329i
\(388\) −92.8288 −4.71267
\(389\) −22.1318 −1.12212 −0.561062 0.827773i \(-0.689607\pi\)
−0.561062 + 0.827773i \(0.689607\pi\)
\(390\) 31.5683 11.2483i 1.59852 0.569579i
\(391\) 1.25752 + 2.17809i 0.0635957 + 0.110151i
\(392\) −24.7349 42.8422i −1.24930 2.16386i
\(393\) 21.9930 7.83644i 1.10940 0.395296i
\(394\) 14.6210 + 25.3243i 0.736594 + 1.27582i
\(395\) 7.12434 + 12.3397i 0.358465 + 0.620879i
\(396\) 55.3264 + 20.9905i 2.78026 + 1.05481i
\(397\) −14.4147 + 24.9669i −0.723452 + 1.25306i 0.236156 + 0.971715i \(0.424112\pi\)
−0.959608 + 0.281340i \(0.909221\pi\)
\(398\) 11.6657 20.2056i 0.584750 1.01282i
\(399\) 3.87689 + 0.203687i 0.194087 + 0.0101971i
\(400\) 4.73372 + 8.19904i 0.236686 + 0.409952i
\(401\) −4.52899 −0.226167 −0.113084 0.993585i \(-0.536073\pi\)
−0.113084 + 0.993585i \(0.536073\pi\)
\(402\) −4.08860 + 1.45683i −0.203921 + 0.0726601i
\(403\) 5.72580 0.285222
\(404\) −14.1267 + 24.4681i −0.702828 + 1.21733i
\(405\) −3.60853 + 17.6530i −0.179309 + 0.877186i
\(406\) −10.1311 −0.502799
\(407\) −13.9770 + 24.2089i −0.692814 + 1.19999i
\(408\) −16.5461 + 90.2570i −0.819154 + 4.46839i
\(409\) 12.9490 22.4283i 0.640287 1.10901i −0.345082 0.938573i \(-0.612149\pi\)
0.985369 0.170436i \(-0.0545178\pi\)
\(410\) 7.63505 + 13.2243i 0.377068 + 0.653101i
\(411\) 14.8185 5.28005i 0.730941 0.260446i
\(412\) 13.7789 0.678837
\(413\) −1.10729 + 1.91789i −0.0544864 + 0.0943732i
\(414\) −2.11520 + 1.72656i −0.103956 + 0.0848557i
\(415\) 16.7693 29.0453i 0.823173 1.42578i
\(416\) 18.9269 + 32.7824i 0.927968 + 1.60729i
\(417\) −3.87046 + 21.1129i −0.189537 + 1.03390i
\(418\) 5.98934 + 46.2370i 0.292948 + 2.26153i
\(419\) 5.32985 + 9.23157i 0.260380 + 0.450992i 0.966343 0.257257i \(-0.0828188\pi\)
−0.705963 + 0.708249i \(0.749485\pi\)
\(420\) −6.53756 5.56159i −0.319001 0.271378i
\(421\) −8.53830 14.7888i −0.416131 0.720760i 0.579415 0.815032i \(-0.303281\pi\)
−0.995546 + 0.0942721i \(0.969948\pi\)
\(422\) −8.67614 15.0275i −0.422348 0.731528i
\(423\) 14.3208 11.6896i 0.696301 0.568366i
\(424\) −17.3299 30.0162i −0.841613 1.45772i
\(425\) −3.57765 + 6.19667i −0.173541 + 0.300582i
\(426\) −27.8402 + 9.91990i −1.34886 + 0.480621i
\(427\) 2.81124 4.86921i 0.136045 0.235637i
\(428\) −4.29832 + 7.44491i −0.207767 + 0.359863i
\(429\) 20.0149 + 17.0269i 0.966326 + 0.822066i
\(430\) −1.04976 + 1.81823i −0.0506238 + 0.0876830i
\(431\) 3.07195 + 5.32077i 0.147971 + 0.256293i 0.930477 0.366350i \(-0.119393\pi\)
−0.782507 + 0.622642i \(0.786059\pi\)
\(432\) −49.5826 1.00804i −2.38554 0.0484992i
\(433\) 11.1139 + 19.2498i 0.534100 + 0.925088i 0.999206 + 0.0398334i \(0.0126827\pi\)
−0.465106 + 0.885255i \(0.653984\pi\)
\(434\) −1.03789 1.79768i −0.0498205 0.0862916i
\(435\) 24.6544 8.78473i 1.18209 0.421196i
\(436\) 30.8599 + 53.4509i 1.47792 + 2.55984i
\(437\) −1.40291 0.584528i −0.0671103 0.0279618i
\(438\) 11.2434 4.00621i 0.537232 0.191424i
\(439\) −18.4819 32.0116i −0.882093 1.52783i −0.849009 0.528378i \(-0.822801\pi\)
−0.0330837 0.999453i \(-0.510533\pi\)
\(440\) 30.1257 52.1792i 1.43619 2.48755i
\(441\) 18.8927 + 7.16780i 0.899654 + 0.341324i
\(442\) −34.8563 + 60.3729i −1.65795 + 2.87165i
\(443\) 2.94680 0.140007 0.0700033 0.997547i \(-0.477699\pi\)
0.0700033 + 0.997547i \(0.477699\pi\)
\(444\) 10.2561 55.9459i 0.486734 2.65508i
\(445\) 10.2191 + 17.7000i 0.484432 + 0.839061i
\(446\) −5.35535 + 9.27574i −0.253583 + 0.439219i
\(447\) 6.70040 2.38746i 0.316918 0.112923i
\(448\) 1.95388 3.38422i 0.0923121 0.159889i
\(449\) −4.13941 −0.195351 −0.0976753 0.995218i \(-0.531141\pi\)
−0.0976753 + 0.995218i \(0.531141\pi\)
\(450\) −7.26282 2.75547i −0.342373 0.129894i
\(451\) −5.98674 + 10.3693i −0.281905 + 0.488273i
\(452\) 81.6693 3.84140
\(453\) −1.76692 + 9.63835i −0.0830172 + 0.452849i
\(454\) −18.7941 −0.882051
\(455\) −1.90576 3.30088i −0.0893436 0.154748i
\(456\) −25.1674 49.4098i −1.17857 2.31382i
\(457\) 6.65671 11.5298i 0.311388 0.539339i −0.667275 0.744811i \(-0.732540\pi\)
0.978663 + 0.205472i \(0.0658729\pi\)
\(458\) −20.0356 + 34.7027i −0.936204 + 1.62155i
\(459\) −18.0770 32.8340i −0.843761 1.53256i
\(460\) 1.68007 + 2.90996i 0.0783335 + 0.135678i
\(461\) −11.8912 20.5961i −0.553827 0.959256i −0.997994 0.0633121i \(-0.979834\pi\)
0.444167 0.895944i \(-0.353500\pi\)
\(462\) 1.71778 9.37031i 0.0799186 0.435946i
\(463\) 6.14063 + 10.6359i 0.285379 + 0.494292i 0.972701 0.232061i \(-0.0745470\pi\)
−0.687322 + 0.726353i \(0.741214\pi\)
\(464\) 36.0188 + 62.3864i 1.67213 + 2.89621i
\(465\) 4.08453 + 3.47476i 0.189415 + 0.161138i
\(466\) 33.3958 1.54703
\(467\) 14.6862 0.679597 0.339799 0.940498i \(-0.389641\pi\)
0.339799 + 0.940498i \(0.389641\pi\)
\(468\) −49.9902 18.9660i −2.31080 0.876704i
\(469\) 0.246827 + 0.427516i 0.0113974 + 0.0197409i
\(470\) −16.1008 27.8874i −0.742675 1.28635i
\(471\) 7.16600 2.55336i 0.330192 0.117652i
\(472\) 31.6311 1.45594
\(473\) −1.64626 −0.0756951
\(474\) 5.80226 31.6507i 0.266507 1.45376i
\(475\) −0.555453 4.28804i −0.0254859 0.196749i
\(476\) 17.8548 0.818372
\(477\) 13.2367 + 5.02192i 0.606066 + 0.229938i
\(478\) 23.2055 40.1931i 1.06139 1.83839i
\(479\) −24.7438 −1.13057 −0.565287 0.824894i \(-0.691235\pi\)
−0.565287 + 0.824894i \(0.691235\pi\)
\(480\) −6.39271 + 34.8715i −0.291786 + 1.59166i
\(481\) 12.6289 21.8740i 0.575830 0.997366i
\(482\) 5.87531 + 10.1763i 0.267613 + 0.463519i
\(483\) 0.236530 + 0.201219i 0.0107625 + 0.00915578i
\(484\) 27.8751 1.26705
\(485\) −19.3038 33.4351i −0.876538 1.51821i
\(486\) 32.0389 25.0846i 1.45331 1.13786i
\(487\) 13.2310 0.599553 0.299777 0.954009i \(-0.403088\pi\)
0.299777 + 0.954009i \(0.403088\pi\)
\(488\) −80.3061 −3.63528
\(489\) −4.48289 + 1.59732i −0.202723 + 0.0722335i
\(490\) 17.5996 30.4833i 0.795067 1.37710i
\(491\) −14.0234 −0.632869 −0.316434 0.948614i \(-0.602486\pi\)
−0.316434 + 0.948614i \(0.602486\pi\)
\(492\) 4.39298 23.9632i 0.198051 1.08034i
\(493\) −27.2223 + 47.1503i −1.22603 + 2.12354i
\(494\) −5.41168 41.7775i −0.243483 1.87966i
\(495\) 3.94476 + 24.2924i 0.177304 + 1.09186i
\(496\) −7.37997 + 12.7825i −0.331371 + 0.573951i
\(497\) 1.68070 + 2.91106i 0.0753897 + 0.130579i
\(498\) −71.3471 + 25.4221i −3.19714 + 1.13919i
\(499\) −0.469369 −0.0210119 −0.0105059 0.999945i \(-0.503344\pi\)
−0.0105059 + 0.999945i \(0.503344\pi\)
\(500\) −28.8724 + 50.0084i −1.29121 + 2.23644i
\(501\) 0.861503 4.69940i 0.0384891 0.209954i
\(502\) 9.99849 17.3179i 0.446254 0.772935i
\(503\) −7.42602 12.8622i −0.331110 0.573499i 0.651620 0.758546i \(-0.274090\pi\)
−0.982730 + 0.185047i \(0.940756\pi\)
\(504\) 1.81606 + 11.1835i 0.0808935 + 0.498155i
\(505\) −11.7506 −0.522893
\(506\) −1.86470 + 3.22976i −0.0828962 + 0.143580i
\(507\) −0.934145 0.794689i −0.0414869 0.0352934i
\(508\) 31.4513 1.39543
\(509\) −9.51262 + 16.4763i −0.421640 + 0.730301i −0.996100 0.0882312i \(-0.971879\pi\)
0.574460 + 0.818532i \(0.305212\pi\)
\(510\) −61.5029 + 21.9144i −2.72339 + 0.970387i
\(511\) −0.678760 1.17565i −0.0300266 0.0520075i
\(512\) 42.6156 1.88336
\(513\) 20.7259 + 9.13429i 0.915073 + 0.403289i
\(514\) −34.5273 −1.52294
\(515\) 2.86532 + 4.96288i 0.126261 + 0.218690i
\(516\) 3.15534 1.12430i 0.138906 0.0494944i
\(517\) 12.6249 21.8669i 0.555241 0.961706i
\(518\) −9.15680 −0.402327
\(519\) 11.2983 + 9.61163i 0.495942 + 0.421904i
\(520\) −27.2201 + 47.1466i −1.19368 + 2.06752i
\(521\) 13.8098 0.605017 0.302509 0.953147i \(-0.402176\pi\)
0.302509 + 0.953147i \(0.402176\pi\)
\(522\) −55.2627 20.9664i −2.41878 0.917672i
\(523\) 12.9780 + 22.4786i 0.567490 + 0.982922i 0.996813 + 0.0797708i \(0.0254188\pi\)
−0.429323 + 0.903151i \(0.641248\pi\)
\(524\) −32.4433 + 56.1935i −1.41729 + 2.45482i
\(525\) −0.159308 + 0.869006i −0.00695276 + 0.0379265i
\(526\) −33.7178 + 58.4010i −1.47017 + 2.54640i
\(527\) −11.1553 −0.485931
\(528\) −63.8086 + 22.7360i −2.77691 + 0.989457i
\(529\) 11.4392 + 19.8133i 0.497357 + 0.861448i
\(530\) 12.3307 21.3573i 0.535610 0.927704i
\(531\) −10.0091 + 8.17007i −0.434358 + 0.354551i
\(532\) −8.57348 + 6.55036i −0.371708 + 0.283994i
\(533\) 5.40933 9.36923i 0.234304 0.405826i
\(534\) 8.32272 45.3995i 0.360159 1.96463i
\(535\) −3.57534 −0.154576
\(536\) 3.52543 6.10623i 0.152276 0.263749i
\(537\) −20.1399 + 7.17616i −0.869102 + 0.309674i
\(538\) 31.6082 1.36272
\(539\) 27.6001 1.18882
\(540\) −24.1511 43.8666i −1.03930 1.88772i
\(541\) 15.9439 + 27.6157i 0.685482 + 1.18729i 0.973285 + 0.229600i \(0.0737419\pi\)
−0.287803 + 0.957690i \(0.592925\pi\)
\(542\) 27.2604 1.17093
\(543\) 5.35868 + 4.55869i 0.229963 + 0.195632i
\(544\) −36.8743 63.8682i −1.58097 2.73833i
\(545\) −12.8346 + 22.2302i −0.549775 + 0.952239i
\(546\) −1.55211 + 8.46656i −0.0664240 + 0.362335i
\(547\) 30.1948 1.29104 0.645519 0.763744i \(-0.276641\pi\)
0.645519 + 0.763744i \(0.276641\pi\)
\(548\) −21.8597 + 37.8621i −0.933800 + 1.61739i
\(549\) 25.4114 20.7424i 1.08453 0.885266i
\(550\) −10.6102 −0.452418
\(551\) −4.22644 32.6276i −0.180052 1.38998i
\(552\) 0.799791 4.36276i 0.0340413 0.185692i
\(553\) −3.65977 −0.155629
\(554\) 69.6110 2.95749
\(555\) 22.2833 7.93990i 0.945875 0.337030i
\(556\) −29.8272 51.6622i −1.26495 2.19096i
\(557\) 1.25738 + 2.17784i 0.0532768 + 0.0922782i 0.891434 0.453151i \(-0.149700\pi\)
−0.838157 + 0.545429i \(0.816367\pi\)
\(558\) −1.94114 11.9538i −0.0821751 0.506047i
\(559\) 1.48748 0.0629137
\(560\) 9.82535 0.415197
\(561\) −38.9939 33.1726i −1.64632 1.40055i
\(562\) −29.6165 51.2974i −1.24930 2.16385i
\(563\) 11.1293 + 19.2765i 0.469045 + 0.812410i 0.999374 0.0353823i \(-0.0112649\pi\)
−0.530329 + 0.847792i \(0.677932\pi\)
\(564\) −9.26394 + 50.5337i −0.390082 + 2.12785i
\(565\) 16.9831 + 29.4156i 0.714486 + 1.23753i
\(566\) 24.5280 + 42.4837i 1.03099 + 1.78572i
\(567\) −3.46328 3.06976i −0.145444 0.128918i
\(568\) 24.0055 41.5788i 1.00725 1.74461i
\(569\) 21.1628 36.6551i 0.887192 1.53666i 0.0440124 0.999031i \(-0.485986\pi\)
0.843180 0.537631i \(-0.180681\pi\)
\(570\) 21.4927 33.0863i 0.900229 1.38583i
\(571\) −13.0580 22.6171i −0.546460 0.946497i −0.998513 0.0545057i \(-0.982642\pi\)
0.452053 0.891991i \(-0.350692\pi\)
\(572\) −73.0300 −3.05354
\(573\) −1.80113 + 9.82496i −0.0752433 + 0.410444i
\(574\) −3.92212 −0.163706
\(575\) 0.172933 0.299529i 0.00721181 0.0124912i
\(576\) 17.6616 14.4165i 0.735899 0.600688i
\(577\) 11.5319 0.480079 0.240039 0.970763i \(-0.422840\pi\)
0.240039 + 0.970763i \(0.422840\pi\)
\(578\) 45.7212 79.1914i 1.90175 3.29393i
\(579\) 22.6297 8.06331i 0.940458 0.335100i
\(580\) −36.3693 + 62.9935i −1.51015 + 2.61566i
\(581\) 4.30719 + 7.46027i 0.178692 + 0.309504i
\(582\) −15.7215 + 85.7590i −0.651677 + 3.55482i
\(583\) 19.3373 0.800869
\(584\) −9.69476 + 16.7918i −0.401172 + 0.694850i
\(585\) −3.56429 21.9495i −0.147365 0.907498i
\(586\) 9.31624 16.1362i 0.384850 0.666580i
\(587\) 3.44204 + 5.96179i 0.142068 + 0.246069i 0.928275 0.371894i \(-0.121291\pi\)
−0.786207 + 0.617963i \(0.787958\pi\)
\(588\) −52.9004 + 18.8492i −2.18157 + 0.777329i
\(589\) 5.35652 4.09252i 0.220712 0.168629i
\(590\) 11.2532 + 19.4911i 0.463286 + 0.802435i
\(591\) 18.2777 6.51263i 0.751844 0.267894i
\(592\) 32.5548 + 56.3866i 1.33800 + 2.31748i
\(593\) −15.3510 26.5888i −0.630391 1.09187i −0.987472 0.157796i \(-0.949561\pi\)
0.357080 0.934074i \(-0.383772\pi\)
\(594\) 28.7620 47.5578i 1.18012 1.95132i
\(595\) 3.71290 + 6.43093i 0.152214 + 0.263642i
\(596\) −9.88420 + 17.1199i −0.404873 + 0.701260i
\(597\) −11.7918 10.0314i −0.482605 0.410558i
\(598\) 1.68486 2.91825i 0.0688989 0.119336i
\(599\) −5.22611 + 9.05188i −0.213533 + 0.369850i −0.952818 0.303543i \(-0.901830\pi\)
0.739285 + 0.673393i \(0.235164\pi\)
\(600\) 11.8868 4.23547i 0.485279 0.172912i
\(601\) 14.7155 25.4879i 0.600256 1.03967i −0.392526 0.919741i \(-0.628399\pi\)
0.992782 0.119933i \(-0.0382680\pi\)
\(602\) −0.269630 0.467012i −0.0109893 0.0190340i
\(603\) 0.461632 + 2.84280i 0.0187991 + 0.115768i
\(604\) −13.6165 23.5845i −0.554049 0.959641i
\(605\) 5.79662 + 10.0400i 0.235666 + 0.408186i
\(606\) 20.2121 + 17.1947i 0.821061 + 0.698486i
\(607\) −15.6319 27.0752i −0.634479 1.09895i −0.986625 0.163005i \(-0.947881\pi\)
0.352146 0.935945i \(-0.385452\pi\)
\(608\) 41.1375 + 17.1401i 1.66835 + 0.695123i
\(609\) −1.21217 + 6.61225i −0.0491196 + 0.267942i
\(610\) −28.5700 49.4846i −1.15676 2.00357i
\(611\) −11.4072 + 19.7579i −0.461487 + 0.799318i
\(612\) 97.3933 + 36.9505i 3.93689 + 1.49363i
\(613\) 9.28328 16.0791i 0.374948 0.649429i −0.615371 0.788238i \(-0.710994\pi\)
0.990319 + 0.138808i \(0.0443272\pi\)
\(614\) 14.3021 0.577186
\(615\) 9.54459 3.40088i 0.384875 0.137137i
\(616\) 7.73777 + 13.4022i 0.311764 + 0.539991i
\(617\) −0.646350 + 1.11951i −0.0260211 + 0.0450698i −0.878743 0.477296i \(-0.841617\pi\)
0.852722 + 0.522366i \(0.174950\pi\)
\(618\) 2.33359 12.7295i 0.0938709 0.512055i
\(619\) −20.9010 + 36.2016i −0.840082 + 1.45506i 0.0497432 + 0.998762i \(0.484160\pi\)
−0.889825 + 0.456302i \(0.849174\pi\)
\(620\) −14.9036 −0.598542
\(621\) 0.873789 + 1.58710i 0.0350640 + 0.0636881i
\(622\) 42.2866 73.2425i 1.69554 2.93676i
\(623\) −5.24955 −0.210319
\(624\) 57.6543 20.5431i 2.30802 0.822383i
\(625\) −19.0562 −0.762248
\(626\) 1.14527 + 1.98367i 0.0457743 + 0.0792835i
\(627\) 30.8940 + 1.62313i 1.23379 + 0.0648217i
\(628\) −10.5710 + 18.3096i −0.421830 + 0.730631i
\(629\) −24.6043 + 42.6159i −0.981037 + 1.69921i
\(630\) −6.24522 + 5.09775i −0.248815 + 0.203099i
\(631\) 22.7465 + 39.3980i 0.905522 + 1.56841i 0.820215 + 0.572056i \(0.193854\pi\)
0.0853078 + 0.996355i \(0.472813\pi\)
\(632\) 26.1363 + 45.2694i 1.03965 + 1.80072i
\(633\) −10.8461 + 3.86462i −0.431092 + 0.153605i
\(634\) −18.4372 31.9342i −0.732236 1.26827i
\(635\) 6.54030 + 11.3281i 0.259544 + 0.449543i
\(636\) −37.0632 + 13.2062i −1.46965 + 0.523660i
\(637\) −24.9381 −0.988084
\(638\) −80.7325 −3.19623
\(639\) 3.14336 + 19.3573i 0.124350 + 0.765764i
\(640\) 0.611739 + 1.05956i 0.0241811 + 0.0418829i
\(641\) 17.8313 + 30.8847i 0.704295 + 1.21987i 0.966946 + 0.254983i \(0.0820699\pi\)
−0.262651 + 0.964891i \(0.584597\pi\)
\(642\) 6.14994 + 5.23183i 0.242719 + 0.206484i
\(643\) 24.3282 0.959411 0.479705 0.877430i \(-0.340744\pi\)
0.479705 + 0.877430i \(0.340744\pi\)
\(644\) −0.863048 −0.0340089
\(645\) 1.06110 + 0.902692i 0.0417808 + 0.0355434i
\(646\) 10.5433 + 81.3929i 0.414820 + 3.20236i
\(647\) 6.64653 0.261302 0.130651 0.991428i \(-0.458293\pi\)
0.130651 + 0.991428i \(0.458293\pi\)
\(648\) −13.2382 + 64.7618i −0.520047 + 2.54408i
\(649\) −8.82377 + 15.2832i −0.346363 + 0.599919i
\(650\) 9.58681 0.376026
\(651\) −1.29747 + 0.462310i −0.0508520 + 0.0181193i
\(652\) 6.61301 11.4541i 0.258985 0.448576i
\(653\) −13.8546 23.9970i −0.542174 0.939073i −0.998779 0.0494037i \(-0.984268\pi\)
0.456605 0.889670i \(-0.349065\pi\)
\(654\) 54.6065 19.4572i 2.13528 0.760835i
\(655\) −26.9863 −1.05444
\(656\) 13.9442 + 24.1520i 0.544428 + 0.942977i
\(657\) −1.26946 7.81756i −0.0495265 0.304992i
\(658\) 8.27098 0.322436
\(659\) −47.0828 −1.83409 −0.917043 0.398789i \(-0.869430\pi\)
−0.917043 + 0.398789i \(0.869430\pi\)
\(660\) −52.0963 44.3190i −2.02785 1.72511i
\(661\) 5.10751 8.84647i 0.198659 0.344088i −0.749435 0.662078i \(-0.769675\pi\)
0.948094 + 0.317990i \(0.103008\pi\)
\(662\) −18.7393 −0.728325
\(663\) 35.2330 + 29.9731i 1.36834 + 1.16406i
\(664\) 61.5198 106.555i 2.38743 4.13515i
\(665\) −4.14216 1.72585i −0.160626 0.0669256i
\(666\) −49.9481 18.9500i −1.93545 0.734298i
\(667\) 1.31585 2.27911i 0.0509498 0.0882476i
\(668\) 6.63906 + 11.4992i 0.256873 + 0.444917i
\(669\) 5.41322 + 4.60509i 0.209287 + 0.178043i
\(670\) 5.01688 0.193819
\(671\) 22.4021 38.8016i 0.864823 1.49792i
\(672\) −6.93576 5.90034i −0.267553 0.227611i
\(673\) −3.62919 + 6.28593i −0.139895 + 0.242305i −0.927457 0.373931i \(-0.878010\pi\)
0.787562 + 0.616236i \(0.211343\pi\)
\(674\) −2.68920 4.65784i −0.103584 0.179413i
\(675\) −2.66739 + 4.41052i −0.102668 + 0.169761i
\(676\) 3.40850 0.131096
\(677\) −9.87126 + 17.0975i −0.379383 + 0.657111i −0.990973 0.134064i \(-0.957197\pi\)
0.611589 + 0.791175i \(0.290531\pi\)
\(678\) 13.8315 75.4494i 0.531197 2.89762i
\(679\) 9.91632 0.380553
\(680\) 53.0315 91.8532i 2.03367 3.52241i
\(681\) −2.24868 + 12.2663i −0.0861697 + 0.470046i
\(682\) −8.27073 14.3253i −0.316703 0.548545i
\(683\) −0.128555 −0.00491902 −0.00245951 0.999997i \(-0.500783\pi\)
−0.00245951 + 0.999997i \(0.500783\pi\)
\(684\) −60.3222 + 17.9877i −2.30648 + 0.687779i
\(685\) −18.1829 −0.694733
\(686\) 9.21834 + 15.9666i 0.351958 + 0.609609i
\(687\) 20.2521 + 17.2287i 0.772667 + 0.657317i
\(688\) −1.91721 + 3.32071i −0.0730929 + 0.126601i
\(689\) −17.4722 −0.665639
\(690\) 2.97287 1.05928i 0.113175 0.0403261i
\(691\) −12.7727 + 22.1230i −0.485897 + 0.841598i −0.999869 0.0162088i \(-0.994840\pi\)
0.513972 + 0.857807i \(0.328174\pi\)
\(692\) −41.2252 −1.56715
\(693\) −5.91017 2.24228i −0.224509 0.0851774i
\(694\) −3.33981 5.78472i −0.126778 0.219585i
\(695\) 12.4051 21.4863i 0.470553 0.815021i
\(696\) 90.4468 32.2276i 3.42838 1.22158i
\(697\) −10.5387 + 18.2536i −0.399182 + 0.691404i
\(698\) −55.9518 −2.11781
\(699\) 3.99575 21.7963i 0.151133 0.824413i
\(700\) −1.22768 2.12641i −0.0464021 0.0803708i
\(701\) 6.40784 11.0987i 0.242021 0.419193i −0.719269 0.694732i \(-0.755523\pi\)
0.961290 + 0.275539i \(0.0888564\pi\)
\(702\) −25.9879 + 42.9709i −0.980850 + 1.62183i
\(703\) −3.81998 29.4898i −0.144073 1.11223i
\(704\) 15.5700 26.9680i 0.586817 1.01640i
\(705\) −20.1277 + 7.17180i −0.758052 + 0.270106i
\(706\) 30.1218 1.13365
\(707\) 1.50906 2.61377i 0.0567541 0.0983010i
\(708\) 6.47475 35.3190i 0.243336 1.32737i
\(709\) −37.8599 −1.42186 −0.710930 0.703263i \(-0.751726\pi\)
−0.710930 + 0.703263i \(0.751726\pi\)
\(710\) 34.1611 1.28204
\(711\) −19.9631 7.57390i −0.748676 0.284043i
\(712\) 37.4898 + 64.9342i 1.40499 + 2.43351i
\(713\) 0.539213 0.0201937
\(714\) 3.02389 16.4949i 0.113166 0.617308i
\(715\) −15.1866 26.3039i −0.567946 0.983711i
\(716\) 29.7097 51.4587i 1.11030 1.92310i
\(717\) −23.4562 19.9545i −0.875989 0.745215i
\(718\) −72.3719 −2.70090
\(719\) −2.07135 + 3.58769i −0.0772485 + 0.133798i −0.902062 0.431607i \(-0.857947\pi\)
0.824813 + 0.565405i \(0.191280\pi\)
\(720\) 53.5948 + 20.3336i 1.99736 + 0.757787i
\(721\) −1.47191 −0.0548168
\(722\) −34.9232 35.2152i −1.29971 1.31057i
\(723\) 7.34473 2.61704i 0.273153 0.0973288i
\(724\) −19.5527 −0.726670
\(725\) 7.48715 0.278066
\(726\) 4.72093 25.7521i 0.175210 0.955750i
\(727\) −12.4952 21.6423i −0.463422 0.802670i 0.535707 0.844404i \(-0.320045\pi\)
−0.999129 + 0.0417341i \(0.986712\pi\)
\(728\) −6.99147 12.1096i −0.259121 0.448811i
\(729\) −12.5385 23.9121i −0.464388 0.885632i
\(730\) −13.7962 −0.510619
\(731\) −2.89798 −0.107186
\(732\) −16.4383 + 89.6691i −0.607578 + 3.31427i
\(733\) 3.84199 + 6.65452i 0.141907 + 0.245790i 0.928215 0.372045i \(-0.121343\pi\)
−0.786308 + 0.617835i \(0.788010\pi\)
\(734\) −4.84458 8.39105i −0.178817 0.309719i
\(735\) −17.7897 15.1339i −0.656184 0.558224i
\(736\) 1.78240 + 3.08720i 0.0657001 + 0.113796i
\(737\) 1.96690 + 3.40678i 0.0724518 + 0.125490i
\(738\) −21.3942 8.11682i −0.787530 0.298784i
\(739\) −23.9777 + 41.5306i −0.882033 + 1.52773i −0.0329566 + 0.999457i \(0.510492\pi\)
−0.849077 + 0.528270i \(0.822841\pi\)
\(740\) −32.8716 + 56.9353i −1.20839 + 2.09298i
\(741\) −27.9143 1.46658i −1.02546 0.0538763i
\(742\) 3.16713 + 5.48562i 0.116269 + 0.201384i
\(743\) 49.3912 1.81199 0.905993 0.423292i \(-0.139125\pi\)
0.905993 + 0.423292i \(0.139125\pi\)
\(744\) 14.9845 + 12.7475i 0.549357 + 0.467345i
\(745\) −8.22167 −0.301219
\(746\) 32.4354 56.1798i 1.18755 2.05689i
\(747\) 8.05561 + 49.6077i 0.294739 + 1.81505i
\(748\) 142.281 5.20229
\(749\) 0.459162 0.795293i 0.0167774 0.0290594i
\(750\) 41.3099 + 35.1428i 1.50842 + 1.28324i
\(751\) −20.6653 + 35.7934i −0.754089 + 1.30612i 0.191737 + 0.981446i \(0.438588\pi\)
−0.945826 + 0.324674i \(0.894745\pi\)
\(752\) −29.4055 50.9318i −1.07231 1.85729i
\(753\) −10.1065 8.59775i −0.368302 0.313319i
\(754\) 72.9459 2.65653
\(755\) 5.66312 9.80881i 0.206102 0.356979i
\(756\) 12.8592 + 0.261433i 0.467685 + 0.00950823i
\(757\) 6.84258 11.8517i 0.248698 0.430757i −0.714467 0.699669i \(-0.753331\pi\)
0.963165 + 0.268912i \(0.0866641\pi\)
\(758\) −21.6832 37.5564i −0.787570 1.36411i
\(759\) 1.88485 + 1.60347i 0.0684158 + 0.0582022i
\(760\) 8.23349 + 63.5616i 0.298660 + 2.30562i
\(761\) −9.76073 16.9061i −0.353826 0.612845i 0.633090 0.774078i \(-0.281786\pi\)
−0.986916 + 0.161233i \(0.948453\pi\)
\(762\) 5.32660 29.0560i 0.192962 1.05259i
\(763\) −3.29657 5.70982i −0.119344 0.206710i
\(764\) −13.8802 24.0412i −0.502167 0.869779i
\(765\) 6.94412 + 42.7630i 0.251065 + 1.54610i
\(766\) −3.01821 5.22769i −0.109052 0.188884i
\(767\) 7.97273 13.8092i 0.287879 0.498620i
\(768\) 5.24512 28.6115i 0.189267 1.03243i
\(769\) 27.3831 47.4290i 0.987462 1.71033i 0.357021 0.934097i \(-0.383793\pi\)
0.630441 0.776237i \(-0.282874\pi\)
\(770\) −5.50563 + 9.53603i −0.198409 + 0.343655i