Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [171,2,Mod(106,171)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(171, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("171.106");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 171 = 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 171.g (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.36544187456\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
106.1 | −1.23404 | − | 2.13742i | 1.62292 | + | 0.605076i | −2.04570 | + | 3.54325i | 1.91524 | −0.709450 | − | 4.21555i | −0.324708 | + | 0.562412i | 5.16173 | 2.26777 | + | 1.96399i | −2.36348 | − | 4.09366i | ||||
106.2 | −1.04884 | − | 1.81665i | 0.154304 | + | 1.72516i | −1.20014 | + | 2.07870i | −2.89593 | 2.97217 | − | 2.08974i | 0.116480 | − | 0.201749i | 0.839660 | −2.95238 | + | 0.532400i | 3.03737 | + | 5.26088i | ||||
106.3 | −0.978515 | − | 1.69484i | −1.73022 | − | 0.0795352i | −0.914982 | + | 1.58480i | −0.196235 | 1.55825 | + | 3.01027i | −2.23368 | + | 3.86885i | −0.332766 | 2.98735 | + | 0.275227i | 0.192018 | + | 0.332586i | ||||
106.4 | −0.888985 | − | 1.53977i | 1.15573 | − | 1.29008i | −0.580589 | + | 1.00561i | −1.27957 | −3.01384 | − | 0.632688i | 0.657761 | − | 1.13928i | −1.49140 | −0.328599 | − | 2.98195i | 1.13752 | + | 1.97024i | ||||
106.5 | −0.803309 | − | 1.39137i | −1.24014 | − | 1.20915i | −0.290611 | + | 0.503353i | 3.75880 | −0.686165 | + | 2.69682i | 2.27973 | − | 3.94861i | −2.27943 | 0.0758986 | + | 2.99904i | −3.01948 | − | 5.22989i | ||||
106.6 | −0.395929 | − | 0.685769i | 0.659141 | + | 1.60173i | 0.686481 | − | 1.18902i | 2.59093 | 0.837442 | − | 1.08619i | −0.373088 | + | 0.646207i | −2.67091 | −2.13107 | + | 2.11153i | −1.02582 | − | 1.77678i | ||||
106.7 | −0.269545 | − | 0.466866i | −1.40907 | + | 1.00723i | 0.854691 | − | 1.48037i | −0.947325 | 0.850050 | + | 0.386354i | 1.18430 | − | 2.05126i | −1.99969 | 0.970970 | − | 2.83852i | 0.255347 | + | 0.442274i | ||||
106.8 | −0.185445 | − | 0.321199i | −0.894876 | − | 1.48297i | 0.931221 | − | 1.61292i | −3.55521 | −0.310379 | + | 0.562442i | −0.124876 | + | 0.216291i | −1.43254 | −1.39839 | + | 2.65415i | 0.659294 | + | 1.14193i | ||||
106.9 | −0.0732670 | − | 0.126902i | 0.157437 | − | 1.72488i | 0.989264 | − | 1.71346i | 2.57004 | −0.230426 | + | 0.106398i | −1.73898 | + | 3.01201i | −0.582990 | −2.95043 | − | 0.543121i | −0.188299 | − | 0.326143i | ||||
106.10 | 0.0973467 | + | 0.168609i | 1.55267 | + | 0.767609i | 0.981047 | − | 1.69922i | −1.90563 | 0.0217210 | + | 0.336519i | 1.69446 | − | 2.93489i | 0.771394 | 1.82155 | + | 2.38368i | −0.185507 | − | 0.321308i | ||||
106.11 | 0.616796 | + | 1.06832i | 0.506944 | + | 1.65620i | 0.239126 | − | 0.414178i | −0.551543 | −1.45668 | + | 1.56312i | −1.62156 | + | 2.80862i | 3.05715 | −2.48602 | + | 1.67920i | −0.340189 | − | 0.589225i | ||||
106.12 | 0.847114 | + | 1.46725i | 0.0521113 | − | 1.73127i | −0.435206 | + | 0.753799i | 0.0882176 | 2.58434 | − | 1.39012i | 1.84695 | − | 3.19901i | 1.91378 | −2.99457 | − | 0.180437i | 0.0747304 | + | 0.129437i | ||||
106.13 | 1.01016 | + | 1.74964i | −1.70377 | + | 0.311691i | −1.04083 | + | 1.80277i | −4.18739 | −2.26643 | − | 2.66614i | −0.976107 | + | 1.69067i | −0.164982 | 2.80570 | − | 1.06210i | −4.22991 | − | 7.32643i | ||||
106.14 | 1.19971 | + | 2.07797i | −0.340918 | + | 1.69817i | −1.87863 | + | 3.25388i | 0.719678 | −3.93774 | + | 1.32890i | 1.65862 | − | 2.87282i | −4.21641 | −2.76755 | − | 1.15787i | 0.863408 | + | 1.49547i | ||||
106.15 | 1.30160 | + | 2.25443i | −1.17382 | − | 1.27363i | −2.38830 | + | 4.13666i | 2.87794 | 1.34348 | − | 4.30405i | −1.80240 | + | 3.12185i | −7.22804 | −0.244287 | + | 2.99004i | 3.74592 | + | 6.48812i | ||||
106.16 | 1.30515 | + | 2.26059i | 1.63157 | − | 0.581354i | −2.40684 | + | 4.16877i | −2.00201 | 3.44365 | + | 2.92956i | 0.257107 | − | 0.445323i | −7.34455 | 2.32405 | − | 1.89704i | −2.61292 | − | 4.52572i | ||||
121.1 | −1.23404 | + | 2.13742i | 1.62292 | − | 0.605076i | −2.04570 | − | 3.54325i | 1.91524 | −0.709450 | + | 4.21555i | −0.324708 | − | 0.562412i | 5.16173 | 2.26777 | − | 1.96399i | −2.36348 | + | 4.09366i | ||||
121.2 | −1.04884 | + | 1.81665i | 0.154304 | − | 1.72516i | −1.20014 | − | 2.07870i | −2.89593 | 2.97217 | + | 2.08974i | 0.116480 | + | 0.201749i | 0.839660 | −2.95238 | − | 0.532400i | 3.03737 | − | 5.26088i | ||||
121.3 | −0.978515 | + | 1.69484i | −1.73022 | + | 0.0795352i | −0.914982 | − | 1.58480i | −0.196235 | 1.55825 | − | 3.01027i | −2.23368 | − | 3.86885i | −0.332766 | 2.98735 | − | 0.275227i | 0.192018 | − | 0.332586i | ||||
121.4 | −0.888985 | + | 1.53977i | 1.15573 | + | 1.29008i | −0.580589 | − | 1.00561i | −1.27957 | −3.01384 | + | 0.632688i | 0.657761 | + | 1.13928i | −1.49140 | −0.328599 | + | 2.98195i | 1.13752 | − | 1.97024i | ||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
171.g | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 171.2.g.c | ✓ | 32 |
3.b | odd | 2 | 1 | 513.2.g.c | 32 | ||
9.c | even | 3 | 1 | 171.2.h.c | yes | 32 | |
9.d | odd | 6 | 1 | 513.2.h.c | 32 | ||
19.c | even | 3 | 1 | 171.2.h.c | yes | 32 | |
57.h | odd | 6 | 1 | 513.2.h.c | 32 | ||
171.g | even | 3 | 1 | inner | 171.2.g.c | ✓ | 32 |
171.n | odd | 6 | 1 | 513.2.g.c | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
171.2.g.c | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
171.2.g.c | ✓ | 32 | 171.g | even | 3 | 1 | inner |
171.2.h.c | yes | 32 | 9.c | even | 3 | 1 | |
171.2.h.c | yes | 32 | 19.c | even | 3 | 1 | |
513.2.g.c | 32 | 3.b | odd | 2 | 1 | ||
513.2.g.c | 32 | 171.n | odd | 6 | 1 | ||
513.2.h.c | 32 | 9.d | odd | 6 | 1 | ||
513.2.h.c | 32 | 57.h | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(171, [\chi])\):
\( T_{2}^{32} - T_{2}^{31} + 25 T_{2}^{30} - 10 T_{2}^{29} + 358 T_{2}^{28} - 34 T_{2}^{27} + 3447 T_{2}^{26} + 717 T_{2}^{25} + 24681 T_{2}^{24} + 10382 T_{2}^{23} + 135298 T_{2}^{22} + 82109 T_{2}^{21} + 580960 T_{2}^{20} + 420887 T_{2}^{19} + \cdots + 81 \)
|
\( T_{5}^{16} + 3 T_{5}^{15} - 40 T_{5}^{14} - 115 T_{5}^{13} + 600 T_{5}^{12} + 1690 T_{5}^{11} - 4152 T_{5}^{10} - 12111 T_{5}^{9} + 12405 T_{5}^{8} + 43371 T_{5}^{7} - 6663 T_{5}^{6} - 67191 T_{5}^{5} - 25815 T_{5}^{4} + \cdots - 189 \)
|