Properties

Label 171.2.g
Level $171$
Weight $2$
Character orbit 171.g
Rep. character $\chi_{171}(106,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $36$
Newform subspaces $3$
Sturm bound $40$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 171.g (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 171 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 3 \)
Sturm bound: \(40\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(171, [\chi])\).

Total New Old
Modular forms 44 44 0
Cusp forms 36 36 0
Eisenstein series 8 8 0

Trace form

\( 36 q + 3 q^{2} - 2 q^{3} - 15 q^{4} - 2 q^{5} + 2 q^{6} - 3 q^{7} - 24 q^{8} - 4 q^{9} - 6 q^{10} - q^{11} - 3 q^{12} - 10 q^{14} - 11 q^{15} - 9 q^{16} - 5 q^{17} + 18 q^{18} - 9 q^{19} - q^{20} + 11 q^{21}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(171, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
171.2.g.a 171.g 171.g $2$ $1.365$ \(\Q(\sqrt{-3}) \) None 171.2.g.a \(1\) \(-3\) \(6\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(-2+\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots\)
171.2.g.b 171.g 171.g $2$ $1.365$ \(\Q(\sqrt{-3}) \) None 171.2.g.b \(1\) \(3\) \(-2\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(2-\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots\)
171.2.g.c 171.g 171.g $32$ $1.365$ None 171.2.g.c \(1\) \(-2\) \(-6\) \(1\) $\mathrm{SU}(2)[C_{3}]$