Properties

Label 171.2.f.c.64.3
Level $171$
Weight $2$
Character 171.64
Analytic conductor $1.365$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,2,Mod(64,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 171.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.36544187456\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.764411904.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 6x^{6} + 21x^{4} - 54x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 64.3
Root \(-1.27970 + 1.16721i\) of defining polynomial
Character \(\chi\) \(=\) 171.64
Dual form 171.2.f.c.163.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.370982 + 0.642559i) q^{2} +(0.724745 - 1.25529i) q^{4} +(-1.65068 - 2.85906i) q^{5} +1.44949 q^{7} +2.55940 q^{8} +O(q^{10})\) \(q+(0.370982 + 0.642559i) q^{2} +(0.724745 - 1.25529i) q^{4} +(-1.65068 - 2.85906i) q^{5} +1.44949 q^{7} +2.55940 q^{8} +(1.22474 - 2.12132i) q^{10} -1.81743 q^{11} +(0.500000 - 0.866025i) q^{13} +(0.537734 + 0.931383i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(3.30136 + 5.71812i) q^{17} +(1.00000 + 4.24264i) q^{19} -4.78529 q^{20} +(-0.674235 - 1.16781i) q^{22} +(-2.39264 + 4.14418i) q^{23} +(-2.94949 + 5.10867i) q^{25} +0.741964 q^{26} +(1.05051 - 1.81954i) q^{28} +(4.78529 - 8.28836i) q^{29} -4.55051 q^{31} +(2.93038 - 5.07556i) q^{32} +(-2.44949 + 4.24264i) q^{34} +(-2.39264 - 4.14418i) q^{35} -5.89898 q^{37} +(-2.35517 + 2.21650i) q^{38} +(-4.22474 - 7.31747i) q^{40} +(1.48393 + 2.57024i) q^{41} +(4.17423 + 7.22999i) q^{43} +(-1.31718 + 2.28141i) q^{44} -3.55051 q^{46} +(-1.48393 + 2.57024i) q^{47} -4.89898 q^{49} -4.37683 q^{50} +(-0.724745 - 1.25529i) q^{52} +(1.65068 - 2.85906i) q^{53} +(3.00000 + 5.19615i) q^{55} +3.70982 q^{56} +7.10102 q^{58} +(4.21008 + 7.29207i) q^{59} +(-2.50000 + 4.33013i) q^{61} +(-1.68816 - 2.92397i) q^{62} +2.34847 q^{64} -3.30136 q^{65} +(7.17423 - 12.4261i) q^{67} +9.57058 q^{68} +(1.77526 - 3.07483i) q^{70} +(-4.78529 - 8.28836i) q^{71} +(-2.50000 - 4.33013i) q^{73} +(-2.18841 - 3.79045i) q^{74} +(6.05051 + 1.81954i) q^{76} -2.63435 q^{77} +(7.17423 + 12.4261i) q^{79} +(-1.65068 + 2.85906i) q^{80} +(-1.10102 + 1.90702i) q^{82} +3.63487 q^{83} +(10.8990 - 18.8776i) q^{85} +(-3.09713 + 5.36439i) q^{86} -4.65153 q^{88} +(-8.25340 + 14.2953i) q^{89} +(0.724745 - 1.25529i) q^{91} +(3.46811 + 6.00695i) q^{92} -2.20204 q^{94} +(10.4793 - 9.86230i) q^{95} +(-6.44949 - 11.1708i) q^{97} +(-1.81743 - 3.14789i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{4} - 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 4 q^{4} - 8 q^{7} + 4 q^{13} - 4 q^{16} + 8 q^{19} + 24 q^{22} - 4 q^{25} + 28 q^{28} - 56 q^{31} - 8 q^{37} - 24 q^{40} + 4 q^{43} - 48 q^{46} + 4 q^{52} + 24 q^{55} + 96 q^{58} - 20 q^{61} - 40 q^{64} + 28 q^{67} + 24 q^{70} - 20 q^{73} + 68 q^{76} + 28 q^{79} - 48 q^{82} + 48 q^{85} - 96 q^{88} - 4 q^{91} - 96 q^{94} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.370982 + 0.642559i 0.262324 + 0.454358i 0.966859 0.255311i \(-0.0821778\pi\)
−0.704535 + 0.709669i \(0.748844\pi\)
\(3\) 0 0
\(4\) 0.724745 1.25529i 0.362372 0.627647i
\(5\) −1.65068 2.85906i −0.738207 1.27861i −0.953302 0.302018i \(-0.902340\pi\)
0.215096 0.976593i \(-0.430994\pi\)
\(6\) 0 0
\(7\) 1.44949 0.547856 0.273928 0.961750i \(-0.411677\pi\)
0.273928 + 0.961750i \(0.411677\pi\)
\(8\) 2.55940 0.904883
\(9\) 0 0
\(10\) 1.22474 2.12132i 0.387298 0.670820i
\(11\) −1.81743 −0.547977 −0.273988 0.961733i \(-0.588343\pi\)
−0.273988 + 0.961733i \(0.588343\pi\)
\(12\) 0 0
\(13\) 0.500000 0.866025i 0.138675 0.240192i −0.788320 0.615265i \(-0.789049\pi\)
0.926995 + 0.375073i \(0.122382\pi\)
\(14\) 0.537734 + 0.931383i 0.143716 + 0.248923i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 3.30136 + 5.71812i 0.800697 + 1.38685i 0.919158 + 0.393890i \(0.128871\pi\)
−0.118460 + 0.992959i \(0.537796\pi\)
\(18\) 0 0
\(19\) 1.00000 + 4.24264i 0.229416 + 0.973329i
\(20\) −4.78529 −1.07002
\(21\) 0 0
\(22\) −0.674235 1.16781i −0.143747 0.248978i
\(23\) −2.39264 + 4.14418i −0.498901 + 0.864121i −0.999999 0.00126885i \(-0.999596\pi\)
0.501098 + 0.865390i \(0.332929\pi\)
\(24\) 0 0
\(25\) −2.94949 + 5.10867i −0.589898 + 1.02173i
\(26\) 0.741964 0.145511
\(27\) 0 0
\(28\) 1.05051 1.81954i 0.198528 0.343860i
\(29\) 4.78529 8.28836i 0.888606 1.53911i 0.0470812 0.998891i \(-0.485008\pi\)
0.841524 0.540219i \(-0.181659\pi\)
\(30\) 0 0
\(31\) −4.55051 −0.817296 −0.408648 0.912692i \(-0.634000\pi\)
−0.408648 + 0.912692i \(0.634000\pi\)
\(32\) 2.93038 5.07556i 0.518023 0.897241i
\(33\) 0 0
\(34\) −2.44949 + 4.24264i −0.420084 + 0.727607i
\(35\) −2.39264 4.14418i −0.404431 0.700494i
\(36\) 0 0
\(37\) −5.89898 −0.969786 −0.484893 0.874573i \(-0.661142\pi\)
−0.484893 + 0.874573i \(0.661142\pi\)
\(38\) −2.35517 + 2.21650i −0.382059 + 0.359564i
\(39\) 0 0
\(40\) −4.22474 7.31747i −0.667991 1.15699i
\(41\) 1.48393 + 2.57024i 0.231751 + 0.401404i 0.958323 0.285686i \(-0.0922214\pi\)
−0.726573 + 0.687089i \(0.758888\pi\)
\(42\) 0 0
\(43\) 4.17423 + 7.22999i 0.636565 + 1.10256i 0.986181 + 0.165670i \(0.0529786\pi\)
−0.349616 + 0.936893i \(0.613688\pi\)
\(44\) −1.31718 + 2.28141i −0.198572 + 0.343936i
\(45\) 0 0
\(46\) −3.55051 −0.523494
\(47\) −1.48393 + 2.57024i −0.216453 + 0.374908i −0.953721 0.300693i \(-0.902782\pi\)
0.737268 + 0.675600i \(0.236116\pi\)
\(48\) 0 0
\(49\) −4.89898 −0.699854
\(50\) −4.37683 −0.618977
\(51\) 0 0
\(52\) −0.724745 1.25529i −0.100504 0.174078i
\(53\) 1.65068 2.85906i 0.226738 0.392722i −0.730101 0.683339i \(-0.760527\pi\)
0.956840 + 0.290617i \(0.0938604\pi\)
\(54\) 0 0
\(55\) 3.00000 + 5.19615i 0.404520 + 0.700649i
\(56\) 3.70982 0.495745
\(57\) 0 0
\(58\) 7.10102 0.932410
\(59\) 4.21008 + 7.29207i 0.548105 + 0.949346i 0.998404 + 0.0564684i \(0.0179840\pi\)
−0.450299 + 0.892878i \(0.648683\pi\)
\(60\) 0 0
\(61\) −2.50000 + 4.33013i −0.320092 + 0.554416i −0.980507 0.196485i \(-0.937047\pi\)
0.660415 + 0.750901i \(0.270381\pi\)
\(62\) −1.68816 2.92397i −0.214396 0.371345i
\(63\) 0 0
\(64\) 2.34847 0.293559
\(65\) −3.30136 −0.409483
\(66\) 0 0
\(67\) 7.17423 12.4261i 0.876472 1.51809i 0.0212861 0.999773i \(-0.493224\pi\)
0.855186 0.518321i \(-0.173443\pi\)
\(68\) 9.57058 1.16060
\(69\) 0 0
\(70\) 1.77526 3.07483i 0.212184 0.367513i
\(71\) −4.78529 8.28836i −0.567909 0.983648i −0.996772 0.0802782i \(-0.974419\pi\)
0.428863 0.903369i \(-0.358914\pi\)
\(72\) 0 0
\(73\) −2.50000 4.33013i −0.292603 0.506803i 0.681822 0.731519i \(-0.261188\pi\)
−0.974424 + 0.224716i \(0.927855\pi\)
\(74\) −2.18841 3.79045i −0.254398 0.440630i
\(75\) 0 0
\(76\) 6.05051 + 1.81954i 0.694041 + 0.208715i
\(77\) −2.63435 −0.300212
\(78\) 0 0
\(79\) 7.17423 + 12.4261i 0.807164 + 1.39805i 0.914820 + 0.403862i \(0.132332\pi\)
−0.107656 + 0.994188i \(0.534334\pi\)
\(80\) −1.65068 + 2.85906i −0.184552 + 0.319653i
\(81\) 0 0
\(82\) −1.10102 + 1.90702i −0.121587 + 0.210596i
\(83\) 3.63487 0.398978 0.199489 0.979900i \(-0.436072\pi\)
0.199489 + 0.979900i \(0.436072\pi\)
\(84\) 0 0
\(85\) 10.8990 18.8776i 1.18216 2.04756i
\(86\) −3.09713 + 5.36439i −0.333972 + 0.578457i
\(87\) 0 0
\(88\) −4.65153 −0.495855
\(89\) −8.25340 + 14.2953i −0.874859 + 1.51530i −0.0179455 + 0.999839i \(0.505713\pi\)
−0.856913 + 0.515461i \(0.827621\pi\)
\(90\) 0 0
\(91\) 0.724745 1.25529i 0.0759739 0.131591i
\(92\) 3.46811 + 6.00695i 0.361576 + 0.626268i
\(93\) 0 0
\(94\) −2.20204 −0.227123
\(95\) 10.4793 9.86230i 1.07515 1.01185i
\(96\) 0 0
\(97\) −6.44949 11.1708i −0.654846 1.13423i −0.981932 0.189233i \(-0.939400\pi\)
0.327086 0.944995i \(-0.393933\pi\)
\(98\) −1.81743 3.14789i −0.183588 0.317984i
\(99\) 0 0
\(100\) 4.27526 + 7.40496i 0.427526 + 0.740496i
\(101\) −3.30136 + 5.71812i −0.328498 + 0.568975i −0.982214 0.187765i \(-0.939876\pi\)
0.653716 + 0.756740i \(0.273209\pi\)
\(102\) 0 0
\(103\) 1.44949 0.142822 0.0714112 0.997447i \(-0.477250\pi\)
0.0714112 + 0.997447i \(0.477250\pi\)
\(104\) 1.27970 2.21650i 0.125485 0.217346i
\(105\) 0 0
\(106\) 2.44949 0.237915
\(107\) 12.5384 1.21214 0.606068 0.795413i \(-0.292746\pi\)
0.606068 + 0.795413i \(0.292746\pi\)
\(108\) 0 0
\(109\) −0.449490 0.778539i −0.0430533 0.0745705i 0.843696 0.536822i \(-0.180375\pi\)
−0.886749 + 0.462251i \(0.847042\pi\)
\(110\) −2.22589 + 3.85536i −0.212230 + 0.367594i
\(111\) 0 0
\(112\) −0.724745 1.25529i −0.0684820 0.118614i
\(113\) −6.26922 −0.589758 −0.294879 0.955535i \(-0.595279\pi\)
−0.294879 + 0.955535i \(0.595279\pi\)
\(114\) 0 0
\(115\) 15.7980 1.47317
\(116\) −6.93623 12.0139i −0.644012 1.11546i
\(117\) 0 0
\(118\) −3.12372 + 5.41045i −0.287562 + 0.498072i
\(119\) 4.78529 + 8.28836i 0.438667 + 0.759793i
\(120\) 0 0
\(121\) −7.69694 −0.699722
\(122\) −3.70982 −0.335871
\(123\) 0 0
\(124\) −3.29796 + 5.71223i −0.296165 + 0.512974i
\(125\) 2.96786 0.265453
\(126\) 0 0
\(127\) 6.89898 11.9494i 0.612185 1.06034i −0.378686 0.925525i \(-0.623624\pi\)
0.990871 0.134811i \(-0.0430427\pi\)
\(128\) −4.98952 8.64210i −0.441015 0.763861i
\(129\) 0 0
\(130\) −1.22474 2.12132i −0.107417 0.186052i
\(131\) −8.42015 14.5841i −0.735672 1.27422i −0.954428 0.298442i \(-0.903533\pi\)
0.218756 0.975780i \(-0.429800\pi\)
\(132\) 0 0
\(133\) 1.44949 + 6.14966i 0.125687 + 0.533244i
\(134\) 10.6460 0.919678
\(135\) 0 0
\(136\) 8.44949 + 14.6349i 0.724538 + 1.25494i
\(137\) 8.42015 14.5841i 0.719382 1.24601i −0.241863 0.970311i \(-0.577758\pi\)
0.961245 0.275696i \(-0.0889083\pi\)
\(138\) 0 0
\(139\) −6.17423 + 10.6941i −0.523692 + 0.907061i 0.475928 + 0.879484i \(0.342112\pi\)
−0.999620 + 0.0275764i \(0.991221\pi\)
\(140\) −6.93623 −0.586218
\(141\) 0 0
\(142\) 3.55051 6.14966i 0.297952 0.516068i
\(143\) −0.908716 + 1.57394i −0.0759907 + 0.131620i
\(144\) 0 0
\(145\) −31.5959 −2.62390
\(146\) 1.85491 3.21280i 0.153513 0.265893i
\(147\) 0 0
\(148\) −4.27526 + 7.40496i −0.351424 + 0.608684i
\(149\) −3.46811 6.00695i −0.284119 0.492108i 0.688276 0.725449i \(-0.258368\pi\)
−0.972395 + 0.233340i \(0.925034\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 2.55940 + 10.8586i 0.207594 + 0.880749i
\(153\) 0 0
\(154\) −0.977296 1.69273i −0.0787528 0.136404i
\(155\) 7.51144 + 13.0102i 0.603333 + 1.04500i
\(156\) 0 0
\(157\) −6.84847 11.8619i −0.546567 0.946682i −0.998506 0.0546336i \(-0.982601\pi\)
0.451939 0.892049i \(-0.350732\pi\)
\(158\) −5.32302 + 9.21975i −0.423477 + 0.733484i
\(159\) 0 0
\(160\) −19.3485 −1.52963
\(161\) −3.46811 + 6.00695i −0.273326 + 0.473414i
\(162\) 0 0
\(163\) −4.55051 −0.356423 −0.178212 0.983992i \(-0.557031\pi\)
−0.178212 + 0.983992i \(0.557031\pi\)
\(164\) 4.30188 0.335920
\(165\) 0 0
\(166\) 1.34847 + 2.33562i 0.104662 + 0.181279i
\(167\) −6.02751 + 10.4400i −0.466423 + 0.807868i −0.999264 0.0383471i \(-0.987791\pi\)
0.532842 + 0.846215i \(0.321124\pi\)
\(168\) 0 0
\(169\) 6.00000 + 10.3923i 0.461538 + 0.799408i
\(170\) 16.1733 1.24044
\(171\) 0 0
\(172\) 12.1010 0.922694
\(173\) −4.78529 8.28836i −0.363819 0.630152i 0.624767 0.780811i \(-0.285194\pi\)
−0.988586 + 0.150659i \(0.951861\pi\)
\(174\) 0 0
\(175\) −4.27526 + 7.40496i −0.323179 + 0.559762i
\(176\) 0.908716 + 1.57394i 0.0684971 + 0.118640i
\(177\) 0 0
\(178\) −12.2474 −0.917985
\(179\) −17.9907 −1.34469 −0.672345 0.740238i \(-0.734713\pi\)
−0.672345 + 0.740238i \(0.734713\pi\)
\(180\) 0 0
\(181\) 5.55051 9.61377i 0.412566 0.714586i −0.582603 0.812757i \(-0.697966\pi\)
0.995170 + 0.0981710i \(0.0312992\pi\)
\(182\) 1.07547 0.0797191
\(183\) 0 0
\(184\) −6.12372 + 10.6066i −0.451447 + 0.781929i
\(185\) 9.73733 + 16.8655i 0.715903 + 1.23998i
\(186\) 0 0
\(187\) −6.00000 10.3923i −0.438763 0.759961i
\(188\) 2.15094 + 3.72553i 0.156873 + 0.271712i
\(189\) 0 0
\(190\) 10.2247 + 3.07483i 0.741781 + 0.223072i
\(191\) −1.81743 −0.131505 −0.0657524 0.997836i \(-0.520945\pi\)
−0.0657524 + 0.997836i \(0.520945\pi\)
\(192\) 0 0
\(193\) 4.84847 + 8.39780i 0.349000 + 0.604487i 0.986072 0.166318i \(-0.0531878\pi\)
−0.637072 + 0.770805i \(0.719854\pi\)
\(194\) 4.78529 8.28836i 0.343564 0.595070i
\(195\) 0 0
\(196\) −3.55051 + 6.14966i −0.253608 + 0.439262i
\(197\) −13.5389 −0.964610 −0.482305 0.876003i \(-0.660200\pi\)
−0.482305 + 0.876003i \(0.660200\pi\)
\(198\) 0 0
\(199\) 7.17423 12.4261i 0.508568 0.880866i −0.491383 0.870944i \(-0.663508\pi\)
0.999951 0.00992190i \(-0.00315829\pi\)
\(200\) −7.54891 + 13.0751i −0.533789 + 0.924549i
\(201\) 0 0
\(202\) −4.89898 −0.344691
\(203\) 6.93623 12.0139i 0.486828 0.843210i
\(204\) 0 0
\(205\) 4.89898 8.48528i 0.342160 0.592638i
\(206\) 0.537734 + 0.931383i 0.0374657 + 0.0648926i
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) −1.81743 7.71071i −0.125714 0.533361i
\(210\) 0 0
\(211\) −0.174235 0.301783i −0.0119948 0.0207756i 0.859966 0.510352i \(-0.170485\pi\)
−0.871961 + 0.489576i \(0.837151\pi\)
\(212\) −2.39264 4.14418i −0.164327 0.284624i
\(213\) 0 0
\(214\) 4.65153 + 8.05669i 0.317972 + 0.550744i
\(215\) 13.7807 23.8688i 0.939833 1.62784i
\(216\) 0 0
\(217\) −6.59592 −0.447760
\(218\) 0.333505 0.577648i 0.0225878 0.0391232i
\(219\) 0 0
\(220\) 8.69694 0.586347
\(221\) 6.60272 0.444147
\(222\) 0 0
\(223\) 7.17423 + 12.4261i 0.480422 + 0.832116i 0.999748 0.0224607i \(-0.00715008\pi\)
−0.519325 + 0.854577i \(0.673817\pi\)
\(224\) 4.24755 7.35698i 0.283802 0.491559i
\(225\) 0 0
\(226\) −2.32577 4.02834i −0.154708 0.267961i
\(227\) −14.3559 −0.952832 −0.476416 0.879220i \(-0.658064\pi\)
−0.476416 + 0.879220i \(0.658064\pi\)
\(228\) 0 0
\(229\) 8.79796 0.581385 0.290693 0.956816i \(-0.406114\pi\)
0.290693 + 0.956816i \(0.406114\pi\)
\(230\) 5.86076 + 10.1511i 0.386447 + 0.669346i
\(231\) 0 0
\(232\) 12.2474 21.2132i 0.804084 1.39272i
\(233\) −0.333505 0.577648i −0.0218486 0.0378430i 0.854894 0.518802i \(-0.173622\pi\)
−0.876743 + 0.480959i \(0.840289\pi\)
\(234\) 0 0
\(235\) 9.79796 0.639148
\(236\) 12.2049 0.794473
\(237\) 0 0
\(238\) −3.55051 + 6.14966i −0.230145 + 0.398624i
\(239\) −14.3559 −0.928604 −0.464302 0.885677i \(-0.653695\pi\)
−0.464302 + 0.885677i \(0.653695\pi\)
\(240\) 0 0
\(241\) 9.50000 16.4545i 0.611949 1.05993i −0.378963 0.925412i \(-0.623719\pi\)
0.990912 0.134515i \(-0.0429475\pi\)
\(242\) −2.85542 4.94574i −0.183554 0.317924i
\(243\) 0 0
\(244\) 3.62372 + 6.27647i 0.231985 + 0.401810i
\(245\) 8.08665 + 14.0065i 0.516637 + 0.894842i
\(246\) 0 0
\(247\) 4.17423 + 1.25529i 0.265600 + 0.0798725i
\(248\) −11.6466 −0.739557
\(249\) 0 0
\(250\) 1.10102 + 1.90702i 0.0696347 + 0.120611i
\(251\) −9.57058 + 16.5767i −0.604089 + 1.04631i 0.388105 + 0.921615i \(0.373130\pi\)
−0.992195 + 0.124698i \(0.960204\pi\)
\(252\) 0 0
\(253\) 4.34847 7.53177i 0.273386 0.473518i
\(254\) 10.2376 0.642363
\(255\) 0 0
\(256\) 6.05051 10.4798i 0.378157 0.654987i
\(257\) 3.46811 6.00695i 0.216335 0.374703i −0.737350 0.675511i \(-0.763923\pi\)
0.953685 + 0.300808i \(0.0972564\pi\)
\(258\) 0 0
\(259\) −8.55051 −0.531303
\(260\) −2.39264 + 4.14418i −0.148385 + 0.257011i
\(261\) 0 0
\(262\) 6.24745 10.8209i 0.385969 0.668517i
\(263\) 7.75314 + 13.4288i 0.478079 + 0.828058i 0.999684 0.0251295i \(-0.00799983\pi\)
−0.521605 + 0.853187i \(0.674666\pi\)
\(264\) 0 0
\(265\) −10.8990 −0.669519
\(266\) −3.41379 + 3.21280i −0.209313 + 0.196989i
\(267\) 0 0
\(268\) −10.3990 18.0116i −0.635219 1.10023i
\(269\) −7.91990 13.7177i −0.482885 0.836381i 0.516922 0.856032i \(-0.327078\pi\)
−0.999807 + 0.0196517i \(0.993744\pi\)
\(270\) 0 0
\(271\) 0.898979 + 1.55708i 0.0546091 + 0.0945858i 0.892038 0.451961i \(-0.149275\pi\)
−0.837429 + 0.546547i \(0.815942\pi\)
\(272\) 3.30136 5.71812i 0.200174 0.346712i
\(273\) 0 0
\(274\) 12.4949 0.754844
\(275\) 5.36050 9.28466i 0.323250 0.559886i
\(276\) 0 0
\(277\) 10.6969 0.642717 0.321358 0.946958i \(-0.395861\pi\)
0.321358 + 0.946958i \(0.395861\pi\)
\(278\) −9.16212 −0.549507
\(279\) 0 0
\(280\) −6.12372 10.6066i −0.365963 0.633866i
\(281\) 3.46811 6.00695i 0.206890 0.358344i −0.743843 0.668354i \(-0.766999\pi\)
0.950733 + 0.310010i \(0.100332\pi\)
\(282\) 0 0
\(283\) 12.8990 + 22.3417i 0.766765 + 1.32808i 0.939309 + 0.343074i \(0.111468\pi\)
−0.172544 + 0.985002i \(0.555199\pi\)
\(284\) −13.8725 −0.823179
\(285\) 0 0
\(286\) −1.34847 −0.0797367
\(287\) 2.15094 + 3.72553i 0.126966 + 0.219911i
\(288\) 0 0
\(289\) −13.2980 + 23.0327i −0.782233 + 1.35487i
\(290\) −11.7215 20.3023i −0.688311 1.19219i
\(291\) 0 0
\(292\) −7.24745 −0.424125
\(293\) 32.3466 1.88971 0.944854 0.327492i \(-0.106203\pi\)
0.944854 + 0.327492i \(0.106203\pi\)
\(294\) 0 0
\(295\) 13.8990 24.0737i 0.809230 1.40163i
\(296\) −15.0978 −0.877543
\(297\) 0 0
\(298\) 2.57321 4.45694i 0.149062 0.258183i
\(299\) 2.39264 + 4.14418i 0.138370 + 0.239664i
\(300\) 0 0
\(301\) 6.05051 + 10.4798i 0.348746 + 0.604045i
\(302\) −1.48393 2.57024i −0.0853904 0.147901i
\(303\) 0 0
\(304\) 3.17423 2.98735i 0.182055 0.171336i
\(305\) 16.5068 0.945177
\(306\) 0 0
\(307\) −4.79796 8.31031i −0.273834 0.474294i 0.696006 0.718036i \(-0.254959\pi\)
−0.969840 + 0.243741i \(0.921625\pi\)
\(308\) −1.90923 + 3.30689i −0.108789 + 0.188427i
\(309\) 0 0
\(310\) −5.57321 + 9.65309i −0.316537 + 0.548259i
\(311\) 25.2605 1.43239 0.716195 0.697901i \(-0.245882\pi\)
0.716195 + 0.697901i \(0.245882\pi\)
\(312\) 0 0
\(313\) −6.44949 + 11.1708i −0.364547 + 0.631413i −0.988703 0.149886i \(-0.952109\pi\)
0.624157 + 0.781299i \(0.285443\pi\)
\(314\) 5.08132 8.80110i 0.286755 0.496675i
\(315\) 0 0
\(316\) 20.7980 1.16998
\(317\) −0.166753 + 0.288824i −0.00936576 + 0.0162220i −0.870670 0.491867i \(-0.836315\pi\)
0.861305 + 0.508089i \(0.169648\pi\)
\(318\) 0 0
\(319\) −8.69694 + 15.0635i −0.486935 + 0.843396i
\(320\) −3.87657 6.71442i −0.216707 0.375347i
\(321\) 0 0
\(322\) −5.14643 −0.286799
\(323\) −20.9586 + 19.7246i −1.16617 + 1.09751i
\(324\) 0 0
\(325\) 2.94949 + 5.10867i 0.163608 + 0.283378i
\(326\) −1.68816 2.92397i −0.0934984 0.161944i
\(327\) 0 0
\(328\) 3.79796 + 6.57826i 0.209707 + 0.363224i
\(329\) −2.15094 + 3.72553i −0.118585 + 0.205395i
\(330\) 0 0
\(331\) 1.44949 0.0796712 0.0398356 0.999206i \(-0.487317\pi\)
0.0398356 + 0.999206i \(0.487317\pi\)
\(332\) 2.63435 4.56283i 0.144579 0.250418i
\(333\) 0 0
\(334\) −8.94439 −0.489415
\(335\) −47.3695 −2.58807
\(336\) 0 0
\(337\) 1.84847 + 3.20164i 0.100693 + 0.174405i 0.911970 0.410257i \(-0.134561\pi\)
−0.811278 + 0.584661i \(0.801227\pi\)
\(338\) −4.45178 + 7.71071i −0.242145 + 0.419408i
\(339\) 0 0
\(340\) −15.7980 27.3629i −0.856765 1.48396i
\(341\) 8.27025 0.447859
\(342\) 0 0
\(343\) −17.2474 −0.931275
\(344\) 10.6835 + 18.5044i 0.576017 + 0.997690i
\(345\) 0 0
\(346\) 3.55051 6.14966i 0.190877 0.330608i
\(347\) 10.4793 + 18.1507i 0.562558 + 0.974379i 0.997272 + 0.0738104i \(0.0235160\pi\)
−0.434714 + 0.900568i \(0.643151\pi\)
\(348\) 0 0
\(349\) 2.79796 0.149771 0.0748857 0.997192i \(-0.476141\pi\)
0.0748857 + 0.997192i \(0.476141\pi\)
\(350\) −6.34417 −0.339110
\(351\) 0 0
\(352\) −5.32577 + 9.22450i −0.283864 + 0.491667i
\(353\) −2.63435 −0.140212 −0.0701062 0.997540i \(-0.522334\pi\)
−0.0701062 + 0.997540i \(0.522334\pi\)
\(354\) 0 0
\(355\) −15.7980 + 27.3629i −0.838469 + 1.45227i
\(356\) 11.9632 + 20.7209i 0.634049 + 1.09821i
\(357\) 0 0
\(358\) −6.67423 11.5601i −0.352744 0.610971i
\(359\) 9.57058 + 16.5767i 0.505116 + 0.874886i 0.999982 + 0.00591717i \(0.00188350\pi\)
−0.494867 + 0.868969i \(0.664783\pi\)
\(360\) 0 0
\(361\) −17.0000 + 8.48528i −0.894737 + 0.446594i
\(362\) 8.23656 0.432904
\(363\) 0 0
\(364\) −1.05051 1.81954i −0.0550617 0.0953697i
\(365\) −8.25340 + 14.2953i −0.432003 + 0.748251i
\(366\) 0 0
\(367\) 2.82577 4.89437i 0.147504 0.255484i −0.782801 0.622273i \(-0.786209\pi\)
0.930304 + 0.366789i \(0.119543\pi\)
\(368\) 4.78529 0.249450
\(369\) 0 0
\(370\) −7.22474 + 12.5136i −0.375597 + 0.650552i
\(371\) 2.39264 4.14418i 0.124220 0.215155i
\(372\) 0 0
\(373\) −1.30306 −0.0674700 −0.0337350 0.999431i \(-0.510740\pi\)
−0.0337350 + 0.999431i \(0.510740\pi\)
\(374\) 4.45178 7.71071i 0.230196 0.398712i
\(375\) 0 0
\(376\) −3.79796 + 6.57826i −0.195865 + 0.339248i
\(377\) −4.78529 8.28836i −0.246455 0.426872i
\(378\) 0 0
\(379\) 1.44949 0.0744553 0.0372276 0.999307i \(-0.488147\pi\)
0.0372276 + 0.999307i \(0.488147\pi\)
\(380\) −4.78529 20.3023i −0.245480 1.04148i
\(381\) 0 0
\(382\) −0.674235 1.16781i −0.0344968 0.0597503i
\(383\) −7.51144 13.0102i −0.383816 0.664790i 0.607788 0.794100i \(-0.292057\pi\)
−0.991604 + 0.129310i \(0.958724\pi\)
\(384\) 0 0
\(385\) 4.34847 + 7.53177i 0.221619 + 0.383855i
\(386\) −3.59739 + 6.23086i −0.183102 + 0.317142i
\(387\) 0 0
\(388\) −18.6969 −0.949193
\(389\) 3.46811 6.00695i 0.175840 0.304564i −0.764611 0.644492i \(-0.777069\pi\)
0.940452 + 0.339927i \(0.110402\pi\)
\(390\) 0 0
\(391\) −31.5959 −1.59787
\(392\) −12.5384 −0.633286
\(393\) 0 0
\(394\) −5.02270 8.69958i −0.253040 0.438278i
\(395\) 23.6847 41.0232i 1.19171 2.06410i
\(396\) 0 0
\(397\) 3.50000 + 6.06218i 0.175660 + 0.304252i 0.940389 0.340099i \(-0.110461\pi\)
−0.764730 + 0.644351i \(0.777127\pi\)
\(398\) 10.6460 0.533638
\(399\) 0 0
\(400\) 5.89898 0.294949
\(401\) −11.5548 20.0134i −0.577017 0.999423i −0.995819 0.0913456i \(-0.970883\pi\)
0.418802 0.908078i \(-0.362450\pi\)
\(402\) 0 0
\(403\) −2.27526 + 3.94086i −0.113339 + 0.196308i
\(404\) 4.78529 + 8.28836i 0.238077 + 0.412361i
\(405\) 0 0
\(406\) 10.2929 0.510826
\(407\) 10.7210 0.531420
\(408\) 0 0
\(409\) −6.44949 + 11.1708i −0.318907 + 0.552363i −0.980260 0.197712i \(-0.936649\pi\)
0.661353 + 0.750074i \(0.269982\pi\)
\(410\) 7.26973 0.359026
\(411\) 0 0
\(412\) 1.05051 1.81954i 0.0517549 0.0896422i
\(413\) 6.10246 + 10.5698i 0.300283 + 0.520105i
\(414\) 0 0
\(415\) −6.00000 10.3923i −0.294528 0.510138i
\(416\) −2.93038 5.07556i −0.143674 0.248850i
\(417\) 0 0
\(418\) 4.28036 4.02834i 0.209359 0.197033i
\(419\) −17.9907 −0.878905 −0.439452 0.898266i \(-0.644827\pi\)
−0.439452 + 0.898266i \(0.644827\pi\)
\(420\) 0 0
\(421\) −6.44949 11.1708i −0.314329 0.544434i 0.664966 0.746874i \(-0.268446\pi\)
−0.979295 + 0.202440i \(0.935113\pi\)
\(422\) 0.129276 0.223912i 0.00629305 0.0108999i
\(423\) 0 0
\(424\) 4.22474 7.31747i 0.205172 0.355368i
\(425\) −38.9493 −1.88932
\(426\) 0 0
\(427\) −3.62372 + 6.27647i −0.175364 + 0.303740i
\(428\) 9.08716 15.7394i 0.439245 0.760794i
\(429\) 0 0
\(430\) 20.4495 0.986162
\(431\) −1.48393 + 2.57024i −0.0714783 + 0.123804i −0.899549 0.436819i \(-0.856105\pi\)
0.828071 + 0.560623i \(0.189438\pi\)
\(432\) 0 0
\(433\) −3.84847 + 6.66574i −0.184946 + 0.320335i −0.943558 0.331207i \(-0.892544\pi\)
0.758613 + 0.651542i \(0.225878\pi\)
\(434\) −2.44697 4.23827i −0.117458 0.203443i
\(435\) 0 0
\(436\) −1.30306 −0.0624053
\(437\) −19.9749 6.00695i −0.955530 0.287351i
\(438\) 0 0
\(439\) 11.8258 + 20.4828i 0.564413 + 0.977592i 0.997104 + 0.0760497i \(0.0242308\pi\)
−0.432691 + 0.901542i \(0.642436\pi\)
\(440\) 7.67819 + 13.2990i 0.366043 + 0.634006i
\(441\) 0 0
\(442\) 2.44949 + 4.24264i 0.116510 + 0.201802i
\(443\) 9.23707 15.9991i 0.438866 0.760139i −0.558736 0.829346i \(-0.688713\pi\)
0.997602 + 0.0692066i \(0.0220468\pi\)
\(444\) 0 0
\(445\) 54.4949 2.58331
\(446\) −5.32302 + 9.21975i −0.252052 + 0.436568i
\(447\) 0 0
\(448\) 3.40408 0.160828
\(449\) 28.7117 1.35499 0.677495 0.735527i \(-0.263066\pi\)
0.677495 + 0.735527i \(0.263066\pi\)
\(450\) 0 0
\(451\) −2.69694 4.67123i −0.126994 0.219960i
\(452\) −4.54358 + 7.86971i −0.213712 + 0.370160i
\(453\) 0 0
\(454\) −5.32577 9.22450i −0.249951 0.432927i
\(455\) −4.78529 −0.224338
\(456\) 0 0
\(457\) −29.8990 −1.39862 −0.699308 0.714821i \(-0.746508\pi\)
−0.699308 + 0.714821i \(0.746508\pi\)
\(458\) 3.26388 + 5.65321i 0.152511 + 0.264157i
\(459\) 0 0
\(460\) 11.4495 19.8311i 0.533835 0.924630i
\(461\) 4.61854 + 7.99954i 0.215107 + 0.372576i 0.953306 0.302007i \(-0.0976568\pi\)
−0.738199 + 0.674583i \(0.764323\pi\)
\(462\) 0 0
\(463\) 34.1464 1.58692 0.793460 0.608623i \(-0.208278\pi\)
0.793460 + 0.608623i \(0.208278\pi\)
\(464\) −9.57058 −0.444303
\(465\) 0 0
\(466\) 0.247449 0.428594i 0.0114628 0.0198542i
\(467\) 16.1733 0.748411 0.374205 0.927346i \(-0.377915\pi\)
0.374205 + 0.927346i \(0.377915\pi\)
\(468\) 0 0
\(469\) 10.3990 18.0116i 0.480180 0.831697i
\(470\) 3.63487 + 6.29577i 0.167664 + 0.290402i
\(471\) 0 0
\(472\) 10.7753 + 18.6633i 0.495971 + 0.859048i
\(473\) −7.58639 13.1400i −0.348823 0.604178i
\(474\) 0 0
\(475\) −24.6237 7.40496i −1.12981 0.339763i
\(476\) 13.8725 0.635843
\(477\) 0 0
\(478\) −5.32577 9.22450i −0.243595 0.421919i
\(479\) 4.78529 8.28836i 0.218645 0.378705i −0.735749 0.677255i \(-0.763170\pi\)
0.954394 + 0.298550i \(0.0965029\pi\)
\(480\) 0 0
\(481\) −2.94949 + 5.10867i −0.134485 + 0.232935i
\(482\) 14.0973 0.642115
\(483\) 0 0
\(484\) −5.57832 + 9.66193i −0.253560 + 0.439179i
\(485\) −21.2921 + 36.8790i −0.966824 + 1.67459i
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) −6.39849 + 11.0825i −0.289646 + 0.501682i
\(489\) 0 0
\(490\) −6.00000 + 10.3923i −0.271052 + 0.469476i
\(491\) 15.0229 + 26.0204i 0.677973 + 1.17428i 0.975590 + 0.219598i \(0.0704746\pi\)
−0.297618 + 0.954685i \(0.596192\pi\)
\(492\) 0 0
\(493\) 63.1918 2.84602
\(494\) 0.741964 + 3.14789i 0.0333825 + 0.141630i
\(495\) 0 0
\(496\) 2.27526 + 3.94086i 0.102162 + 0.176950i
\(497\) −6.93623 12.0139i −0.311132 0.538897i
\(498\) 0 0
\(499\) −21.1742 36.6749i −0.947889 1.64179i −0.749861 0.661595i \(-0.769880\pi\)
−0.198028 0.980196i \(-0.563454\pi\)
\(500\) 2.15094 3.72553i 0.0961929 0.166611i
\(501\) 0 0
\(502\) −14.2020 −0.633868
\(503\) 0.333505 0.577648i 0.0148703 0.0257560i −0.858495 0.512823i \(-0.828600\pi\)
0.873365 + 0.487067i \(0.161933\pi\)
\(504\) 0 0
\(505\) 21.7980 0.969996
\(506\) 6.45281 0.286863
\(507\) 0 0
\(508\) −10.0000 17.3205i −0.443678 0.768473i
\(509\) −16.8403 + 29.1683i −0.746433 + 1.29286i 0.203089 + 0.979160i \(0.434902\pi\)
−0.949522 + 0.313700i \(0.898431\pi\)
\(510\) 0 0
\(511\) −3.62372 6.27647i −0.160304 0.277655i
\(512\) −10.9795 −0.485232
\(513\) 0 0
\(514\) 5.14643 0.226999
\(515\) −2.39264 4.14418i −0.105432 0.182614i
\(516\) 0 0
\(517\) 2.69694 4.67123i 0.118611 0.205441i
\(518\) −3.17208 5.49421i −0.139373 0.241402i
\(519\) 0 0
\(520\) −8.44949 −0.370535
\(521\) 9.90408 0.433906 0.216953 0.976182i \(-0.430388\pi\)
0.216953 + 0.976182i \(0.430388\pi\)
\(522\) 0 0
\(523\) 2.82577 4.89437i 0.123562 0.214016i −0.797608 0.603176i \(-0.793902\pi\)
0.921170 + 0.389161i \(0.127235\pi\)
\(524\) −24.4099 −1.06635
\(525\) 0 0
\(526\) −5.75255 + 9.96371i −0.250823 + 0.434438i
\(527\) −15.0229 26.0204i −0.654407 1.13347i
\(528\) 0 0
\(529\) 0.0505103 + 0.0874863i 0.00219610 + 0.00380375i
\(530\) −4.04332 7.00324i −0.175631 0.304201i
\(531\) 0 0
\(532\) 8.77015 + 2.63740i 0.380234 + 0.114346i
\(533\) 2.96786 0.128552
\(534\) 0 0
\(535\) −20.6969 35.8481i −0.894807 1.54985i
\(536\) 18.3617 31.8034i 0.793105 1.37370i
\(537\) 0 0
\(538\) 5.87628 10.1780i 0.253344 0.438805i
\(539\) 8.90357 0.383504
\(540\) 0 0
\(541\) −9.84847 + 17.0580i −0.423419 + 0.733383i −0.996271 0.0862756i \(-0.972503\pi\)
0.572853 + 0.819658i \(0.305837\pi\)
\(542\) −0.667010 + 1.15530i −0.0286505 + 0.0496242i
\(543\) 0 0
\(544\) 38.6969 1.65912
\(545\) −1.48393 + 2.57024i −0.0635645 + 0.110097i
\(546\) 0 0
\(547\) 16.1742 28.0146i 0.691560 1.19782i −0.279766 0.960068i \(-0.590257\pi\)
0.971327 0.237749i \(-0.0764097\pi\)
\(548\) −12.2049 21.1396i −0.521369 0.903037i
\(549\) 0 0
\(550\) 7.95459 0.339185
\(551\) 39.9498 + 12.0139i 1.70192 + 0.511809i
\(552\) 0 0
\(553\) 10.3990 + 18.0116i 0.442210 + 0.765929i
\(554\) 3.96837 + 6.87342i 0.168600 + 0.292024i
\(555\) 0 0
\(556\) 8.94949 + 15.5010i 0.379543 + 0.657388i
\(557\) −11.3880 + 19.7246i −0.482525 + 0.835759i −0.999799 0.0200617i \(-0.993614\pi\)
0.517273 + 0.855820i \(0.326947\pi\)
\(558\) 0 0
\(559\) 8.34847 0.353103
\(560\) −2.39264 + 4.14418i −0.101108 + 0.175124i
\(561\) 0 0
\(562\) 5.14643 0.217089
\(563\) 19.8082 0.834814 0.417407 0.908720i \(-0.362939\pi\)
0.417407 + 0.908720i \(0.362939\pi\)
\(564\) 0 0
\(565\) 10.3485 + 17.9241i 0.435363 + 0.754071i
\(566\) −9.57058 + 16.5767i −0.402281 + 0.696772i
\(567\) 0 0
\(568\) −12.2474 21.2132i −0.513892 0.890086i
\(569\) 8.90357 0.373257 0.186628 0.982431i \(-0.440244\pi\)
0.186628 + 0.982431i \(0.440244\pi\)
\(570\) 0 0
\(571\) −13.2474 −0.554388 −0.277194 0.960814i \(-0.589405\pi\)
−0.277194 + 0.960814i \(0.589405\pi\)
\(572\) 1.31718 + 2.28141i 0.0550739 + 0.0953907i
\(573\) 0 0
\(574\) −1.59592 + 2.76421i −0.0666123 + 0.115376i
\(575\) −14.1142 24.4464i −0.588601 1.01949i
\(576\) 0 0
\(577\) −6.69694 −0.278797 −0.139399 0.990236i \(-0.544517\pi\)
−0.139399 + 0.990236i \(0.544517\pi\)
\(578\) −19.7332 −0.820793
\(579\) 0 0
\(580\) −22.8990 + 39.6622i −0.950828 + 1.64688i
\(581\) 5.26870 0.218583
\(582\) 0 0
\(583\) −3.00000 + 5.19615i −0.124247 + 0.215203i
\(584\) −6.39849 11.0825i −0.264771 0.458598i
\(585\) 0 0
\(586\) 12.0000 + 20.7846i 0.495715 + 0.858604i
\(587\) −5.69400 9.86230i −0.235017 0.407061i 0.724261 0.689526i \(-0.242181\pi\)
−0.959278 + 0.282465i \(0.908848\pi\)
\(588\) 0 0
\(589\) −4.55051 19.3062i −0.187501 0.795497i
\(590\) 20.6251 0.849121
\(591\) 0 0
\(592\) 2.94949 + 5.10867i 0.121223 + 0.209965i
\(593\) 5.28555 9.15483i 0.217051 0.375944i −0.736854 0.676052i \(-0.763689\pi\)
0.953905 + 0.300108i \(0.0970228\pi\)
\(594\) 0 0
\(595\) 15.7980 27.3629i 0.647653 1.12177i
\(596\) −10.0540 −0.411827
\(597\) 0 0
\(598\) −1.77526 + 3.07483i −0.0725956 + 0.125739i
\(599\) −15.9316 + 27.5943i −0.650947 + 1.12747i 0.331946 + 0.943298i \(0.392295\pi\)
−0.982893 + 0.184175i \(0.941039\pi\)
\(600\) 0 0
\(601\) 12.1010 0.493611 0.246805 0.969065i \(-0.420619\pi\)
0.246805 + 0.969065i \(0.420619\pi\)
\(602\) −4.48926 + 7.77563i −0.182969 + 0.316911i
\(603\) 0 0
\(604\) −2.89898 + 5.02118i −0.117958 + 0.204309i
\(605\) 12.7052 + 22.0060i 0.516539 + 0.894672i
\(606\) 0 0
\(607\) −45.9444 −1.86483 −0.932413 0.361396i \(-0.882300\pi\)
−0.932413 + 0.361396i \(0.882300\pi\)
\(608\) 24.4642 + 7.35698i 0.992153 + 0.298365i
\(609\) 0 0
\(610\) 6.12372 + 10.6066i 0.247942 + 0.429449i
\(611\) 1.48393 + 2.57024i 0.0600333 + 0.103981i
\(612\) 0 0
\(613\) −6.44949 11.1708i −0.260492 0.451186i 0.705880 0.708331i \(-0.250552\pi\)
−0.966373 + 0.257145i \(0.917218\pi\)
\(614\) 3.55991 6.16595i 0.143666 0.248837i
\(615\) 0 0
\(616\) −6.74235 −0.271657
\(617\) 11.5548 20.0134i 0.465177 0.805710i −0.534032 0.845464i \(-0.679324\pi\)
0.999210 + 0.0397536i \(0.0126573\pi\)
\(618\) 0 0
\(619\) −25.2474 −1.01478 −0.507390 0.861716i \(-0.669390\pi\)
−0.507390 + 0.861716i \(0.669390\pi\)
\(620\) 21.7755 0.874525
\(621\) 0 0
\(622\) 9.37117 + 16.2313i 0.375750 + 0.650818i
\(623\) −11.9632 + 20.7209i −0.479296 + 0.830165i
\(624\) 0 0
\(625\) 9.84847 + 17.0580i 0.393939 + 0.682322i
\(626\) −9.57058 −0.382517
\(627\) 0 0
\(628\) −19.8536 −0.792244
\(629\) −19.4747 33.7311i −0.776505 1.34495i
\(630\) 0 0
\(631\) 4.17423 7.22999i 0.166174 0.287821i −0.770898 0.636959i \(-0.780192\pi\)
0.937071 + 0.349138i \(0.113525\pi\)
\(632\) 18.3617 + 31.8034i 0.730390 + 1.26507i
\(633\) 0 0
\(634\) −0.247449 −0.00982744
\(635\) −45.5520 −1.80768
\(636\) 0 0
\(637\) −2.44949 + 4.24264i −0.0970523 + 0.168100i
\(638\) −12.9056 −0.510939
\(639\) 0 0
\(640\) −16.4722 + 28.5307i −0.651121 + 1.12777i
\(641\) −7.41964 12.8512i −0.293058 0.507591i 0.681473 0.731843i \(-0.261340\pi\)
−0.974531 + 0.224252i \(0.928006\pi\)
\(642\) 0 0
\(643\) −9.17423 15.8902i −0.361796 0.626650i 0.626460 0.779454i \(-0.284503\pi\)
−0.988257 + 0.152804i \(0.951170\pi\)
\(644\) 5.02699 + 8.70701i 0.198091 + 0.343104i
\(645\) 0 0
\(646\) −20.4495 6.14966i −0.804574 0.241955i
\(647\) −12.5384 −0.492937 −0.246468 0.969151i \(-0.579270\pi\)
−0.246468 + 0.969151i \(0.579270\pi\)
\(648\) 0 0
\(649\) −7.65153 13.2528i −0.300349 0.520219i
\(650\) −2.18841 + 3.79045i −0.0858367 + 0.148673i
\(651\) 0 0
\(652\) −3.29796 + 5.71223i −0.129158 + 0.223708i
\(653\) −5.26870 −0.206180 −0.103090 0.994672i \(-0.532873\pi\)
−0.103090 + 0.994672i \(0.532873\pi\)
\(654\) 0 0
\(655\) −27.7980 + 48.1475i −1.08616 + 1.88128i
\(656\) 1.48393 2.57024i 0.0579376 0.100351i
\(657\) 0 0
\(658\) −3.19184 −0.124431
\(659\) 21.8673 37.8753i 0.851829 1.47541i −0.0277267 0.999616i \(-0.508827\pi\)
0.879556 0.475796i \(-0.157840\pi\)
\(660\) 0 0
\(661\) 18.5959 32.2091i 0.723297 1.25279i −0.236374 0.971662i \(-0.575959\pi\)
0.959671 0.281126i \(-0.0907077\pi\)
\(662\) 0.537734 + 0.931383i 0.0208996 + 0.0361992i
\(663\) 0 0
\(664\) 9.30306 0.361029
\(665\) 15.1896 14.2953i 0.589028 0.554348i
\(666\) 0 0
\(667\) 22.8990 + 39.6622i 0.886652 + 1.53573i
\(668\) 8.73681 + 15.1326i 0.338037 + 0.585498i
\(669\) 0 0
\(670\) −17.5732 30.4377i −0.678912 1.17591i
\(671\) 4.54358 7.86971i 0.175403 0.303807i
\(672\) 0 0
\(673\) 12.1010 0.466460 0.233230 0.972422i \(-0.425070\pi\)
0.233230 + 0.972422i \(0.425070\pi\)
\(674\) −1.37150 + 2.37550i −0.0528281 + 0.0915010i
\(675\) 0 0
\(676\) 17.3939 0.668995
\(677\) 7.26973 0.279398 0.139699 0.990194i \(-0.455386\pi\)
0.139699 + 0.990194i \(0.455386\pi\)
\(678\) 0 0
\(679\) −9.34847 16.1920i −0.358761 0.621393i
\(680\) 27.8948 48.3152i 1.06972 1.85280i
\(681\) 0 0
\(682\) 3.06811 + 5.31413i 0.117484 + 0.203488i
\(683\) −17.9907 −0.688396 −0.344198 0.938897i \(-0.611849\pi\)
−0.344198 + 0.938897i \(0.611849\pi\)
\(684\) 0 0
\(685\) −55.5959 −2.12421
\(686\) −6.39849 11.0825i −0.244296 0.423132i
\(687\) 0 0
\(688\) 4.17423 7.22999i 0.159141 0.275641i
\(689\) −1.65068 2.85906i −0.0628859 0.108922i
\(690\) 0 0
\(691\) −33.3939 −1.27036 −0.635181 0.772363i \(-0.719075\pi\)
−0.635181 + 0.772363i \(0.719075\pi\)
\(692\) −13.8725 −0.527351
\(693\) 0 0
\(694\) −7.77526 + 13.4671i −0.295145 + 0.511206i
\(695\) 40.7667 1.54637
\(696\) 0 0
\(697\) −9.79796 + 16.9706i −0.371124 + 0.642806i
\(698\) 1.03799 + 1.79786i 0.0392886 + 0.0680498i
\(699\) 0 0
\(700\) 6.19694 + 10.7334i 0.234222 + 0.405685i
\(701\) −15.1896 26.3092i −0.573704 0.993685i −0.996181 0.0873112i \(-0.972173\pi\)
0.422477 0.906374i \(-0.361161\pi\)
\(702\) 0 0
\(703\) −5.89898 25.0273i −0.222484 0.943921i
\(704\) −4.26818 −0.160863
\(705\) 0 0
\(706\) −0.977296 1.69273i −0.0367810 0.0637066i
\(707\) −4.78529 + 8.28836i −0.179969 + 0.311716i
\(708\) 0 0
\(709\) 15.1969 26.3219i 0.570733 0.988539i −0.425758 0.904837i \(-0.639992\pi\)
0.996491 0.0837014i \(-0.0266742\pi\)
\(710\) −23.4430 −0.879801
\(711\) 0 0
\(712\) −21.1237 + 36.5874i −0.791645 + 1.37117i
\(713\) 10.8878 18.8581i 0.407749 0.706243i
\(714\) 0 0
\(715\) 6.00000 0.224387
\(716\) −13.0387 + 22.5837i −0.487279 + 0.843991i
\(717\) 0 0
\(718\) −7.10102 + 12.2993i −0.265008 + 0.459007i
\(719\) 1.57573 + 2.72924i 0.0587647 + 0.101783i 0.893911 0.448244i \(-0.147951\pi\)
−0.835146 + 0.550028i \(0.814617\pi\)
\(720\) 0 0
\(721\) 2.10102 0.0782461
\(722\) −11.7590 7.77563i −0.437624 0.289379i
\(723\) 0 0
\(724\) −8.04541 13.9351i −0.299005 0.517892i
\(725\) 28.2283 + 48.8929i 1.04837 + 1.81584i
\(726\) 0 0
\(727\) −1.52270 2.63740i −0.0564740 0.0978158i 0.836406 0.548110i \(-0.184652\pi\)
−0.892880 + 0.450294i \(0.851319\pi\)
\(728\) 1.85491 3.21280i 0.0687475 0.119074i
\(729\) 0 0
\(730\) −12.2474 −0.453298
\(731\) −27.5613 + 47.7376i −1.01939 + 1.76564i
\(732\) 0 0
\(733\) 34.6969 1.28156 0.640780 0.767724i \(-0.278611\pi\)
0.640780 + 0.767724i \(0.278611\pi\)
\(734\) 4.19323 0.154775
\(735\) 0 0
\(736\) 14.0227 + 24.2880i 0.516884 + 0.895269i
\(737\) −13.0387 + 22.5837i −0.480286 + 0.831880i
\(738\) 0 0
\(739\) −7.52270 13.0297i −0.276727 0.479305i 0.693842 0.720127i \(-0.255916\pi\)
−0.970569 + 0.240822i \(0.922583\pi\)
\(740\) 28.2283 1.03769
\(741\) 0 0
\(742\) 3.55051 0.130343
\(743\) 6.84443 + 11.8549i 0.251098 + 0.434914i 0.963828 0.266524i \(-0.0858751\pi\)
−0.712731 + 0.701438i \(0.752542\pi\)
\(744\) 0 0
\(745\) −11.4495 + 19.8311i −0.419477 + 0.726555i
\(746\) −0.483412 0.837295i −0.0176990 0.0306555i
\(747\) 0 0
\(748\) −17.3939 −0.635983
\(749\) 18.1743 0.664075
\(750\) 0 0
\(751\) −4.52270 + 7.83355i −0.165036 + 0.285850i −0.936668 0.350219i \(-0.886107\pi\)
0.771632 + 0.636069i \(0.219441\pi\)
\(752\) 2.96786 0.108227
\(753\) 0 0
\(754\) 3.55051 6.14966i 0.129302 0.223958i
\(755\) 6.60272 + 11.4362i 0.240298 + 0.416208i
\(756\) 0 0
\(757\) 21.1969 + 36.7142i 0.770416 + 1.33440i 0.937335 + 0.348429i \(0.113285\pi\)
−0.166919 + 0.985971i \(0.553382\pi\)
\(758\) 0.537734 + 0.931383i 0.0195314 + 0.0338294i
\(759\) 0 0
\(760\) 26.8207 25.2415i 0.972888 0.915607i
\(761\) −26.0774 −0.945304 −0.472652 0.881249i \(-0.656703\pi\)
−0.472652 + 0.881249i \(0.656703\pi\)
\(762\) 0 0
\(763\) −0.651531 1.12848i −0.0235870 0.0408539i
\(764\) −1.31718 + 2.28141i −0.0476537 + 0.0825387i
\(765\) 0 0
\(766\) 5.57321 9.65309i 0.201368 0.348780i
\(767\) 8.42015 0.304034
\(768\) 0 0
\(769\) 15.1969 26.3219i 0.548016 0.949191i −0.450395 0.892829i \(-0.648717\pi\)
0.998410 0.0563614i \(-0.0179499\pi\)
\(770\) −3.22641 + 5.58830i −0.116272 + 0.201388i
\(771\) 0 0
\(772\) 14.0556 0.505873
\(773\) −1.48393 + 2.57024i −0.0533732 + 0.0924450i −0.891478 0.453065i \(-0.850331\pi\)
0.838104 + 0.545510i \(0.183664\pi\)
\(774\) 0 0
\(775\) 13.4217 23.2470i 0.482121 0.835058i
\(776\) −16.5068 28.5906i −0.592560 1.02634i
\(777\) 0 0
\(778\) 5.14643 0.184508
\(779\) −9.42067 + 8.86601i −0.337530 + 0.317658i
\(780\) 0 0
\(781\) 8.69694 + 15.0635i 0.311201 + 0.539016i
\(782\) −11.7215 20.3023i −0.419160 0.726007i
\(783\) 0 0
\(784\) 2.44949 + 4.24264i 0.0874818 + 0.151523i
\(785\) −22.6093