Properties

Label 171.2.f.c.64.1
Level $171$
Weight $2$
Character 171.64
Analytic conductor $1.365$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,2,Mod(64,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 171.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.36544187456\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.764411904.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 6x^{6} + 21x^{4} - 54x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 64.1
Root \(-1.69185 - 0.370982i\) of defining polynomial
Character \(\chi\) \(=\) 171.64
Dual form 171.2.f.c.163.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.16721 - 2.02166i) q^{2} +(-1.72474 + 2.98735i) q^{4} +(-0.524648 - 0.908716i) q^{5} -3.44949 q^{7} +3.38371 q^{8} +O(q^{10})\) \(q+(-1.16721 - 2.02166i) q^{2} +(-1.72474 + 2.98735i) q^{4} +(-0.524648 - 0.908716i) q^{5} -3.44949 q^{7} +3.38371 q^{8} +(-1.22474 + 2.12132i) q^{10} -5.71812 q^{11} +(0.500000 - 0.866025i) q^{13} +(4.02627 + 6.97370i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(1.04930 + 1.81743i) q^{17} +(1.00000 - 4.24264i) q^{19} +3.61953 q^{20} +(6.67423 + 11.5601i) q^{22} +(1.80977 - 3.13461i) q^{23} +(1.94949 - 3.37662i) q^{25} -2.33441 q^{26} +(5.94949 - 10.3048i) q^{28} +(-3.61953 + 6.26922i) q^{29} -9.44949 q^{31} +(2.21650 - 3.83909i) q^{32} +(2.44949 - 4.24264i) q^{34} +(1.80977 + 3.13461i) q^{35} +3.89898 q^{37} +(-9.74439 + 2.93038i) q^{38} +(-1.77526 - 3.07483i) q^{40} +(-4.66883 - 8.08665i) q^{41} +(-3.17423 - 5.49794i) q^{43} +(9.86230 - 17.0820i) q^{44} -8.44949 q^{46} +(4.66883 - 8.08665i) q^{47} +4.89898 q^{49} -9.10183 q^{50} +(1.72474 + 2.98735i) q^{52} +(0.524648 - 0.908716i) q^{53} +(3.00000 + 5.19615i) q^{55} -11.6721 q^{56} +16.8990 q^{58} +(3.90836 + 6.76947i) q^{59} +(-2.50000 + 4.33013i) q^{61} +(11.0295 + 19.1037i) q^{62} -12.3485 q^{64} -1.04930 q^{65} +(-0.174235 + 0.301783i) q^{67} -7.23907 q^{68} +(4.22474 - 7.31747i) q^{70} +(3.61953 + 6.26922i) q^{71} +(-2.50000 - 4.33013i) q^{73} +(-4.55092 - 7.88242i) q^{74} +(10.9495 + 10.3048i) q^{76} +19.7246 q^{77} +(-0.174235 - 0.301783i) q^{79} +(-0.524648 + 0.908716i) q^{80} +(-10.8990 + 18.8776i) q^{82} +11.4362 q^{83} +(1.10102 - 1.90702i) q^{85} +(-7.40998 + 12.8345i) q^{86} -19.3485 q^{88} +(-2.62324 + 4.54358i) q^{89} +(-1.72474 + 2.98735i) q^{91} +(6.24277 + 10.8128i) q^{92} -21.7980 q^{94} +(-4.38000 + 1.31718i) q^{95} +(-1.55051 - 2.68556i) q^{97} +(-5.71812 - 9.90408i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{4} - 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 4 q^{4} - 8 q^{7} + 4 q^{13} - 4 q^{16} + 8 q^{19} + 24 q^{22} - 4 q^{25} + 28 q^{28} - 56 q^{31} - 8 q^{37} - 24 q^{40} + 4 q^{43} - 48 q^{46} + 4 q^{52} + 24 q^{55} + 96 q^{58} - 20 q^{61} - 40 q^{64} + 28 q^{67} + 24 q^{70} - 20 q^{73} + 68 q^{76} + 28 q^{79} - 48 q^{82} + 48 q^{85} - 96 q^{88} - 4 q^{91} - 96 q^{94} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.16721 2.02166i −0.825340 1.42953i −0.901659 0.432447i \(-0.857650\pi\)
0.0763191 0.997083i \(-0.475683\pi\)
\(3\) 0 0
\(4\) −1.72474 + 2.98735i −0.862372 + 1.49367i
\(5\) −0.524648 0.908716i −0.234630 0.406390i 0.724535 0.689238i \(-0.242054\pi\)
−0.959165 + 0.282847i \(0.908721\pi\)
\(6\) 0 0
\(7\) −3.44949 −1.30378 −0.651892 0.758312i \(-0.726025\pi\)
−0.651892 + 0.758312i \(0.726025\pi\)
\(8\) 3.38371 1.19632
\(9\) 0 0
\(10\) −1.22474 + 2.12132i −0.387298 + 0.670820i
\(11\) −5.71812 −1.72408 −0.862040 0.506841i \(-0.830813\pi\)
−0.862040 + 0.506841i \(0.830813\pi\)
\(12\) 0 0
\(13\) 0.500000 0.866025i 0.138675 0.240192i −0.788320 0.615265i \(-0.789049\pi\)
0.926995 + 0.375073i \(0.122382\pi\)
\(14\) 4.02627 + 6.97370i 1.07607 + 1.86380i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.04930 + 1.81743i 0.254491 + 0.440792i 0.964757 0.263141i \(-0.0847586\pi\)
−0.710266 + 0.703934i \(0.751425\pi\)
\(18\) 0 0
\(19\) 1.00000 4.24264i 0.229416 0.973329i
\(20\) 3.61953 0.809352
\(21\) 0 0
\(22\) 6.67423 + 11.5601i 1.42295 + 2.46462i
\(23\) 1.80977 3.13461i 0.377362 0.653611i −0.613315 0.789838i \(-0.710164\pi\)
0.990678 + 0.136227i \(0.0434978\pi\)
\(24\) 0 0
\(25\) 1.94949 3.37662i 0.389898 0.675323i
\(26\) −2.33441 −0.457816
\(27\) 0 0
\(28\) 5.94949 10.3048i 1.12435 1.94743i
\(29\) −3.61953 + 6.26922i −0.672130 + 1.16416i 0.305168 + 0.952298i \(0.401287\pi\)
−0.977299 + 0.211866i \(0.932046\pi\)
\(30\) 0 0
\(31\) −9.44949 −1.69718 −0.848589 0.529052i \(-0.822548\pi\)
−0.848589 + 0.529052i \(0.822548\pi\)
\(32\) 2.21650 3.83909i 0.391826 0.678662i
\(33\) 0 0
\(34\) 2.44949 4.24264i 0.420084 0.727607i
\(35\) 1.80977 + 3.13461i 0.305906 + 0.529845i
\(36\) 0 0
\(37\) 3.89898 0.640988 0.320494 0.947250i \(-0.396151\pi\)
0.320494 + 0.947250i \(0.396151\pi\)
\(38\) −9.74439 + 2.93038i −1.58075 + 0.475370i
\(39\) 0 0
\(40\) −1.77526 3.07483i −0.280692 0.486174i
\(41\) −4.66883 8.08665i −0.729149 1.26292i −0.957244 0.289283i \(-0.906583\pi\)
0.228095 0.973639i \(-0.426750\pi\)
\(42\) 0 0
\(43\) −3.17423 5.49794i −0.484066 0.838427i 0.515766 0.856729i \(-0.327507\pi\)
−0.999833 + 0.0183020i \(0.994174\pi\)
\(44\) 9.86230 17.0820i 1.48680 2.57521i
\(45\) 0 0
\(46\) −8.44949 −1.24581
\(47\) 4.66883 8.08665i 0.681019 1.17956i −0.293652 0.955912i \(-0.594871\pi\)
0.974670 0.223646i \(-0.0717961\pi\)
\(48\) 0 0
\(49\) 4.89898 0.699854
\(50\) −9.10183 −1.28719
\(51\) 0 0
\(52\) 1.72474 + 2.98735i 0.239179 + 0.414270i
\(53\) 0.524648 0.908716i 0.0720659 0.124822i −0.827741 0.561111i \(-0.810374\pi\)
0.899807 + 0.436289i \(0.143707\pi\)
\(54\) 0 0
\(55\) 3.00000 + 5.19615i 0.404520 + 0.700649i
\(56\) −11.6721 −1.55975
\(57\) 0 0
\(58\) 16.8990 2.21894
\(59\) 3.90836 + 6.76947i 0.508825 + 0.881310i 0.999948 + 0.0102201i \(0.00325322\pi\)
−0.491123 + 0.871090i \(0.663413\pi\)
\(60\) 0 0
\(61\) −2.50000 + 4.33013i −0.320092 + 0.554416i −0.980507 0.196485i \(-0.937047\pi\)
0.660415 + 0.750901i \(0.270381\pi\)
\(62\) 11.0295 + 19.1037i 1.40075 + 2.42617i
\(63\) 0 0
\(64\) −12.3485 −1.54356
\(65\) −1.04930 −0.130149
\(66\) 0 0
\(67\) −0.174235 + 0.301783i −0.0212861 + 0.0368687i −0.876472 0.481452i \(-0.840109\pi\)
0.855186 + 0.518321i \(0.173443\pi\)
\(68\) −7.23907 −0.877866
\(69\) 0 0
\(70\) 4.22474 7.31747i 0.504954 0.874605i
\(71\) 3.61953 + 6.26922i 0.429560 + 0.744019i 0.996834 0.0795098i \(-0.0253355\pi\)
−0.567275 + 0.823529i \(0.692002\pi\)
\(72\) 0 0
\(73\) −2.50000 4.33013i −0.292603 0.506803i 0.681822 0.731519i \(-0.261188\pi\)
−0.974424 + 0.224716i \(0.927855\pi\)
\(74\) −4.55092 7.88242i −0.529033 0.916313i
\(75\) 0 0
\(76\) 10.9495 + 10.3048i 1.25599 + 1.18204i
\(77\) 19.7246 2.24783
\(78\) 0 0
\(79\) −0.174235 0.301783i −0.0196029 0.0339533i 0.856058 0.516881i \(-0.172907\pi\)
−0.875660 + 0.482927i \(0.839574\pi\)
\(80\) −0.524648 + 0.908716i −0.0586574 + 0.101598i
\(81\) 0 0
\(82\) −10.8990 + 18.8776i −1.20359 + 2.08468i
\(83\) 11.4362 1.25529 0.627646 0.778499i \(-0.284019\pi\)
0.627646 + 0.778499i \(0.284019\pi\)
\(84\) 0 0
\(85\) 1.10102 1.90702i 0.119422 0.206846i
\(86\) −7.40998 + 12.8345i −0.799039 + 1.38398i
\(87\) 0 0
\(88\) −19.3485 −2.06255
\(89\) −2.62324 + 4.54358i −0.278063 + 0.481619i −0.970903 0.239472i \(-0.923026\pi\)
0.692841 + 0.721091i \(0.256359\pi\)
\(90\) 0 0
\(91\) −1.72474 + 2.98735i −0.180802 + 0.313159i
\(92\) 6.24277 + 10.8128i 0.650854 + 1.12731i
\(93\) 0 0
\(94\) −21.7980 −2.24829
\(95\) −4.38000 + 1.31718i −0.449379 + 0.135139i
\(96\) 0 0
\(97\) −1.55051 2.68556i −0.157430 0.272678i 0.776511 0.630104i \(-0.216988\pi\)
−0.933941 + 0.357426i \(0.883654\pi\)
\(98\) −5.71812 9.90408i −0.577618 1.00046i
\(99\) 0 0
\(100\) 6.72474 + 11.6476i 0.672474 + 1.16476i
\(101\) −1.04930 + 1.81743i −0.104409 + 0.180841i −0.913497 0.406847i \(-0.866628\pi\)
0.809088 + 0.587688i \(0.199962\pi\)
\(102\) 0 0
\(103\) −3.44949 −0.339888 −0.169944 0.985454i \(-0.554359\pi\)
−0.169944 + 0.985454i \(0.554359\pi\)
\(104\) 1.69185 2.93038i 0.165900 0.287347i
\(105\) 0 0
\(106\) −2.44949 −0.237915
\(107\) −16.5767 −1.60253 −0.801266 0.598308i \(-0.795840\pi\)
−0.801266 + 0.598308i \(0.795840\pi\)
\(108\) 0 0
\(109\) 4.44949 + 7.70674i 0.426184 + 0.738172i 0.996530 0.0832323i \(-0.0265243\pi\)
−0.570346 + 0.821404i \(0.693191\pi\)
\(110\) 7.00324 12.1300i 0.667733 1.15655i
\(111\) 0 0
\(112\) 1.72474 + 2.98735i 0.162973 + 0.282278i
\(113\) 8.28836 0.779703 0.389852 0.920878i \(-0.372526\pi\)
0.389852 + 0.920878i \(0.372526\pi\)
\(114\) 0 0
\(115\) −3.79796 −0.354162
\(116\) −12.4855 21.6256i −1.15925 2.00789i
\(117\) 0 0
\(118\) 9.12372 15.8028i 0.839907 1.45476i
\(119\) −3.61953 6.26922i −0.331802 0.574698i
\(120\) 0 0
\(121\) 21.6969 1.97245
\(122\) 11.6721 1.05674
\(123\) 0 0
\(124\) 16.2980 28.2289i 1.46360 2.53503i
\(125\) −9.33766 −0.835185
\(126\) 0 0
\(127\) −2.89898 + 5.02118i −0.257243 + 0.445558i −0.965502 0.260395i \(-0.916147\pi\)
0.708259 + 0.705952i \(0.249481\pi\)
\(128\) 9.98022 + 17.2862i 0.882135 + 1.52790i
\(129\) 0 0
\(130\) 1.22474 + 2.12132i 0.107417 + 0.186052i
\(131\) −7.81671 13.5389i −0.682949 1.18290i −0.974077 0.226219i \(-0.927364\pi\)
0.291127 0.956684i \(-0.405970\pi\)
\(132\) 0 0
\(133\) −3.44949 + 14.6349i −0.299109 + 1.26901i
\(134\) 0.813472 0.0702732
\(135\) 0 0
\(136\) 3.55051 + 6.14966i 0.304454 + 0.527329i
\(137\) 7.81671 13.5389i 0.667827 1.15671i −0.310684 0.950513i \(-0.600558\pi\)
0.978511 0.206197i \(-0.0661087\pi\)
\(138\) 0 0
\(139\) 1.17423 2.03383i 0.0995973 0.172508i −0.811921 0.583768i \(-0.801578\pi\)
0.911518 + 0.411260i \(0.134911\pi\)
\(140\) −12.4855 −1.05522
\(141\) 0 0
\(142\) 8.44949 14.6349i 0.709065 1.22814i
\(143\) −2.85906 + 4.95204i −0.239087 + 0.414110i
\(144\) 0 0
\(145\) 7.59592 0.630807
\(146\) −5.83604 + 10.1083i −0.482994 + 0.836570i
\(147\) 0 0
\(148\) −6.72474 + 11.6476i −0.552771 + 0.957427i
\(149\) −6.24277 10.8128i −0.511428 0.885819i −0.999912 0.0132463i \(-0.995783\pi\)
0.488485 0.872573i \(-0.337550\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 3.38371 14.3559i 0.274455 1.16441i
\(153\) 0 0
\(154\) −23.0227 39.8765i −1.85522 3.21334i
\(155\) 4.95765 + 8.58691i 0.398208 + 0.689717i
\(156\) 0 0
\(157\) 7.84847 + 13.5939i 0.626376 + 1.08492i 0.988273 + 0.152697i \(0.0487959\pi\)
−0.361897 + 0.932218i \(0.617871\pi\)
\(158\) −0.406736 + 0.704487i −0.0323582 + 0.0560460i
\(159\) 0 0
\(160\) −4.65153 −0.367736
\(161\) −6.24277 + 10.8128i −0.491999 + 0.852168i
\(162\) 0 0
\(163\) −9.44949 −0.740141 −0.370071 0.929004i \(-0.620667\pi\)
−0.370071 + 0.929004i \(0.620667\pi\)
\(164\) 32.2102 2.51519
\(165\) 0 0
\(166\) −13.3485 23.1202i −1.03604 1.79448i
\(167\) −9.62648 + 16.6736i −0.744919 + 1.29024i 0.205313 + 0.978696i \(0.434179\pi\)
−0.950232 + 0.311542i \(0.899155\pi\)
\(168\) 0 0
\(169\) 6.00000 + 10.3923i 0.461538 + 0.799408i
\(170\) −5.14048 −0.394257
\(171\) 0 0
\(172\) 21.8990 1.66978
\(173\) 3.61953 + 6.26922i 0.275188 + 0.476640i 0.970183 0.242375i \(-0.0779266\pi\)
−0.694995 + 0.719015i \(0.744593\pi\)
\(174\) 0 0
\(175\) −6.72474 + 11.6476i −0.508343 + 0.880476i
\(176\) 2.85906 + 4.95204i 0.215510 + 0.373274i
\(177\) 0 0
\(178\) 12.2474 0.917985
\(179\) −0.577648 −0.0431754 −0.0215877 0.999767i \(-0.506872\pi\)
−0.0215877 + 0.999767i \(0.506872\pi\)
\(180\) 0 0
\(181\) 10.4495 18.0990i 0.776704 1.34529i −0.157127 0.987578i \(-0.550223\pi\)
0.933832 0.357713i \(-0.116443\pi\)
\(182\) 8.05254 0.596894
\(183\) 0 0
\(184\) 6.12372 10.6066i 0.451447 0.781929i
\(185\) −2.04559 3.54307i −0.150395 0.260491i
\(186\) 0 0
\(187\) −6.00000 10.3923i −0.438763 0.759961i
\(188\) 16.1051 + 27.8948i 1.17458 + 2.03444i
\(189\) 0 0
\(190\) 7.77526 + 7.31747i 0.564076 + 0.530865i
\(191\) −5.71812 −0.413749 −0.206874 0.978367i \(-0.566329\pi\)
−0.206874 + 0.978367i \(0.566329\pi\)
\(192\) 0 0
\(193\) −9.84847 17.0580i −0.708908 1.22787i −0.965262 0.261282i \(-0.915855\pi\)
0.256354 0.966583i \(-0.417479\pi\)
\(194\) −3.61953 + 6.26922i −0.259867 + 0.450103i
\(195\) 0 0
\(196\) −8.44949 + 14.6349i −0.603535 + 1.04535i
\(197\) −14.5841 −1.03908 −0.519538 0.854447i \(-0.673896\pi\)
−0.519538 + 0.854447i \(0.673896\pi\)
\(198\) 0 0
\(199\) −0.174235 + 0.301783i −0.0123512 + 0.0213928i −0.872135 0.489265i \(-0.837265\pi\)
0.859784 + 0.510658i \(0.170598\pi\)
\(200\) 6.59651 11.4255i 0.466443 0.807904i
\(201\) 0 0
\(202\) 4.89898 0.344691
\(203\) 12.4855 21.6256i 0.876313 1.51782i
\(204\) 0 0
\(205\) −4.89898 + 8.48528i −0.342160 + 0.592638i
\(206\) 4.02627 + 6.97370i 0.280523 + 0.485881i
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) −5.71812 + 24.2599i −0.395531 + 1.67810i
\(210\) 0 0
\(211\) 7.17423 + 12.4261i 0.493895 + 0.855451i 0.999975 0.00703553i \(-0.00223950\pi\)
−0.506081 + 0.862486i \(0.668906\pi\)
\(212\) 1.80977 + 3.13461i 0.124295 + 0.215286i
\(213\) 0 0
\(214\) 19.3485 + 33.5125i 1.32263 + 2.29087i
\(215\) −3.33071 + 5.76896i −0.227152 + 0.393440i
\(216\) 0 0
\(217\) 32.5959 2.21276
\(218\) 10.3870 17.9907i 0.703493 1.21849i
\(219\) 0 0
\(220\) −20.6969 −1.39539
\(221\) 2.09859 0.141166
\(222\) 0 0
\(223\) −0.174235 0.301783i −0.0116676 0.0202089i 0.860133 0.510070i \(-0.170381\pi\)
−0.871800 + 0.489862i \(0.837047\pi\)
\(224\) −7.64580 + 13.2429i −0.510857 + 0.884830i
\(225\) 0 0
\(226\) −9.67423 16.7563i −0.643521 1.11461i
\(227\) 10.8586 0.720711 0.360355 0.932815i \(-0.382655\pi\)
0.360355 + 0.932815i \(0.382655\pi\)
\(228\) 0 0
\(229\) −10.7980 −0.713549 −0.356775 0.934190i \(-0.616124\pi\)
−0.356775 + 0.934190i \(0.616124\pi\)
\(230\) 4.43300 + 7.67819i 0.292304 + 0.506285i
\(231\) 0 0
\(232\) −12.2474 + 21.2132i −0.804084 + 1.39272i
\(233\) −10.3870 17.9907i −0.680472 1.17861i −0.974837 0.222919i \(-0.928442\pi\)
0.294365 0.955693i \(-0.404892\pi\)
\(234\) 0 0
\(235\) −9.79796 −0.639148
\(236\) −26.9637 −1.75519
\(237\) 0 0
\(238\) −8.44949 + 14.6349i −0.547699 + 0.948643i
\(239\) 10.8586 0.702384 0.351192 0.936303i \(-0.385776\pi\)
0.351192 + 0.936303i \(0.385776\pi\)
\(240\) 0 0
\(241\) 9.50000 16.4545i 0.611949 1.05993i −0.378963 0.925412i \(-0.623719\pi\)
0.990912 0.134515i \(-0.0429475\pi\)
\(242\) −25.3248 43.8639i −1.62794 2.81968i
\(243\) 0 0
\(244\) −8.62372 14.9367i −0.552077 0.956226i
\(245\) −2.57024 4.45178i −0.164206 0.284414i
\(246\) 0 0
\(247\) −3.17423 2.98735i −0.201972 0.190080i
\(248\) −31.9743 −2.03037
\(249\) 0 0
\(250\) 10.8990 + 18.8776i 0.689312 + 1.19392i
\(251\) 7.23907 12.5384i 0.456926 0.791419i −0.541871 0.840462i \(-0.682284\pi\)
0.998797 + 0.0490430i \(0.0156171\pi\)
\(252\) 0 0
\(253\) −10.3485 + 17.9241i −0.650603 + 1.12688i
\(254\) 13.5348 0.849251
\(255\) 0 0
\(256\) 10.9495 18.9651i 0.684343 1.18532i
\(257\) 6.24277 10.8128i 0.389413 0.674484i −0.602957 0.797773i \(-0.706011\pi\)
0.992371 + 0.123290i \(0.0393444\pi\)
\(258\) 0 0
\(259\) −13.4495 −0.835711
\(260\) 1.80977 3.13461i 0.112237 0.194400i
\(261\) 0 0
\(262\) −18.2474 + 31.6055i −1.12733 + 1.95259i
\(263\) −12.9572 22.4425i −0.798975 1.38386i −0.920284 0.391250i \(-0.872043\pi\)
0.121310 0.992615i \(-0.461291\pi\)
\(264\) 0 0
\(265\) −1.10102 −0.0676352
\(266\) 33.6132 10.1083i 2.06096 0.619780i
\(267\) 0 0
\(268\) −0.601021 1.04100i −0.0367132 0.0635891i
\(269\) 7.76371 + 13.4471i 0.473362 + 0.819887i 0.999535 0.0304905i \(-0.00970693\pi\)
−0.526173 + 0.850378i \(0.676374\pi\)
\(270\) 0 0
\(271\) −8.89898 15.4135i −0.540575 0.936303i −0.998871 0.0475032i \(-0.984874\pi\)
0.458297 0.888799i \(-0.348460\pi\)
\(272\) 1.04930 1.81743i 0.0636229 0.110198i
\(273\) 0 0
\(274\) −36.4949 −2.20474
\(275\) −11.1474 + 19.3079i −0.672215 + 1.16431i
\(276\) 0 0
\(277\) −18.6969 −1.12339 −0.561695 0.827344i \(-0.689851\pi\)
−0.561695 + 0.827344i \(0.689851\pi\)
\(278\) −5.48230 −0.328807
\(279\) 0 0
\(280\) 6.12372 + 10.6066i 0.365963 + 0.633866i
\(281\) 6.24277 10.8128i 0.372413 0.645037i −0.617524 0.786552i \(-0.711864\pi\)
0.989936 + 0.141515i \(0.0451973\pi\)
\(282\) 0 0
\(283\) 3.10102 + 5.37113i 0.184337 + 0.319280i 0.943353 0.331791i \(-0.107653\pi\)
−0.759016 + 0.651072i \(0.774320\pi\)
\(284\) −24.9711 −1.48176
\(285\) 0 0
\(286\) 13.3485 0.789312
\(287\) 16.1051 + 27.8948i 0.950653 + 1.64658i
\(288\) 0 0
\(289\) 6.29796 10.9084i 0.370468 0.641670i
\(290\) −8.86601 15.3564i −0.520630 0.901758i
\(291\) 0 0
\(292\) 17.2474 1.00933
\(293\) −10.2810 −0.600620 −0.300310 0.953842i \(-0.597090\pi\)
−0.300310 + 0.953842i \(0.597090\pi\)
\(294\) 0 0
\(295\) 4.10102 7.10318i 0.238771 0.413563i
\(296\) 13.1930 0.766828
\(297\) 0 0
\(298\) −14.5732 + 25.2415i −0.844204 + 1.46220i
\(299\) −1.80977 3.13461i −0.104662 0.181279i
\(300\) 0 0
\(301\) 10.9495 + 18.9651i 0.631118 + 1.09313i
\(302\) 4.66883 + 8.08665i 0.268661 + 0.465334i
\(303\) 0 0
\(304\) −4.17423 + 1.25529i −0.239409 + 0.0719961i
\(305\) 5.24648 0.300412
\(306\) 0 0
\(307\) 14.7980 + 25.6308i 0.844564 + 1.46283i 0.885999 + 0.463687i \(0.153474\pi\)
−0.0414351 + 0.999141i \(0.513193\pi\)
\(308\) −34.0199 + 58.9242i −1.93846 + 3.35752i
\(309\) 0 0
\(310\) 11.5732 20.0454i 0.657314 1.13850i
\(311\) 23.4501 1.32974 0.664868 0.746961i \(-0.268488\pi\)
0.664868 + 0.746961i \(0.268488\pi\)
\(312\) 0 0
\(313\) −1.55051 + 2.68556i −0.0876400 + 0.151797i −0.906513 0.422178i \(-0.861266\pi\)
0.818873 + 0.573975i \(0.194599\pi\)
\(314\) 18.3216 31.7339i 1.03395 1.79085i
\(315\) 0 0
\(316\) 1.20204 0.0676201
\(317\) −5.19348 + 8.99536i −0.291695 + 0.505230i −0.974211 0.225641i \(-0.927552\pi\)
0.682516 + 0.730871i \(0.260886\pi\)
\(318\) 0 0
\(319\) 20.6969 35.8481i 1.15881 2.00711i
\(320\) 6.47860 + 11.2213i 0.362164 + 0.627287i
\(321\) 0 0
\(322\) 29.1464 1.62427
\(323\) 8.76001 2.63435i 0.487420 0.146579i
\(324\) 0 0
\(325\) −1.94949 3.37662i −0.108138 0.187301i
\(326\) 11.0295 + 19.1037i 0.610868 + 1.05805i
\(327\) 0 0
\(328\) −15.7980 27.3629i −0.872296 1.51086i
\(329\) −16.1051 + 27.8948i −0.887902 + 1.53789i
\(330\) 0 0
\(331\) −3.44949 −0.189601 −0.0948006 0.995496i \(-0.530221\pi\)
−0.0948006 + 0.995496i \(0.530221\pi\)
\(332\) −19.7246 + 34.1640i −1.08253 + 1.87499i
\(333\) 0 0
\(334\) 44.9444 2.45925
\(335\) 0.365647 0.0199774
\(336\) 0 0
\(337\) −12.8485 22.2542i −0.699901 1.21226i −0.968500 0.249012i \(-0.919894\pi\)
0.268600 0.963252i \(-0.413439\pi\)
\(338\) 14.0065 24.2599i 0.761852 1.31957i
\(339\) 0 0
\(340\) 3.79796 + 6.57826i 0.205973 + 0.356756i
\(341\) 54.0334 2.92607
\(342\) 0 0
\(343\) 7.24745 0.391325
\(344\) −10.7407 18.6034i −0.579099 1.00303i
\(345\) 0 0
\(346\) 8.44949 14.6349i 0.454247 0.786780i
\(347\) −4.38000 7.58639i −0.235131 0.407259i 0.724180 0.689611i \(-0.242219\pi\)
−0.959311 + 0.282352i \(0.908885\pi\)
\(348\) 0 0
\(349\) −16.7980 −0.899174 −0.449587 0.893237i \(-0.648429\pi\)
−0.449587 + 0.893237i \(0.648429\pi\)
\(350\) 31.3967 1.67822
\(351\) 0 0
\(352\) −12.6742 + 21.9524i −0.675539 + 1.17007i
\(353\) 19.7246 1.04984 0.524918 0.851153i \(-0.324096\pi\)
0.524918 + 0.851153i \(0.324096\pi\)
\(354\) 0 0
\(355\) 3.79796 6.57826i 0.201575 0.349138i
\(356\) −9.04883 15.6730i −0.479587 0.830669i
\(357\) 0 0
\(358\) 0.674235 + 1.16781i 0.0356344 + 0.0617206i
\(359\) −7.23907 12.5384i −0.382063 0.661753i 0.609294 0.792945i \(-0.291453\pi\)
−0.991357 + 0.131192i \(0.958120\pi\)
\(360\) 0 0
\(361\) −17.0000 8.48528i −0.894737 0.446594i
\(362\) −48.7869 −2.56418
\(363\) 0 0
\(364\) −5.94949 10.3048i −0.311838 0.540119i
\(365\) −2.62324 + 4.54358i −0.137307 + 0.237822i
\(366\) 0 0
\(367\) 10.1742 17.6223i 0.531091 0.919876i −0.468251 0.883596i \(-0.655116\pi\)
0.999342 0.0362806i \(-0.0115510\pi\)
\(368\) −3.61953 −0.188681
\(369\) 0 0
\(370\) −4.77526 + 8.27098i −0.248254 + 0.429988i
\(371\) −1.80977 + 3.13461i −0.0939584 + 0.162741i
\(372\) 0 0
\(373\) −30.6969 −1.58943 −0.794714 0.606985i \(-0.792379\pi\)
−0.794714 + 0.606985i \(0.792379\pi\)
\(374\) −14.0065 + 24.2599i −0.724258 + 1.25445i
\(375\) 0 0
\(376\) 15.7980 27.3629i 0.814718 1.41113i
\(377\) 3.61953 + 6.26922i 0.186415 + 0.322881i
\(378\) 0 0
\(379\) −3.44949 −0.177188 −0.0885942 0.996068i \(-0.528237\pi\)
−0.0885942 + 0.996068i \(0.528237\pi\)
\(380\) 3.61953 15.3564i 0.185678 0.787766i
\(381\) 0 0
\(382\) 6.67423 + 11.5601i 0.341484 + 0.591467i
\(383\) −4.95765 8.58691i −0.253324 0.438770i 0.711115 0.703076i \(-0.248191\pi\)
−0.964439 + 0.264306i \(0.914857\pi\)
\(384\) 0 0
\(385\) −10.3485 17.9241i −0.527407 0.913495i
\(386\) −22.9904 + 39.8206i −1.17018 + 2.02681i
\(387\) 0 0
\(388\) 10.6969 0.543055
\(389\) 6.24277 10.8128i 0.316521 0.548231i −0.663239 0.748408i \(-0.730819\pi\)
0.979760 + 0.200177i \(0.0641519\pi\)
\(390\) 0 0
\(391\) 7.59592 0.384142
\(392\) 16.5767 0.837251
\(393\) 0 0
\(394\) 17.0227 + 29.4842i 0.857591 + 1.48539i
\(395\) −0.182824 + 0.316660i −0.00919885 + 0.0159329i
\(396\) 0 0
\(397\) 3.50000 + 6.06218i 0.175660 + 0.304252i 0.940389 0.340099i \(-0.110461\pi\)
−0.764730 + 0.644351i \(0.777127\pi\)
\(398\) 0.813472 0.0407756
\(399\) 0 0
\(400\) −3.89898 −0.194949
\(401\) −3.67253 6.36101i −0.183398 0.317654i 0.759638 0.650346i \(-0.225376\pi\)
−0.943035 + 0.332692i \(0.892043\pi\)
\(402\) 0 0
\(403\) −4.72474 + 8.18350i −0.235356 + 0.407649i
\(404\) −3.61953 6.26922i −0.180079 0.311905i
\(405\) 0 0
\(406\) −58.2929 −2.89303
\(407\) −22.2948 −1.10511
\(408\) 0 0
\(409\) −1.55051 + 2.68556i −0.0766678 + 0.132793i −0.901810 0.432132i \(-0.857761\pi\)
0.825143 + 0.564925i \(0.191095\pi\)
\(410\) 22.8725 1.12959
\(411\) 0 0
\(412\) 5.94949 10.3048i 0.293110 0.507682i
\(413\) −13.4818 23.3512i −0.663398 1.14904i
\(414\) 0 0
\(415\) −6.00000 10.3923i −0.294528 0.510138i
\(416\) −2.21650 3.83909i −0.108673 0.188227i
\(417\) 0 0
\(418\) 55.7196 16.7563i 2.72534 0.819576i
\(419\) −0.577648 −0.0282199 −0.0141100 0.999900i \(-0.504491\pi\)
−0.0141100 + 0.999900i \(0.504491\pi\)
\(420\) 0 0
\(421\) −1.55051 2.68556i −0.0755672 0.130886i 0.825766 0.564014i \(-0.190743\pi\)
−0.901333 + 0.433127i \(0.857410\pi\)
\(422\) 16.7476 29.0078i 0.815262 1.41208i
\(423\) 0 0
\(424\) 1.77526 3.07483i 0.0862140 0.149327i
\(425\) 8.18236 0.396903
\(426\) 0 0
\(427\) 8.62372 14.9367i 0.417331 0.722839i
\(428\) 28.5906 49.5204i 1.38198 2.39366i
\(429\) 0 0
\(430\) 15.5505 0.749912
\(431\) 4.66883 8.08665i 0.224890 0.389520i −0.731397 0.681952i \(-0.761131\pi\)
0.956286 + 0.292432i \(0.0944645\pi\)
\(432\) 0 0
\(433\) 10.8485 18.7901i 0.521344 0.902995i −0.478348 0.878171i \(-0.658764\pi\)
0.999692 0.0248240i \(-0.00790255\pi\)
\(434\) −38.0462 65.8979i −1.82628 3.16320i
\(435\) 0 0
\(436\) −30.6969 −1.47012
\(437\) −11.4892 10.8128i −0.549605 0.517246i
\(438\) 0 0
\(439\) 19.1742 + 33.2107i 0.915136 + 1.58506i 0.806702 + 0.590959i \(0.201250\pi\)
0.108435 + 0.994104i \(0.465416\pi\)
\(440\) 10.1511 + 17.5823i 0.483936 + 0.838202i
\(441\) 0 0
\(442\) −2.44949 4.24264i −0.116510 0.201802i
\(443\) −17.6260 + 30.5292i −0.837437 + 1.45048i 0.0545930 + 0.998509i \(0.482614\pi\)
−0.892030 + 0.451975i \(0.850719\pi\)
\(444\) 0 0
\(445\) 5.50510 0.260967
\(446\) −0.406736 + 0.704487i −0.0192595 + 0.0333584i
\(447\) 0 0
\(448\) 42.5959 2.01247
\(449\) −21.7172 −1.02490 −0.512449 0.858718i \(-0.671262\pi\)
−0.512449 + 0.858718i \(0.671262\pi\)
\(450\) 0 0
\(451\) 26.6969 + 46.2405i 1.25711 + 2.17738i
\(452\) −14.2953 + 24.7602i −0.672395 + 1.16462i
\(453\) 0 0
\(454\) −12.6742 21.9524i −0.594831 1.03028i
\(455\) 3.61953 0.169686
\(456\) 0 0
\(457\) −20.1010 −0.940286 −0.470143 0.882590i \(-0.655798\pi\)
−0.470143 + 0.882590i \(0.655798\pi\)
\(458\) 12.6035 + 21.8298i 0.588921 + 1.02004i
\(459\) 0 0
\(460\) 6.55051 11.3458i 0.305419 0.529001i
\(461\) −8.81301 15.2646i −0.410463 0.710942i 0.584478 0.811410i \(-0.301299\pi\)
−0.994940 + 0.100468i \(0.967966\pi\)
\(462\) 0 0
\(463\) −0.146428 −0.00680510 −0.00340255 0.999994i \(-0.501083\pi\)
−0.00340255 + 0.999994i \(0.501083\pi\)
\(464\) 7.23907 0.336065
\(465\) 0 0
\(466\) −24.2474 + 41.9978i −1.12324 + 1.94551i
\(467\) −5.14048 −0.237873 −0.118936 0.992902i \(-0.537948\pi\)
−0.118936 + 0.992902i \(0.537948\pi\)
\(468\) 0 0
\(469\) 0.601021 1.04100i 0.0277525 0.0480688i
\(470\) 11.4362 + 19.8082i 0.527515 + 0.913682i
\(471\) 0 0
\(472\) 13.2247 + 22.9059i 0.608718 + 1.05433i
\(473\) 18.1507 + 31.4379i 0.834569 + 1.44552i
\(474\) 0 0
\(475\) −12.3763 11.6476i −0.567862 0.534429i
\(476\) 24.9711 1.14455
\(477\) 0 0
\(478\) −12.6742 21.9524i −0.579706 1.00408i
\(479\) −3.61953 + 6.26922i −0.165381 + 0.286448i −0.936790 0.349891i \(-0.886219\pi\)
0.771410 + 0.636339i \(0.219552\pi\)
\(480\) 0 0
\(481\) 1.94949 3.37662i 0.0888891 0.153960i
\(482\) −44.3539 −2.02026
\(483\) 0 0
\(484\) −37.4217 + 64.8163i −1.70099 + 2.94619i
\(485\) −1.62694 + 2.81795i −0.0738757 + 0.127956i
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) −8.45927 + 14.6519i −0.382933 + 0.663260i
\(489\) 0 0
\(490\) −6.00000 + 10.3923i −0.271052 + 0.469476i
\(491\) 9.91530 + 17.1738i 0.447471 + 0.775043i 0.998221 0.0596275i \(-0.0189913\pi\)
−0.550749 + 0.834671i \(0.685658\pi\)
\(492\) 0 0
\(493\) −15.1918 −0.684206
\(494\) −2.33441 + 9.90408i −0.105030 + 0.445606i
\(495\) 0 0
\(496\) 4.72474 + 8.18350i 0.212147 + 0.367450i
\(497\) −12.4855 21.6256i −0.560053 0.970040i
\(498\) 0 0
\(499\) −13.8258 23.9469i −0.618926 1.07201i −0.989682 0.143281i \(-0.954235\pi\)
0.370756 0.928730i \(-0.379099\pi\)
\(500\) 16.1051 27.8948i 0.720241 1.24749i
\(501\) 0 0
\(502\) −33.7980 −1.50848
\(503\) 10.3870 17.9907i 0.463131 0.802167i −0.535984 0.844228i \(-0.680059\pi\)
0.999115 + 0.0420614i \(0.0133925\pi\)
\(504\) 0 0
\(505\) 2.20204 0.0979895
\(506\) 48.3152 2.14787
\(507\) 0 0
\(508\) −10.0000 17.3205i −0.443678 0.768473i
\(509\) −15.6334 + 27.0779i −0.692940 + 1.20021i 0.277931 + 0.960601i \(0.410351\pi\)
−0.970870 + 0.239605i \(0.922982\pi\)
\(510\) 0 0
\(511\) 8.62372 + 14.9367i 0.381491 + 0.660762i
\(512\) −11.2004 −0.494993
\(513\) 0 0
\(514\) −29.1464 −1.28559
\(515\) 1.80977 + 3.13461i 0.0797478 + 0.138127i
\(516\) 0 0
\(517\) −26.6969 + 46.2405i −1.17413 + 2.03365i
\(518\) 15.6983 + 27.1903i 0.689745 + 1.19467i
\(519\) 0 0
\(520\) −3.55051 −0.155700
\(521\) 3.14789 0.137911 0.0689557 0.997620i \(-0.478033\pi\)
0.0689557 + 0.997620i \(0.478033\pi\)
\(522\) 0 0
\(523\) 10.1742 17.6223i 0.444888 0.770569i −0.553156 0.833078i \(-0.686577\pi\)
0.998044 + 0.0625086i \(0.0199101\pi\)
\(524\) 53.9274 2.35583
\(525\) 0 0
\(526\) −30.2474 + 52.3901i −1.31885 + 2.28432i
\(527\) −9.91530 17.1738i −0.431917 0.748103i
\(528\) 0 0
\(529\) 4.94949 + 8.57277i 0.215195 + 0.372729i
\(530\) 1.28512 + 2.22589i 0.0558220 + 0.0966865i
\(531\) 0 0
\(532\) −37.7702 35.5464i −1.63754 1.54113i
\(533\) −9.33766 −0.404459
\(534\) 0 0
\(535\) 8.69694 + 15.0635i 0.376001 + 0.651254i
\(536\) −0.589559 + 1.02115i −0.0254651 + 0.0441068i
\(537\) 0 0
\(538\) 18.1237 31.3912i 0.781369 1.35337i
\(539\) −28.0130 −1.20660
\(540\) 0 0
\(541\) 4.84847 8.39780i 0.208452 0.361049i −0.742775 0.669541i \(-0.766491\pi\)
0.951227 + 0.308492i \(0.0998242\pi\)
\(542\) −20.7739 + 35.9815i −0.892316 + 1.54554i
\(543\) 0 0
\(544\) 9.30306 0.398865
\(545\) 4.66883 8.08665i 0.199991 0.346394i
\(546\) 0 0
\(547\) 8.82577 15.2867i 0.377362 0.653611i −0.613315 0.789838i \(-0.710164\pi\)
0.990678 + 0.136227i \(0.0434978\pi\)
\(548\) 26.9637 + 46.7025i 1.15183 + 1.99503i
\(549\) 0 0
\(550\) 52.0454 2.21922
\(551\) 22.9785 + 21.6256i 0.978917 + 0.921281i
\(552\) 0 0
\(553\) 0.601021 + 1.04100i 0.0255580 + 0.0442677i
\(554\) 21.8232 + 37.7989i 0.927179 + 1.60592i
\(555\) 0 0
\(556\) 4.05051 + 7.01569i 0.171780 + 0.297532i
\(557\) 1.52094 2.63435i 0.0644444 0.111621i −0.832003 0.554771i \(-0.812806\pi\)
0.896447 + 0.443150i \(0.146139\pi\)
\(558\) 0 0
\(559\) −6.34847 −0.268512
\(560\) 1.80977 3.13461i 0.0764766 0.132461i
\(561\) 0 0
\(562\) −29.1464 −1.22947
\(563\) 6.29577 0.265335 0.132668 0.991161i \(-0.457646\pi\)
0.132668 + 0.991161i \(0.457646\pi\)
\(564\) 0 0
\(565\) −4.34847 7.53177i −0.182941 0.316864i
\(566\) 7.23907 12.5384i 0.304281 0.527030i
\(567\) 0 0
\(568\) 12.2474 + 21.2132i 0.513892 + 0.890086i
\(569\) −28.0130 −1.17436 −0.587182 0.809455i \(-0.699763\pi\)
−0.587182 + 0.809455i \(0.699763\pi\)
\(570\) 0 0
\(571\) 11.2474 0.470691 0.235346 0.971912i \(-0.424378\pi\)
0.235346 + 0.971912i \(0.424378\pi\)
\(572\) −9.86230 17.0820i −0.412364 0.714235i
\(573\) 0 0
\(574\) 37.5959 65.1180i 1.56922 2.71797i
\(575\) −7.05624 12.2218i −0.294266 0.509683i
\(576\) 0 0
\(577\) 22.6969 0.944886 0.472443 0.881361i \(-0.343372\pi\)
0.472443 + 0.881361i \(0.343372\pi\)
\(578\) −29.4041 −1.22305
\(579\) 0 0
\(580\) −13.1010 + 22.6916i −0.543990 + 0.942219i
\(581\) −39.4492 −1.63663
\(582\) 0 0
\(583\) −3.00000 + 5.19615i −0.124247 + 0.215203i
\(584\) −8.45927 14.6519i −0.350047 0.606300i
\(585\) 0 0
\(586\) 12.0000 + 20.7846i 0.495715 + 0.858604i
\(587\) 0.760471 + 1.31718i 0.0313880 + 0.0543656i 0.881293 0.472571i \(-0.156674\pi\)
−0.849905 + 0.526936i \(0.823341\pi\)
\(588\) 0 0
\(589\) −9.44949 + 40.0908i −0.389359 + 1.65191i
\(590\) −19.1470 −0.788268
\(591\) 0 0
\(592\) −1.94949 3.37662i −0.0801235 0.138778i
\(593\) 11.9609 20.7169i 0.491175 0.850740i −0.508773 0.860901i \(-0.669901\pi\)
0.999948 + 0.0101603i \(0.00323419\pi\)
\(594\) 0 0
\(595\) −3.79796 + 6.57826i −0.155701 + 0.269682i
\(596\) 43.0688 1.76416
\(597\) 0 0
\(598\) −4.22474 + 7.31747i −0.172763 + 0.299234i
\(599\) −12.7744 + 22.1259i −0.521946 + 0.904038i 0.477728 + 0.878508i \(0.341461\pi\)
−0.999674 + 0.0255298i \(0.991873\pi\)
\(600\) 0 0
\(601\) 21.8990 0.893278 0.446639 0.894714i \(-0.352621\pi\)
0.446639 + 0.894714i \(0.352621\pi\)
\(602\) 25.5606 44.2723i 1.04177 1.80441i
\(603\) 0 0
\(604\) 6.89898 11.9494i 0.280715 0.486213i
\(605\) −11.3832 19.7164i −0.462795 0.801584i
\(606\) 0 0
\(607\) 7.94439 0.322453 0.161226 0.986917i \(-0.448455\pi\)
0.161226 + 0.986917i \(0.448455\pi\)
\(608\) −14.0714 13.2429i −0.570671 0.537071i
\(609\) 0 0
\(610\) −6.12372 10.6066i −0.247942 0.429449i
\(611\) −4.66883 8.08665i −0.188881 0.327151i
\(612\) 0 0
\(613\) −1.55051 2.68556i −0.0626245 0.108469i 0.833013 0.553253i \(-0.186614\pi\)
−0.895638 + 0.444784i \(0.853280\pi\)
\(614\) 34.5446 59.8329i 1.39411 2.41466i
\(615\) 0 0
\(616\) 66.7423 2.68913
\(617\) 3.67253 6.36101i 0.147851 0.256085i −0.782582 0.622547i \(-0.786098\pi\)
0.930433 + 0.366462i \(0.119431\pi\)
\(618\) 0 0
\(619\) −0.752551 −0.0302476 −0.0151238 0.999886i \(-0.504814\pi\)
−0.0151238 + 0.999886i \(0.504814\pi\)
\(620\) −34.2027 −1.37362
\(621\) 0 0
\(622\) −27.3712 47.4083i −1.09748 1.90090i
\(623\) 9.04883 15.6730i 0.362534 0.627927i
\(624\) 0 0
\(625\) −4.84847 8.39780i −0.193939 0.335912i
\(626\) 7.23907 0.289331
\(627\) 0 0
\(628\) −54.1464 −2.16068
\(629\) 4.09118 + 7.08613i 0.163126 + 0.282543i
\(630\) 0 0
\(631\) −3.17423 + 5.49794i −0.126364 + 0.218869i −0.922265 0.386557i \(-0.873664\pi\)
0.795901 + 0.605427i \(0.206997\pi\)
\(632\) −0.589559 1.02115i −0.0234514 0.0406190i
\(633\) 0 0
\(634\) 24.2474 0.962989
\(635\) 6.08377 0.241427
\(636\) 0 0
\(637\) 2.44949 4.24264i 0.0970523 0.168100i
\(638\) −96.6305 −3.82564
\(639\) 0 0
\(640\) 10.4722 18.1384i 0.413950 0.716982i
\(641\) 23.3441 + 40.4332i 0.922038 + 1.59702i 0.796257 + 0.604959i \(0.206811\pi\)
0.125782 + 0.992058i \(0.459856\pi\)
\(642\) 0 0
\(643\) −1.82577 3.16232i −0.0720012 0.124710i 0.827777 0.561057i \(-0.189605\pi\)
−0.899778 + 0.436347i \(0.856272\pi\)
\(644\) −21.5344 37.2986i −0.848573 1.46977i
\(645\) 0 0
\(646\) −15.5505 14.6349i −0.611827 0.575804i
\(647\) 16.5767 0.651698 0.325849 0.945422i \(-0.394350\pi\)
0.325849 + 0.945422i \(0.394350\pi\)
\(648\) 0 0
\(649\) −22.3485 38.7087i −0.877254 1.51945i
\(650\) −4.55092 + 7.88242i −0.178502 + 0.309174i
\(651\) 0 0
\(652\) 16.2980 28.2289i 0.638277 1.10553i
\(653\) 39.4492 1.54377 0.771884 0.635764i \(-0.219315\pi\)
0.771884 + 0.635764i \(0.219315\pi\)
\(654\) 0 0
\(655\) −8.20204 + 14.2064i −0.320480 + 0.555088i
\(656\) −4.66883 + 8.08665i −0.182287 + 0.315731i
\(657\) 0 0
\(658\) 75.1918 2.93128
\(659\) −5.90095 + 10.2207i −0.229868 + 0.398144i −0.957769 0.287539i \(-0.907163\pi\)
0.727901 + 0.685683i \(0.240496\pi\)
\(660\) 0 0
\(661\) −20.5959 + 35.6732i −0.801088 + 1.38753i 0.117812 + 0.993036i \(0.462412\pi\)
−0.918900 + 0.394490i \(0.870921\pi\)
\(662\) 4.02627 + 6.97370i 0.156485 + 0.271041i
\(663\) 0 0
\(664\) 38.6969 1.50173
\(665\) 15.1088 4.54358i 0.585893 0.176193i
\(666\) 0 0
\(667\) 13.1010 + 22.6916i 0.507274 + 0.878624i
\(668\) −33.2064 57.5153i −1.28480 2.22533i
\(669\) 0 0
\(670\) −0.426786 0.739215i −0.0164882 0.0285584i
\(671\) 14.2953 24.7602i 0.551864 0.955857i
\(672\) 0 0
\(673\) 21.8990 0.844144 0.422072 0.906562i \(-0.361303\pi\)
0.422072 + 0.906562i \(0.361303\pi\)
\(674\) −29.9936 + 51.9505i −1.15531 + 2.00106i
\(675\) 0 0
\(676\) −41.3939 −1.59207
\(677\) 22.8725 0.879061 0.439531 0.898228i \(-0.355145\pi\)
0.439531 + 0.898228i \(0.355145\pi\)
\(678\) 0 0
\(679\) 5.34847 + 9.26382i 0.205255 + 0.355513i
\(680\) 3.72553 6.45281i 0.142868 0.247454i
\(681\) 0 0
\(682\) −63.0681 109.237i −2.41500 4.18291i
\(683\) −0.577648 −0.0221031 −0.0110515 0.999939i \(-0.503518\pi\)
−0.0110515 + 0.999939i \(0.503518\pi\)
\(684\) 0 0
\(685\) −16.4041 −0.626768
\(686\) −8.45927 14.6519i −0.322977 0.559412i
\(687\) 0 0
\(688\) −3.17423 + 5.49794i −0.121017 + 0.209607i
\(689\) −0.524648 0.908716i −0.0199875 0.0346193i
\(690\) 0 0
\(691\) 25.3939 0.966029 0.483014 0.875612i \(-0.339542\pi\)
0.483014 + 0.875612i \(0.339542\pi\)
\(692\) −24.9711 −0.949258
\(693\) 0 0
\(694\) −10.2247 + 17.7098i −0.388126 + 0.672254i
\(695\) −2.46424 −0.0934739
\(696\) 0 0
\(697\) 9.79796 16.9706i 0.371124 0.642806i
\(698\) 19.6067 + 33.9598i 0.742124 + 1.28540i
\(699\) 0 0
\(700\) −23.1969 40.1783i −0.876762 1.51860i
\(701\) −15.1088 26.1692i −0.570651 0.988396i −0.996499 0.0836016i \(-0.973358\pi\)
0.425848 0.904794i \(-0.359976\pi\)
\(702\) 0 0
\(703\) 3.89898 16.5420i 0.147053 0.623892i
\(704\) 70.6101 2.66122
\(705\) 0 0
\(706\) −23.0227 39.8765i −0.866471 1.50077i
\(707\) 3.61953 6.26922i 0.136127 0.235778i
\(708\) 0 0
\(709\) −14.1969 + 24.5898i −0.533177 + 0.923490i 0.466072 + 0.884747i \(0.345669\pi\)
−0.999249 + 0.0387432i \(0.987665\pi\)
\(710\) −17.7320 −0.665471
\(711\) 0 0
\(712\) −8.87628 + 15.3742i −0.332652 + 0.576171i
\(713\) −17.1014 + 29.6204i −0.640451 + 1.10929i
\(714\) 0 0
\(715\) 6.00000 0.224387
\(716\) 0.996295 1.72563i 0.0372333 0.0644900i
\(717\) 0 0
\(718\) −16.8990 + 29.2699i −0.630664 + 1.09234i
\(719\) 23.6330 + 40.9335i 0.881361 + 1.52656i 0.849829 + 0.527059i \(0.176705\pi\)
0.0315323 + 0.999503i \(0.489961\pi\)
\(720\) 0 0
\(721\) 11.8990 0.443141
\(722\) 2.68815 + 44.2723i 0.100043 + 1.64765i
\(723\) 0 0
\(724\) 36.0454 + 62.4325i 1.33962 + 2.32028i
\(725\) 14.1125 + 24.4435i 0.524125 + 0.907810i
\(726\) 0 0
\(727\) 20.5227 + 35.5464i 0.761145 + 1.31834i 0.942261 + 0.334880i \(0.108696\pi\)
−0.181116 + 0.983462i \(0.557971\pi\)
\(728\) −5.83604 + 10.1083i −0.216298 + 0.374639i
\(729\) 0 0
\(730\) 12.2474 0.453298
\(731\) 6.66142 11.5379i 0.246381 0.426745i
\(732\) 0 0
\(733\) 5.30306 0.195873 0.0979365 0.995193i \(-0.468776\pi\)
0.0979365 + 0.995193i \(0.468776\pi\)
\(734\) −47.5018 −1.75332
\(735\) 0 0
\(736\) −8.02270 13.8957i −0.295721 0.512203i
\(737\) 0.996295 1.72563i 0.0366990 0.0635645i
\(738\) 0 0
\(739\) 14.5227 + 25.1541i 0.534226 + 0.925307i 0.999200 + 0.0399828i \(0.0127303\pi\)
−0.464974 + 0.885324i \(0.653936\pi\)
\(740\) 14.1125 0.518785
\(741\) 0 0
\(742\) 8.44949 0.310191
\(743\) −15.8163 27.3946i −0.580242 1.00501i −0.995450 0.0952823i \(-0.969625\pi\)
0.415208 0.909726i \(-0.363709\pi\)
\(744\) 0 0
\(745\) −6.55051 + 11.3458i −0.239992 + 0.415679i
\(746\) 35.8297 + 62.0588i 1.31182 + 2.27214i
\(747\) 0 0
\(748\) 41.3939 1.51351
\(749\) 57.1812 2.08936
\(750\) 0 0
\(751\) 17.5227 30.3502i 0.639413 1.10750i −0.346149 0.938179i \(-0.612511\pi\)
0.985562 0.169316i \(-0.0541557\pi\)
\(752\) −9.33766 −0.340509
\(753\) 0 0
\(754\) 8.44949 14.6349i 0.307712 0.532973i
\(755\) 2.09859 + 3.63487i 0.0763755 + 0.132286i
\(756\) 0 0
\(757\) −8.19694 14.1975i −0.297923 0.516017i 0.677738 0.735304i \(-0.262960\pi\)
−0.975661 + 0.219286i \(0.929627\pi\)
\(758\) 4.02627 + 6.97370i 0.146241 + 0.253296i
\(759\) 0 0
\(760\) −14.8207 + 4.45694i −0.537602 + 0.161670i
\(761\) 1.99259 0.0722313 0.0361157 0.999348i \(-0.488502\pi\)
0.0361157 + 0.999348i \(0.488502\pi\)
\(762\) 0 0
\(763\) −15.3485 26.5843i −0.555652 0.962417i
\(764\) 9.86230 17.0820i 0.356806 0.618006i
\(765\) 0 0
\(766\) −11.5732 + 20.0454i −0.418157 + 0.724270i
\(767\) 7.81671 0.282245
\(768\) 0 0
\(769\) −14.1969 + 24.5898i −0.511955 + 0.886732i 0.487949 + 0.872872i \(0.337745\pi\)
−0.999904 + 0.0138595i \(0.995588\pi\)
\(770\) −24.1576 + 41.8422i −0.870580 + 1.50789i
\(771\) 0 0
\(772\) 67.9444 2.44537
\(773\) 4.66883 8.08665i 0.167926 0.290857i −0.769764 0.638328i \(-0.779626\pi\)
0.937691 + 0.347472i \(0.112960\pi\)
\(774\) 0 0
\(775\) −18.4217 + 31.9073i −0.661726 + 1.14614i
\(776\) −5.24648 9.08716i −0.188338 0.326210i
\(777\) 0 0
\(778\) −29.1464 −1.04495
\(779\) −38.9776 + 11.7215i −1.39652 + 0.419967i
\(780\) 0 0
\(781\) −20.6969 35.8481i −0.740595 1.28275i
\(782\) −8.86601 15.3564i −0.317048 0.549143i
\(783\) 0 0
\(784\) −2.44949 4.24264i −0.0874818 0.151523i
\(785\) 8.23536 14.2641i