Properties

Label 171.2.f.c.163.2
Level $171$
Weight $2$
Character 171.163
Analytic conductor $1.365$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,2,Mod(64,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 171.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.36544187456\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.764411904.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 6x^{6} + 21x^{4} - 54x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.2
Root \(1.27970 + 1.16721i\) of defining polynomial
Character \(\chi\) \(=\) 171.163
Dual form 171.2.f.c.64.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.370982 + 0.642559i) q^{2} +(0.724745 + 1.25529i) q^{4} +(1.65068 - 2.85906i) q^{5} +1.44949 q^{7} -2.55940 q^{8} +O(q^{10})\) \(q+(-0.370982 + 0.642559i) q^{2} +(0.724745 + 1.25529i) q^{4} +(1.65068 - 2.85906i) q^{5} +1.44949 q^{7} -2.55940 q^{8} +(1.22474 + 2.12132i) q^{10} +1.81743 q^{11} +(0.500000 + 0.866025i) q^{13} +(-0.537734 + 0.931383i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-3.30136 + 5.71812i) q^{17} +(1.00000 - 4.24264i) q^{19} +4.78529 q^{20} +(-0.674235 + 1.16781i) q^{22} +(2.39264 + 4.14418i) q^{23} +(-2.94949 - 5.10867i) q^{25} -0.741964 q^{26} +(1.05051 + 1.81954i) q^{28} +(-4.78529 - 8.28836i) q^{29} -4.55051 q^{31} +(-2.93038 - 5.07556i) q^{32} +(-2.44949 - 4.24264i) q^{34} +(2.39264 - 4.14418i) q^{35} -5.89898 q^{37} +(2.35517 + 2.21650i) q^{38} +(-4.22474 + 7.31747i) q^{40} +(-1.48393 + 2.57024i) q^{41} +(4.17423 - 7.22999i) q^{43} +(1.31718 + 2.28141i) q^{44} -3.55051 q^{46} +(1.48393 + 2.57024i) q^{47} -4.89898 q^{49} +4.37683 q^{50} +(-0.724745 + 1.25529i) q^{52} +(-1.65068 - 2.85906i) q^{53} +(3.00000 - 5.19615i) q^{55} -3.70982 q^{56} +7.10102 q^{58} +(-4.21008 + 7.29207i) q^{59} +(-2.50000 - 4.33013i) q^{61} +(1.68816 - 2.92397i) q^{62} +2.34847 q^{64} +3.30136 q^{65} +(7.17423 + 12.4261i) q^{67} -9.57058 q^{68} +(1.77526 + 3.07483i) q^{70} +(4.78529 - 8.28836i) q^{71} +(-2.50000 + 4.33013i) q^{73} +(2.18841 - 3.79045i) q^{74} +(6.05051 - 1.81954i) q^{76} +2.63435 q^{77} +(7.17423 - 12.4261i) q^{79} +(1.65068 + 2.85906i) q^{80} +(-1.10102 - 1.90702i) q^{82} -3.63487 q^{83} +(10.8990 + 18.8776i) q^{85} +(3.09713 + 5.36439i) q^{86} -4.65153 q^{88} +(8.25340 + 14.2953i) q^{89} +(0.724745 + 1.25529i) q^{91} +(-3.46811 + 6.00695i) q^{92} -2.20204 q^{94} +(-10.4793 - 9.86230i) q^{95} +(-6.44949 + 11.1708i) q^{97} +(1.81743 - 3.14789i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{4} - 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 4 q^{4} - 8 q^{7} + 4 q^{13} - 4 q^{16} + 8 q^{19} + 24 q^{22} - 4 q^{25} + 28 q^{28} - 56 q^{31} - 8 q^{37} - 24 q^{40} + 4 q^{43} - 48 q^{46} + 4 q^{52} + 24 q^{55} + 96 q^{58} - 20 q^{61} - 40 q^{64} + 28 q^{67} + 24 q^{70} - 20 q^{73} + 68 q^{76} + 28 q^{79} - 48 q^{82} + 48 q^{85} - 96 q^{88} - 4 q^{91} - 96 q^{94} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.370982 + 0.642559i −0.262324 + 0.454358i −0.966859 0.255311i \(-0.917822\pi\)
0.704535 + 0.709669i \(0.251156\pi\)
\(3\) 0 0
\(4\) 0.724745 + 1.25529i 0.362372 + 0.627647i
\(5\) 1.65068 2.85906i 0.738207 1.27861i −0.215096 0.976593i \(-0.569006\pi\)
0.953302 0.302018i \(-0.0976604\pi\)
\(6\) 0 0
\(7\) 1.44949 0.547856 0.273928 0.961750i \(-0.411677\pi\)
0.273928 + 0.961750i \(0.411677\pi\)
\(8\) −2.55940 −0.904883
\(9\) 0 0
\(10\) 1.22474 + 2.12132i 0.387298 + 0.670820i
\(11\) 1.81743 0.547977 0.273988 0.961733i \(-0.411657\pi\)
0.273988 + 0.961733i \(0.411657\pi\)
\(12\) 0 0
\(13\) 0.500000 + 0.866025i 0.138675 + 0.240192i 0.926995 0.375073i \(-0.122382\pi\)
−0.788320 + 0.615265i \(0.789049\pi\)
\(14\) −0.537734 + 0.931383i −0.143716 + 0.248923i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −3.30136 + 5.71812i −0.800697 + 1.38685i 0.118460 + 0.992959i \(0.462204\pi\)
−0.919158 + 0.393890i \(0.871129\pi\)
\(18\) 0 0
\(19\) 1.00000 4.24264i 0.229416 0.973329i
\(20\) 4.78529 1.07002
\(21\) 0 0
\(22\) −0.674235 + 1.16781i −0.143747 + 0.248978i
\(23\) 2.39264 + 4.14418i 0.498901 + 0.864121i 0.999999 0.00126885i \(-0.000403887\pi\)
−0.501098 + 0.865390i \(0.667071\pi\)
\(24\) 0 0
\(25\) −2.94949 5.10867i −0.589898 1.02173i
\(26\) −0.741964 −0.145511
\(27\) 0 0
\(28\) 1.05051 + 1.81954i 0.198528 + 0.343860i
\(29\) −4.78529 8.28836i −0.888606 1.53911i −0.841524 0.540219i \(-0.818341\pi\)
−0.0470812 0.998891i \(-0.514992\pi\)
\(30\) 0 0
\(31\) −4.55051 −0.817296 −0.408648 0.912692i \(-0.634000\pi\)
−0.408648 + 0.912692i \(0.634000\pi\)
\(32\) −2.93038 5.07556i −0.518023 0.897241i
\(33\) 0 0
\(34\) −2.44949 4.24264i −0.420084 0.727607i
\(35\) 2.39264 4.14418i 0.404431 0.700494i
\(36\) 0 0
\(37\) −5.89898 −0.969786 −0.484893 0.874573i \(-0.661142\pi\)
−0.484893 + 0.874573i \(0.661142\pi\)
\(38\) 2.35517 + 2.21650i 0.382059 + 0.359564i
\(39\) 0 0
\(40\) −4.22474 + 7.31747i −0.667991 + 1.15699i
\(41\) −1.48393 + 2.57024i −0.231751 + 0.401404i −0.958323 0.285686i \(-0.907779\pi\)
0.726573 + 0.687089i \(0.241112\pi\)
\(42\) 0 0
\(43\) 4.17423 7.22999i 0.636565 1.10256i −0.349616 0.936893i \(-0.613688\pi\)
0.986181 0.165670i \(-0.0529786\pi\)
\(44\) 1.31718 + 2.28141i 0.198572 + 0.343936i
\(45\) 0 0
\(46\) −3.55051 −0.523494
\(47\) 1.48393 + 2.57024i 0.216453 + 0.374908i 0.953721 0.300693i \(-0.0972178\pi\)
−0.737268 + 0.675600i \(0.763884\pi\)
\(48\) 0 0
\(49\) −4.89898 −0.699854
\(50\) 4.37683 0.618977
\(51\) 0 0
\(52\) −0.724745 + 1.25529i −0.100504 + 0.174078i
\(53\) −1.65068 2.85906i −0.226738 0.392722i 0.730101 0.683339i \(-0.239473\pi\)
−0.956840 + 0.290617i \(0.906140\pi\)
\(54\) 0 0
\(55\) 3.00000 5.19615i 0.404520 0.700649i
\(56\) −3.70982 −0.495745
\(57\) 0 0
\(58\) 7.10102 0.932410
\(59\) −4.21008 + 7.29207i −0.548105 + 0.949346i 0.450299 + 0.892878i \(0.351317\pi\)
−0.998404 + 0.0564684i \(0.982016\pi\)
\(60\) 0 0
\(61\) −2.50000 4.33013i −0.320092 0.554416i 0.660415 0.750901i \(-0.270381\pi\)
−0.980507 + 0.196485i \(0.937047\pi\)
\(62\) 1.68816 2.92397i 0.214396 0.371345i
\(63\) 0 0
\(64\) 2.34847 0.293559
\(65\) 3.30136 0.409483
\(66\) 0 0
\(67\) 7.17423 + 12.4261i 0.876472 + 1.51809i 0.855186 + 0.518321i \(0.173443\pi\)
0.0212861 + 0.999773i \(0.493224\pi\)
\(68\) −9.57058 −1.16060
\(69\) 0 0
\(70\) 1.77526 + 3.07483i 0.212184 + 0.367513i
\(71\) 4.78529 8.28836i 0.567909 0.983648i −0.428863 0.903369i \(-0.641086\pi\)
0.996772 0.0802782i \(-0.0255809\pi\)
\(72\) 0 0
\(73\) −2.50000 + 4.33013i −0.292603 + 0.506803i −0.974424 0.224716i \(-0.927855\pi\)
0.681822 + 0.731519i \(0.261188\pi\)
\(74\) 2.18841 3.79045i 0.254398 0.440630i
\(75\) 0 0
\(76\) 6.05051 1.81954i 0.694041 0.208715i
\(77\) 2.63435 0.300212
\(78\) 0 0
\(79\) 7.17423 12.4261i 0.807164 1.39805i −0.107656 0.994188i \(-0.534334\pi\)
0.914820 0.403862i \(-0.132332\pi\)
\(80\) 1.65068 + 2.85906i 0.184552 + 0.319653i
\(81\) 0 0
\(82\) −1.10102 1.90702i −0.121587 0.210596i
\(83\) −3.63487 −0.398978 −0.199489 0.979900i \(-0.563928\pi\)
−0.199489 + 0.979900i \(0.563928\pi\)
\(84\) 0 0
\(85\) 10.8990 + 18.8776i 1.18216 + 2.04756i
\(86\) 3.09713 + 5.36439i 0.333972 + 0.578457i
\(87\) 0 0
\(88\) −4.65153 −0.495855
\(89\) 8.25340 + 14.2953i 0.874859 + 1.51530i 0.856913 + 0.515461i \(0.172379\pi\)
0.0179455 + 0.999839i \(0.494287\pi\)
\(90\) 0 0
\(91\) 0.724745 + 1.25529i 0.0759739 + 0.131591i
\(92\) −3.46811 + 6.00695i −0.361576 + 0.626268i
\(93\) 0 0
\(94\) −2.20204 −0.227123
\(95\) −10.4793 9.86230i −1.07515 1.01185i
\(96\) 0 0
\(97\) −6.44949 + 11.1708i −0.654846 + 1.13423i 0.327086 + 0.944995i \(0.393933\pi\)
−0.981932 + 0.189233i \(0.939400\pi\)
\(98\) 1.81743 3.14789i 0.183588 0.317984i
\(99\) 0 0
\(100\) 4.27526 7.40496i 0.427526 0.740496i
\(101\) 3.30136 + 5.71812i 0.328498 + 0.568975i 0.982214 0.187765i \(-0.0601244\pi\)
−0.653716 + 0.756740i \(0.726791\pi\)
\(102\) 0 0
\(103\) 1.44949 0.142822 0.0714112 0.997447i \(-0.477250\pi\)
0.0714112 + 0.997447i \(0.477250\pi\)
\(104\) −1.27970 2.21650i −0.125485 0.217346i
\(105\) 0 0
\(106\) 2.44949 0.237915
\(107\) −12.5384 −1.21214 −0.606068 0.795413i \(-0.707254\pi\)
−0.606068 + 0.795413i \(0.707254\pi\)
\(108\) 0 0
\(109\) −0.449490 + 0.778539i −0.0430533 + 0.0745705i −0.886749 0.462251i \(-0.847042\pi\)
0.843696 + 0.536822i \(0.180375\pi\)
\(110\) 2.22589 + 3.85536i 0.212230 + 0.367594i
\(111\) 0 0
\(112\) −0.724745 + 1.25529i −0.0684820 + 0.118614i
\(113\) 6.26922 0.589758 0.294879 0.955535i \(-0.404721\pi\)
0.294879 + 0.955535i \(0.404721\pi\)
\(114\) 0 0
\(115\) 15.7980 1.47317
\(116\) 6.93623 12.0139i 0.644012 1.11546i
\(117\) 0 0
\(118\) −3.12372 5.41045i −0.287562 0.498072i
\(119\) −4.78529 + 8.28836i −0.438667 + 0.759793i
\(120\) 0 0
\(121\) −7.69694 −0.699722
\(122\) 3.70982 0.335871
\(123\) 0 0
\(124\) −3.29796 5.71223i −0.296165 0.512974i
\(125\) −2.96786 −0.265453
\(126\) 0 0
\(127\) 6.89898 + 11.9494i 0.612185 + 1.06034i 0.990871 + 0.134811i \(0.0430427\pi\)
−0.378686 + 0.925525i \(0.623624\pi\)
\(128\) 4.98952 8.64210i 0.441015 0.763861i
\(129\) 0 0
\(130\) −1.22474 + 2.12132i −0.107417 + 0.186052i
\(131\) 8.42015 14.5841i 0.735672 1.27422i −0.218756 0.975780i \(-0.570200\pi\)
0.954428 0.298442i \(-0.0964669\pi\)
\(132\) 0 0
\(133\) 1.44949 6.14966i 0.125687 0.533244i
\(134\) −10.6460 −0.919678
\(135\) 0 0
\(136\) 8.44949 14.6349i 0.724538 1.25494i
\(137\) −8.42015 14.5841i −0.719382 1.24601i −0.961245 0.275696i \(-0.911092\pi\)
0.241863 0.970311i \(-0.422242\pi\)
\(138\) 0 0
\(139\) −6.17423 10.6941i −0.523692 0.907061i −0.999620 0.0275764i \(-0.991221\pi\)
0.475928 0.879484i \(-0.342112\pi\)
\(140\) 6.93623 0.586218
\(141\) 0 0
\(142\) 3.55051 + 6.14966i 0.297952 + 0.516068i
\(143\) 0.908716 + 1.57394i 0.0759907 + 0.131620i
\(144\) 0 0
\(145\) −31.5959 −2.62390
\(146\) −1.85491 3.21280i −0.153513 0.265893i
\(147\) 0 0
\(148\) −4.27526 7.40496i −0.351424 0.608684i
\(149\) 3.46811 6.00695i 0.284119 0.492108i −0.688276 0.725449i \(-0.741632\pi\)
0.972395 + 0.233340i \(0.0749656\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) −2.55940 + 10.8586i −0.207594 + 0.880749i
\(153\) 0 0
\(154\) −0.977296 + 1.69273i −0.0787528 + 0.136404i
\(155\) −7.51144 + 13.0102i −0.603333 + 1.04500i
\(156\) 0 0
\(157\) −6.84847 + 11.8619i −0.546567 + 0.946682i 0.451939 + 0.892049i \(0.350732\pi\)
−0.998506 + 0.0546336i \(0.982601\pi\)
\(158\) 5.32302 + 9.21975i 0.423477 + 0.733484i
\(159\) 0 0
\(160\) −19.3485 −1.52963
\(161\) 3.46811 + 6.00695i 0.273326 + 0.473414i
\(162\) 0 0
\(163\) −4.55051 −0.356423 −0.178212 0.983992i \(-0.557031\pi\)
−0.178212 + 0.983992i \(0.557031\pi\)
\(164\) −4.30188 −0.335920
\(165\) 0 0
\(166\) 1.34847 2.33562i 0.104662 0.181279i
\(167\) 6.02751 + 10.4400i 0.466423 + 0.807868i 0.999264 0.0383471i \(-0.0122093\pi\)
−0.532842 + 0.846215i \(0.678876\pi\)
\(168\) 0 0
\(169\) 6.00000 10.3923i 0.461538 0.799408i
\(170\) −16.1733 −1.24044
\(171\) 0 0
\(172\) 12.1010 0.922694
\(173\) 4.78529 8.28836i 0.363819 0.630152i −0.624767 0.780811i \(-0.714806\pi\)
0.988586 + 0.150659i \(0.0481394\pi\)
\(174\) 0 0
\(175\) −4.27526 7.40496i −0.323179 0.559762i
\(176\) −0.908716 + 1.57394i −0.0684971 + 0.118640i
\(177\) 0 0
\(178\) −12.2474 −0.917985
\(179\) 17.9907 1.34469 0.672345 0.740238i \(-0.265287\pi\)
0.672345 + 0.740238i \(0.265287\pi\)
\(180\) 0 0
\(181\) 5.55051 + 9.61377i 0.412566 + 0.714586i 0.995170 0.0981710i \(-0.0312992\pi\)
−0.582603 + 0.812757i \(0.697966\pi\)
\(182\) −1.07547 −0.0797191
\(183\) 0 0
\(184\) −6.12372 10.6066i −0.451447 0.781929i
\(185\) −9.73733 + 16.8655i −0.715903 + 1.23998i
\(186\) 0 0
\(187\) −6.00000 + 10.3923i −0.438763 + 0.759961i
\(188\) −2.15094 + 3.72553i −0.156873 + 0.271712i
\(189\) 0 0
\(190\) 10.2247 3.07483i 0.741781 0.223072i
\(191\) 1.81743 0.131505 0.0657524 0.997836i \(-0.479055\pi\)
0.0657524 + 0.997836i \(0.479055\pi\)
\(192\) 0 0
\(193\) 4.84847 8.39780i 0.349000 0.604487i −0.637072 0.770805i \(-0.719854\pi\)
0.986072 + 0.166318i \(0.0531878\pi\)
\(194\) −4.78529 8.28836i −0.343564 0.595070i
\(195\) 0 0
\(196\) −3.55051 6.14966i −0.253608 0.439262i
\(197\) 13.5389 0.964610 0.482305 0.876003i \(-0.339800\pi\)
0.482305 + 0.876003i \(0.339800\pi\)
\(198\) 0 0
\(199\) 7.17423 + 12.4261i 0.508568 + 0.880866i 0.999951 + 0.00992190i \(0.00315829\pi\)
−0.491383 + 0.870944i \(0.663508\pi\)
\(200\) 7.54891 + 13.0751i 0.533789 + 0.924549i
\(201\) 0 0
\(202\) −4.89898 −0.344691
\(203\) −6.93623 12.0139i −0.486828 0.843210i
\(204\) 0 0
\(205\) 4.89898 + 8.48528i 0.342160 + 0.592638i
\(206\) −0.537734 + 0.931383i −0.0374657 + 0.0648926i
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) 1.81743 7.71071i 0.125714 0.533361i
\(210\) 0 0
\(211\) −0.174235 + 0.301783i −0.0119948 + 0.0207756i −0.871961 0.489576i \(-0.837151\pi\)
0.859966 + 0.510352i \(0.170485\pi\)
\(212\) 2.39264 4.14418i 0.164327 0.284624i
\(213\) 0 0
\(214\) 4.65153 8.05669i 0.317972 0.550744i
\(215\) −13.7807 23.8688i −0.939833 1.62784i
\(216\) 0 0
\(217\) −6.59592 −0.447760
\(218\) −0.333505 0.577648i −0.0225878 0.0391232i
\(219\) 0 0
\(220\) 8.69694 0.586347
\(221\) −6.60272 −0.444147
\(222\) 0 0
\(223\) 7.17423 12.4261i 0.480422 0.832116i −0.519325 0.854577i \(-0.673817\pi\)
0.999748 + 0.0224607i \(0.00715008\pi\)
\(224\) −4.24755 7.35698i −0.283802 0.491559i
\(225\) 0 0
\(226\) −2.32577 + 4.02834i −0.154708 + 0.267961i
\(227\) 14.3559 0.952832 0.476416 0.879220i \(-0.341936\pi\)
0.476416 + 0.879220i \(0.341936\pi\)
\(228\) 0 0
\(229\) 8.79796 0.581385 0.290693 0.956816i \(-0.406114\pi\)
0.290693 + 0.956816i \(0.406114\pi\)
\(230\) −5.86076 + 10.1511i −0.386447 + 0.669346i
\(231\) 0 0
\(232\) 12.2474 + 21.2132i 0.804084 + 1.39272i
\(233\) 0.333505 0.577648i 0.0218486 0.0378430i −0.854894 0.518802i \(-0.826378\pi\)
0.876743 + 0.480959i \(0.159711\pi\)
\(234\) 0 0
\(235\) 9.79796 0.639148
\(236\) −12.2049 −0.794473
\(237\) 0 0
\(238\) −3.55051 6.14966i −0.230145 0.398624i
\(239\) 14.3559 0.928604 0.464302 0.885677i \(-0.346305\pi\)
0.464302 + 0.885677i \(0.346305\pi\)
\(240\) 0 0
\(241\) 9.50000 + 16.4545i 0.611949 + 1.05993i 0.990912 + 0.134515i \(0.0429475\pi\)
−0.378963 + 0.925412i \(0.623719\pi\)
\(242\) 2.85542 4.94574i 0.183554 0.317924i
\(243\) 0 0
\(244\) 3.62372 6.27647i 0.231985 0.401810i
\(245\) −8.08665 + 14.0065i −0.516637 + 0.894842i
\(246\) 0 0
\(247\) 4.17423 1.25529i 0.265600 0.0798725i
\(248\) 11.6466 0.739557
\(249\) 0 0
\(250\) 1.10102 1.90702i 0.0696347 0.120611i
\(251\) 9.57058 + 16.5767i 0.604089 + 1.04631i 0.992195 + 0.124698i \(0.0397963\pi\)
−0.388105 + 0.921615i \(0.626870\pi\)
\(252\) 0 0
\(253\) 4.34847 + 7.53177i 0.273386 + 0.473518i
\(254\) −10.2376 −0.642363
\(255\) 0 0
\(256\) 6.05051 + 10.4798i 0.378157 + 0.654987i
\(257\) −3.46811 6.00695i −0.216335 0.374703i 0.737350 0.675511i \(-0.236077\pi\)
−0.953685 + 0.300808i \(0.902744\pi\)
\(258\) 0 0
\(259\) −8.55051 −0.531303
\(260\) 2.39264 + 4.14418i 0.148385 + 0.257011i
\(261\) 0 0
\(262\) 6.24745 + 10.8209i 0.385969 + 0.668517i
\(263\) −7.75314 + 13.4288i −0.478079 + 0.828058i −0.999684 0.0251295i \(-0.992000\pi\)
0.521605 + 0.853187i \(0.325334\pi\)
\(264\) 0 0
\(265\) −10.8990 −0.669519
\(266\) 3.41379 + 3.21280i 0.209313 + 0.196989i
\(267\) 0 0
\(268\) −10.3990 + 18.0116i −0.635219 + 1.10023i
\(269\) 7.91990 13.7177i 0.482885 0.836381i −0.516922 0.856032i \(-0.672922\pi\)
0.999807 + 0.0196517i \(0.00625574\pi\)
\(270\) 0 0
\(271\) 0.898979 1.55708i 0.0546091 0.0945858i −0.837429 0.546547i \(-0.815942\pi\)
0.892038 + 0.451961i \(0.149275\pi\)
\(272\) −3.30136 5.71812i −0.200174 0.346712i
\(273\) 0 0
\(274\) 12.4949 0.754844
\(275\) −5.36050 9.28466i −0.323250 0.559886i
\(276\) 0 0
\(277\) 10.6969 0.642717 0.321358 0.946958i \(-0.395861\pi\)
0.321358 + 0.946958i \(0.395861\pi\)
\(278\) 9.16212 0.549507
\(279\) 0 0
\(280\) −6.12372 + 10.6066i −0.365963 + 0.633866i
\(281\) −3.46811 6.00695i −0.206890 0.358344i 0.743843 0.668354i \(-0.233001\pi\)
−0.950733 + 0.310010i \(0.899668\pi\)
\(282\) 0 0
\(283\) 12.8990 22.3417i 0.766765 1.32808i −0.172544 0.985002i \(-0.555199\pi\)
0.939309 0.343074i \(-0.111468\pi\)
\(284\) 13.8725 0.823179
\(285\) 0 0
\(286\) −1.34847 −0.0797367
\(287\) −2.15094 + 3.72553i −0.126966 + 0.219911i
\(288\) 0 0
\(289\) −13.2980 23.0327i −0.782233 1.35487i
\(290\) 11.7215 20.3023i 0.688311 1.19219i
\(291\) 0 0
\(292\) −7.24745 −0.424125
\(293\) −32.3466 −1.88971 −0.944854 0.327492i \(-0.893797\pi\)
−0.944854 + 0.327492i \(0.893797\pi\)
\(294\) 0 0
\(295\) 13.8990 + 24.0737i 0.809230 + 1.40163i
\(296\) 15.0978 0.877543
\(297\) 0 0
\(298\) 2.57321 + 4.45694i 0.149062 + 0.258183i
\(299\) −2.39264 + 4.14418i −0.138370 + 0.239664i
\(300\) 0 0
\(301\) 6.05051 10.4798i 0.348746 0.604045i
\(302\) 1.48393 2.57024i 0.0853904 0.147901i
\(303\) 0 0
\(304\) 3.17423 + 2.98735i 0.182055 + 0.171336i
\(305\) −16.5068 −0.945177
\(306\) 0 0
\(307\) −4.79796 + 8.31031i −0.273834 + 0.474294i −0.969840 0.243741i \(-0.921625\pi\)
0.696006 + 0.718036i \(0.254959\pi\)
\(308\) 1.90923 + 3.30689i 0.108789 + 0.188427i
\(309\) 0 0
\(310\) −5.57321 9.65309i −0.316537 0.548259i
\(311\) −25.2605 −1.43239 −0.716195 0.697901i \(-0.754118\pi\)
−0.716195 + 0.697901i \(0.754118\pi\)
\(312\) 0 0
\(313\) −6.44949 11.1708i −0.364547 0.631413i 0.624157 0.781299i \(-0.285443\pi\)
−0.988703 + 0.149886i \(0.952109\pi\)
\(314\) −5.08132 8.80110i −0.286755 0.496675i
\(315\) 0 0
\(316\) 20.7980 1.16998
\(317\) 0.166753 + 0.288824i 0.00936576 + 0.0162220i 0.870670 0.491867i \(-0.163685\pi\)
−0.861305 + 0.508089i \(0.830352\pi\)
\(318\) 0 0
\(319\) −8.69694 15.0635i −0.486935 0.843396i
\(320\) 3.87657 6.71442i 0.216707 0.375347i
\(321\) 0 0
\(322\) −5.14643 −0.286799
\(323\) 20.9586 + 19.7246i 1.16617 + 1.09751i
\(324\) 0 0
\(325\) 2.94949 5.10867i 0.163608 0.283378i
\(326\) 1.68816 2.92397i 0.0934984 0.161944i
\(327\) 0 0
\(328\) 3.79796 6.57826i 0.209707 0.363224i
\(329\) 2.15094 + 3.72553i 0.118585 + 0.205395i
\(330\) 0 0
\(331\) 1.44949 0.0796712 0.0398356 0.999206i \(-0.487317\pi\)
0.0398356 + 0.999206i \(0.487317\pi\)
\(332\) −2.63435 4.56283i −0.144579 0.250418i
\(333\) 0 0
\(334\) −8.94439 −0.489415
\(335\) 47.3695 2.58807
\(336\) 0 0
\(337\) 1.84847 3.20164i 0.100693 0.174405i −0.811278 0.584661i \(-0.801227\pi\)
0.911970 + 0.410257i \(0.134561\pi\)
\(338\) 4.45178 + 7.71071i 0.242145 + 0.419408i
\(339\) 0 0
\(340\) −15.7980 + 27.3629i −0.856765 + 1.48396i
\(341\) −8.27025 −0.447859
\(342\) 0 0
\(343\) −17.2474 −0.931275
\(344\) −10.6835 + 18.5044i −0.576017 + 0.997690i
\(345\) 0 0
\(346\) 3.55051 + 6.14966i 0.190877 + 0.330608i
\(347\) −10.4793 + 18.1507i −0.562558 + 0.974379i 0.434714 + 0.900568i \(0.356849\pi\)
−0.997272 + 0.0738104i \(0.976484\pi\)
\(348\) 0 0
\(349\) 2.79796 0.149771 0.0748857 0.997192i \(-0.476141\pi\)
0.0748857 + 0.997192i \(0.476141\pi\)
\(350\) 6.34417 0.339110
\(351\) 0 0
\(352\) −5.32577 9.22450i −0.283864 0.491667i
\(353\) 2.63435 0.140212 0.0701062 0.997540i \(-0.477666\pi\)
0.0701062 + 0.997540i \(0.477666\pi\)
\(354\) 0 0
\(355\) −15.7980 27.3629i −0.838469 1.45227i
\(356\) −11.9632 + 20.7209i −0.634049 + 1.09821i
\(357\) 0 0
\(358\) −6.67423 + 11.5601i −0.352744 + 0.610971i
\(359\) −9.57058 + 16.5767i −0.505116 + 0.874886i 0.494867 + 0.868969i \(0.335217\pi\)
−0.999982 + 0.00591717i \(0.998116\pi\)
\(360\) 0 0
\(361\) −17.0000 8.48528i −0.894737 0.446594i
\(362\) −8.23656 −0.432904
\(363\) 0 0
\(364\) −1.05051 + 1.81954i −0.0550617 + 0.0953697i
\(365\) 8.25340 + 14.2953i 0.432003 + 0.748251i
\(366\) 0 0
\(367\) 2.82577 + 4.89437i 0.147504 + 0.255484i 0.930304 0.366789i \(-0.119543\pi\)
−0.782801 + 0.622273i \(0.786209\pi\)
\(368\) −4.78529 −0.249450
\(369\) 0 0
\(370\) −7.22474 12.5136i −0.375597 0.650552i
\(371\) −2.39264 4.14418i −0.124220 0.215155i
\(372\) 0 0
\(373\) −1.30306 −0.0674700 −0.0337350 0.999431i \(-0.510740\pi\)
−0.0337350 + 0.999431i \(0.510740\pi\)
\(374\) −4.45178 7.71071i −0.230196 0.398712i
\(375\) 0 0
\(376\) −3.79796 6.57826i −0.195865 0.339248i
\(377\) 4.78529 8.28836i 0.246455 0.426872i
\(378\) 0 0
\(379\) 1.44949 0.0744553 0.0372276 0.999307i \(-0.488147\pi\)
0.0372276 + 0.999307i \(0.488147\pi\)
\(380\) 4.78529 20.3023i 0.245480 1.04148i
\(381\) 0 0
\(382\) −0.674235 + 1.16781i −0.0344968 + 0.0597503i
\(383\) 7.51144 13.0102i 0.383816 0.664790i −0.607788 0.794100i \(-0.707943\pi\)
0.991604 + 0.129310i \(0.0412762\pi\)
\(384\) 0 0
\(385\) 4.34847 7.53177i 0.221619 0.383855i
\(386\) 3.59739 + 6.23086i 0.183102 + 0.317142i
\(387\) 0 0
\(388\) −18.6969 −0.949193
\(389\) −3.46811 6.00695i −0.175840 0.304564i 0.764611 0.644492i \(-0.222931\pi\)
−0.940452 + 0.339927i \(0.889598\pi\)
\(390\) 0 0
\(391\) −31.5959 −1.59787
\(392\) 12.5384 0.633286
\(393\) 0 0
\(394\) −5.02270 + 8.69958i −0.253040 + 0.438278i
\(395\) −23.6847 41.0232i −1.19171 2.06410i
\(396\) 0 0
\(397\) 3.50000 6.06218i 0.175660 0.304252i −0.764730 0.644351i \(-0.777127\pi\)
0.940389 + 0.340099i \(0.110461\pi\)
\(398\) −10.6460 −0.533638
\(399\) 0 0
\(400\) 5.89898 0.294949
\(401\) 11.5548 20.0134i 0.577017 0.999423i −0.418802 0.908078i \(-0.637550\pi\)
0.995819 0.0913456i \(-0.0291168\pi\)
\(402\) 0 0
\(403\) −2.27526 3.94086i −0.113339 0.196308i
\(404\) −4.78529 + 8.28836i −0.238077 + 0.412361i
\(405\) 0 0
\(406\) 10.2929 0.510826
\(407\) −10.7210 −0.531420
\(408\) 0 0
\(409\) −6.44949 11.1708i −0.318907 0.552363i 0.661353 0.750074i \(-0.269982\pi\)
−0.980260 + 0.197712i \(0.936649\pi\)
\(410\) −7.26973 −0.359026
\(411\) 0 0
\(412\) 1.05051 + 1.81954i 0.0517549 + 0.0896422i
\(413\) −6.10246 + 10.5698i −0.300283 + 0.520105i
\(414\) 0 0
\(415\) −6.00000 + 10.3923i −0.294528 + 0.510138i
\(416\) 2.93038 5.07556i 0.143674 0.248850i
\(417\) 0 0
\(418\) 4.28036 + 4.02834i 0.209359 + 0.197033i
\(419\) 17.9907 0.878905 0.439452 0.898266i \(-0.355173\pi\)
0.439452 + 0.898266i \(0.355173\pi\)
\(420\) 0 0
\(421\) −6.44949 + 11.1708i −0.314329 + 0.544434i −0.979295 0.202440i \(-0.935113\pi\)
0.664966 + 0.746874i \(0.268446\pi\)
\(422\) −0.129276 0.223912i −0.00629305 0.0108999i
\(423\) 0 0
\(424\) 4.22474 + 7.31747i 0.205172 + 0.355368i
\(425\) 38.9493 1.88932
\(426\) 0 0
\(427\) −3.62372 6.27647i −0.175364 0.303740i
\(428\) −9.08716 15.7394i −0.439245 0.760794i
\(429\) 0 0
\(430\) 20.4495 0.986162
\(431\) 1.48393 + 2.57024i 0.0714783 + 0.123804i 0.899549 0.436819i \(-0.143895\pi\)
−0.828071 + 0.560623i \(0.810562\pi\)
\(432\) 0 0
\(433\) −3.84847 6.66574i −0.184946 0.320335i 0.758613 0.651542i \(-0.225878\pi\)
−0.943558 + 0.331207i \(0.892544\pi\)
\(434\) 2.44697 4.23827i 0.117458 0.203443i
\(435\) 0 0
\(436\) −1.30306 −0.0624053
\(437\) 19.9749 6.00695i 0.955530 0.287351i
\(438\) 0 0
\(439\) 11.8258 20.4828i 0.564413 0.977592i −0.432691 0.901542i \(-0.642436\pi\)
0.997104 0.0760497i \(-0.0242308\pi\)
\(440\) −7.67819 + 13.2990i −0.366043 + 0.634006i
\(441\) 0 0
\(442\) 2.44949 4.24264i 0.116510 0.201802i
\(443\) −9.23707 15.9991i −0.438866 0.760139i 0.558736 0.829346i \(-0.311287\pi\)
−0.997602 + 0.0692066i \(0.977953\pi\)
\(444\) 0 0
\(445\) 54.4949 2.58331
\(446\) 5.32302 + 9.21975i 0.252052 + 0.436568i
\(447\) 0 0
\(448\) 3.40408 0.160828
\(449\) −28.7117 −1.35499 −0.677495 0.735527i \(-0.736934\pi\)
−0.677495 + 0.735527i \(0.736934\pi\)
\(450\) 0 0
\(451\) −2.69694 + 4.67123i −0.126994 + 0.219960i
\(452\) 4.54358 + 7.86971i 0.213712 + 0.370160i
\(453\) 0 0
\(454\) −5.32577 + 9.22450i −0.249951 + 0.432927i
\(455\) 4.78529 0.224338
\(456\) 0 0
\(457\) −29.8990 −1.39862 −0.699308 0.714821i \(-0.746508\pi\)
−0.699308 + 0.714821i \(0.746508\pi\)
\(458\) −3.26388 + 5.65321i −0.152511 + 0.264157i
\(459\) 0 0
\(460\) 11.4495 + 19.8311i 0.533835 + 0.924630i
\(461\) −4.61854 + 7.99954i −0.215107 + 0.372576i −0.953306 0.302007i \(-0.902343\pi\)
0.738199 + 0.674583i \(0.235677\pi\)
\(462\) 0 0
\(463\) 34.1464 1.58692 0.793460 0.608623i \(-0.208278\pi\)
0.793460 + 0.608623i \(0.208278\pi\)
\(464\) 9.57058 0.444303
\(465\) 0 0
\(466\) 0.247449 + 0.428594i 0.0114628 + 0.0198542i
\(467\) −16.1733 −0.748411 −0.374205 0.927346i \(-0.622085\pi\)
−0.374205 + 0.927346i \(0.622085\pi\)
\(468\) 0 0
\(469\) 10.3990 + 18.0116i 0.480180 + 0.831697i
\(470\) −3.63487 + 6.29577i −0.167664 + 0.290402i
\(471\) 0 0
\(472\) 10.7753 18.6633i 0.495971 0.859048i
\(473\) 7.58639 13.1400i 0.348823 0.604178i
\(474\) 0 0
\(475\) −24.6237 + 7.40496i −1.12981 + 0.339763i
\(476\) −13.8725 −0.635843
\(477\) 0 0
\(478\) −5.32577 + 9.22450i −0.243595 + 0.421919i
\(479\) −4.78529 8.28836i −0.218645 0.378705i 0.735749 0.677255i \(-0.236830\pi\)
−0.954394 + 0.298550i \(0.903497\pi\)
\(480\) 0 0
\(481\) −2.94949 5.10867i −0.134485 0.232935i
\(482\) −14.0973 −0.642115
\(483\) 0 0
\(484\) −5.57832 9.66193i −0.253560 0.439179i
\(485\) 21.2921 + 36.8790i 0.966824 + 1.67459i
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) 6.39849 + 11.0825i 0.289646 + 0.501682i
\(489\) 0 0
\(490\) −6.00000 10.3923i −0.271052 0.469476i
\(491\) −15.0229 + 26.0204i −0.677973 + 1.17428i 0.297618 + 0.954685i \(0.403808\pi\)
−0.975590 + 0.219598i \(0.929525\pi\)
\(492\) 0 0
\(493\) 63.1918 2.84602
\(494\) −0.741964 + 3.14789i −0.0333825 + 0.141630i
\(495\) 0 0
\(496\) 2.27526 3.94086i 0.102162 0.176950i
\(497\) 6.93623 12.0139i 0.311132 0.538897i
\(498\) 0 0
\(499\) −21.1742 + 36.6749i −0.947889 + 1.64179i −0.198028 + 0.980196i \(0.563454\pi\)
−0.749861 + 0.661595i \(0.769880\pi\)
\(500\) −2.15094 3.72553i −0.0961929 0.166611i
\(501\) 0 0
\(502\) −14.2020 −0.633868
\(503\) −0.333505 0.577648i −0.0148703 0.0257560i 0.858495 0.512823i \(-0.171400\pi\)
−0.873365 + 0.487067i \(0.838067\pi\)
\(504\) 0 0
\(505\) 21.7980 0.969996
\(506\) −6.45281 −0.286863
\(507\) 0 0
\(508\) −10.0000 + 17.3205i −0.443678 + 0.768473i
\(509\) 16.8403 + 29.1683i 0.746433 + 1.29286i 0.949522 + 0.313700i \(0.101569\pi\)
−0.203089 + 0.979160i \(0.565098\pi\)
\(510\) 0 0
\(511\) −3.62372 + 6.27647i −0.160304 + 0.277655i
\(512\) 10.9795 0.485232
\(513\) 0 0
\(514\) 5.14643 0.226999
\(515\) 2.39264 4.14418i 0.105432 0.182614i
\(516\) 0 0
\(517\) 2.69694 + 4.67123i 0.118611 + 0.205441i
\(518\) 3.17208 5.49421i 0.139373 0.241402i
\(519\) 0 0
\(520\) −8.44949 −0.370535
\(521\) −9.90408 −0.433906 −0.216953 0.976182i \(-0.569612\pi\)
−0.216953 + 0.976182i \(0.569612\pi\)
\(522\) 0 0
\(523\) 2.82577 + 4.89437i 0.123562 + 0.214016i 0.921170 0.389161i \(-0.127235\pi\)
−0.797608 + 0.603176i \(0.793902\pi\)
\(524\) 24.4099 1.06635
\(525\) 0 0
\(526\) −5.75255 9.96371i −0.250823 0.434438i
\(527\) 15.0229 26.0204i 0.654407 1.13347i
\(528\) 0 0
\(529\) 0.0505103 0.0874863i 0.00219610 0.00380375i
\(530\) 4.04332 7.00324i 0.175631 0.304201i
\(531\) 0 0
\(532\) 8.77015 2.63740i 0.380234 0.114346i
\(533\) −2.96786 −0.128552
\(534\) 0 0
\(535\) −20.6969 + 35.8481i −0.894807 + 1.54985i
\(536\) −18.3617 31.8034i −0.793105 1.37370i
\(537\) 0 0
\(538\) 5.87628 + 10.1780i 0.253344 + 0.438805i
\(539\) −8.90357 −0.383504
\(540\) 0 0
\(541\) −9.84847 17.0580i −0.423419 0.733383i 0.572853 0.819658i \(-0.305837\pi\)
−0.996271 + 0.0862756i \(0.972503\pi\)
\(542\) 0.667010 + 1.15530i 0.0286505 + 0.0496242i
\(543\) 0 0
\(544\) 38.6969 1.65912
\(545\) 1.48393 + 2.57024i 0.0635645 + 0.110097i
\(546\) 0 0
\(547\) 16.1742 + 28.0146i 0.691560 + 1.19782i 0.971327 + 0.237749i \(0.0764097\pi\)
−0.279766 + 0.960068i \(0.590257\pi\)
\(548\) 12.2049 21.1396i 0.521369 0.903037i
\(549\) 0 0
\(550\) 7.95459 0.339185
\(551\) −39.9498 + 12.0139i −1.70192 + 0.511809i
\(552\) 0 0
\(553\) 10.3990 18.0116i 0.442210 0.765929i
\(554\) −3.96837 + 6.87342i −0.168600 + 0.292024i
\(555\) 0 0
\(556\) 8.94949 15.5010i 0.379543 0.657388i
\(557\) 11.3880 + 19.7246i 0.482525 + 0.835759i 0.999799 0.0200617i \(-0.00638628\pi\)
−0.517273 + 0.855820i \(0.673053\pi\)
\(558\) 0 0
\(559\) 8.34847 0.353103
\(560\) 2.39264 + 4.14418i 0.101108 + 0.175124i
\(561\) 0 0
\(562\) 5.14643 0.217089
\(563\) −19.8082 −0.834814 −0.417407 0.908720i \(-0.637061\pi\)
−0.417407 + 0.908720i \(0.637061\pi\)
\(564\) 0 0
\(565\) 10.3485 17.9241i 0.435363 0.754071i
\(566\) 9.57058 + 16.5767i 0.402281 + 0.696772i
\(567\) 0 0
\(568\) −12.2474 + 21.2132i −0.513892 + 0.890086i
\(569\) −8.90357 −0.373257 −0.186628 0.982431i \(-0.559756\pi\)
−0.186628 + 0.982431i \(0.559756\pi\)
\(570\) 0 0
\(571\) −13.2474 −0.554388 −0.277194 0.960814i \(-0.589405\pi\)
−0.277194 + 0.960814i \(0.589405\pi\)
\(572\) −1.31718 + 2.28141i −0.0550739 + 0.0953907i
\(573\) 0 0
\(574\) −1.59592 2.76421i −0.0666123 0.115376i
\(575\) 14.1142 24.4464i 0.588601 1.01949i
\(576\) 0 0
\(577\) −6.69694 −0.278797 −0.139399 0.990236i \(-0.544517\pi\)
−0.139399 + 0.990236i \(0.544517\pi\)
\(578\) 19.7332 0.820793
\(579\) 0 0
\(580\) −22.8990 39.6622i −0.950828 1.64688i
\(581\) −5.26870 −0.218583
\(582\) 0 0
\(583\) −3.00000 5.19615i −0.124247 0.215203i
\(584\) 6.39849 11.0825i 0.264771 0.458598i
\(585\) 0 0
\(586\) 12.0000 20.7846i 0.495715 0.858604i
\(587\) 5.69400 9.86230i 0.235017 0.407061i −0.724261 0.689526i \(-0.757819\pi\)
0.959278 + 0.282465i \(0.0911522\pi\)
\(588\) 0 0
\(589\) −4.55051 + 19.3062i −0.187501 + 0.795497i
\(590\) −20.6251 −0.849121
\(591\) 0 0
\(592\) 2.94949 5.10867i 0.121223 0.209965i
\(593\) −5.28555 9.15483i −0.217051 0.375944i 0.736854 0.676052i \(-0.236311\pi\)
−0.953905 + 0.300108i \(0.902977\pi\)
\(594\) 0 0
\(595\) 15.7980 + 27.3629i 0.647653 + 1.12177i
\(596\) 10.0540 0.411827
\(597\) 0 0
\(598\) −1.77526 3.07483i −0.0725956 0.125739i
\(599\) 15.9316 + 27.5943i 0.650947 + 1.12747i 0.982893 + 0.184175i \(0.0589614\pi\)
−0.331946 + 0.943298i \(0.607705\pi\)
\(600\) 0 0
\(601\) 12.1010 0.493611 0.246805 0.969065i \(-0.420619\pi\)
0.246805 + 0.969065i \(0.420619\pi\)
\(602\) 4.48926 + 7.77563i 0.182969 + 0.316911i
\(603\) 0 0
\(604\) −2.89898 5.02118i −0.117958 0.204309i
\(605\) −12.7052 + 22.0060i −0.516539 + 0.894672i
\(606\) 0 0
\(607\) −45.9444 −1.86483 −0.932413 0.361396i \(-0.882300\pi\)
−0.932413 + 0.361396i \(0.882300\pi\)
\(608\) −24.4642 + 7.35698i −0.992153 + 0.298365i
\(609\) 0 0
\(610\) 6.12372 10.6066i 0.247942 0.429449i
\(611\) −1.48393 + 2.57024i −0.0600333 + 0.103981i
\(612\) 0 0
\(613\) −6.44949 + 11.1708i −0.260492 + 0.451186i −0.966373 0.257145i \(-0.917218\pi\)
0.705880 + 0.708331i \(0.250552\pi\)
\(614\) −3.55991 6.16595i −0.143666 0.248837i
\(615\) 0 0
\(616\) −6.74235 −0.271657
\(617\) −11.5548 20.0134i −0.465177 0.805710i 0.534032 0.845464i \(-0.320676\pi\)
−0.999210 + 0.0397536i \(0.987343\pi\)
\(618\) 0 0
\(619\) −25.2474 −1.01478 −0.507390 0.861716i \(-0.669390\pi\)
−0.507390 + 0.861716i \(0.669390\pi\)
\(620\) −21.7755 −0.874525
\(621\) 0 0
\(622\) 9.37117 16.2313i 0.375750 0.650818i
\(623\) 11.9632 + 20.7209i 0.479296 + 0.830165i
\(624\) 0 0
\(625\) 9.84847 17.0580i 0.393939 0.682322i
\(626\) 9.57058 0.382517
\(627\) 0 0
\(628\) −19.8536 −0.792244
\(629\) 19.4747 33.7311i 0.776505 1.34495i
\(630\) 0 0
\(631\) 4.17423 + 7.22999i 0.166174 + 0.287821i 0.937071 0.349138i \(-0.113525\pi\)
−0.770898 + 0.636959i \(0.780192\pi\)
\(632\) −18.3617 + 31.8034i −0.730390 + 1.26507i
\(633\) 0 0
\(634\) −0.247449 −0.00982744
\(635\) 45.5520 1.80768
\(636\) 0 0
\(637\) −2.44949 4.24264i −0.0970523 0.168100i
\(638\) 12.9056 0.510939
\(639\) 0 0
\(640\) −16.4722 28.5307i −0.651121 1.12777i
\(641\) 7.41964 12.8512i 0.293058 0.507591i −0.681473 0.731843i \(-0.738660\pi\)
0.974531 + 0.224252i \(0.0719937\pi\)
\(642\) 0 0
\(643\) −9.17423 + 15.8902i −0.361796 + 0.626650i −0.988257 0.152804i \(-0.951170\pi\)
0.626460 + 0.779454i \(0.284503\pi\)
\(644\) −5.02699 + 8.70701i −0.198091 + 0.343104i
\(645\) 0 0
\(646\) −20.4495 + 6.14966i −0.804574 + 0.241955i
\(647\) 12.5384 0.492937 0.246468 0.969151i \(-0.420730\pi\)
0.246468 + 0.969151i \(0.420730\pi\)
\(648\) 0 0
\(649\) −7.65153 + 13.2528i −0.300349 + 0.520219i
\(650\) 2.18841 + 3.79045i 0.0858367 + 0.148673i
\(651\) 0 0
\(652\) −3.29796 5.71223i −0.129158 0.223708i
\(653\) 5.26870 0.206180 0.103090 0.994672i \(-0.467127\pi\)
0.103090 + 0.994672i \(0.467127\pi\)
\(654\) 0 0
\(655\) −27.7980 48.1475i −1.08616 1.88128i
\(656\) −1.48393 2.57024i −0.0579376 0.100351i
\(657\) 0 0
\(658\) −3.19184 −0.124431
\(659\) −21.8673 37.8753i −0.851829 1.47541i −0.879556 0.475796i \(-0.842160\pi\)
0.0277267 0.999616i \(-0.491173\pi\)
\(660\) 0 0
\(661\) 18.5959 + 32.2091i 0.723297 + 1.25279i 0.959671 + 0.281126i \(0.0907077\pi\)
−0.236374 + 0.971662i \(0.575959\pi\)
\(662\) −0.537734 + 0.931383i −0.0208996 + 0.0361992i
\(663\) 0 0
\(664\) 9.30306 0.361029
\(665\) −15.1896 14.2953i −0.589028 0.554348i
\(666\) 0 0
\(667\) 22.8990 39.6622i 0.886652 1.53573i
\(668\) −8.73681 + 15.1326i −0.338037 + 0.585498i
\(669\) 0 0
\(670\) −17.5732 + 30.4377i −0.678912 + 1.17591i
\(671\) −4.54358 7.86971i −0.175403 0.303807i
\(672\) 0 0
\(673\) 12.1010 0.466460 0.233230 0.972422i \(-0.425070\pi\)
0.233230 + 0.972422i \(0.425070\pi\)
\(674\) 1.37150 + 2.37550i 0.0528281 + 0.0915010i
\(675\) 0 0
\(676\) 17.3939 0.668995
\(677\) −7.26973 −0.279398 −0.139699 0.990194i \(-0.544614\pi\)
−0.139699 + 0.990194i \(0.544614\pi\)
\(678\) 0 0
\(679\) −9.34847 + 16.1920i −0.358761 + 0.621393i
\(680\) −27.8948 48.3152i −1.06972 1.85280i
\(681\) 0 0
\(682\) 3.06811 5.31413i 0.117484 0.203488i
\(683\) 17.9907 0.688396 0.344198 0.938897i \(-0.388151\pi\)
0.344198 + 0.938897i \(0.388151\pi\)
\(684\) 0 0
\(685\) −55.5959 −2.12421
\(686\) 6.39849 11.0825i 0.244296 0.423132i
\(687\) 0 0
\(688\) 4.17423 + 7.22999i 0.159141 + 0.275641i
\(689\) 1.65068 2.85906i 0.0628859 0.108922i
\(690\) 0 0
\(691\) −33.3939 −1.27036 −0.635181 0.772363i \(-0.719075\pi\)
−0.635181 + 0.772363i \(0.719075\pi\)
\(692\) 13.8725 0.527351
\(693\) 0 0
\(694\) −7.77526 13.4671i −0.295145 0.511206i
\(695\) −40.7667 −1.54637
\(696\) 0 0
\(697\) −9.79796 16.9706i −0.371124 0.642806i
\(698\) −1.03799 + 1.79786i −0.0392886 + 0.0680498i
\(699\) 0 0
\(700\) 6.19694 10.7334i 0.234222 0.405685i
\(701\) 15.1896 26.3092i 0.573704 0.993685i −0.422477 0.906374i \(-0.638839\pi\)
0.996181 0.0873112i \(-0.0278275\pi\)
\(702\) 0 0
\(703\) −5.89898 + 25.0273i −0.222484 + 0.943921i
\(704\) 4.26818 0.160863
\(705\) 0 0
\(706\) −0.977296 + 1.69273i −0.0367810 + 0.0637066i
\(707\) 4.78529 + 8.28836i 0.179969 + 0.311716i
\(708\) 0 0
\(709\) 15.1969 + 26.3219i 0.570733 + 0.988539i 0.996491 + 0.0837014i \(0.0266742\pi\)
−0.425758 + 0.904837i \(0.639992\pi\)
\(710\) 23.4430 0.879801
\(711\) 0 0
\(712\) −21.1237 36.5874i −0.791645 1.37117i
\(713\) −10.8878 18.8581i −0.407749 0.706243i
\(714\) 0 0
\(715\) 6.00000 0.224387
\(716\) 13.0387 + 22.5837i 0.487279 + 0.843991i
\(717\) 0 0
\(718\) −7.10102 12.2993i −0.265008 0.459007i
\(719\) −1.57573 + 2.72924i −0.0587647 + 0.101783i −0.893911 0.448244i \(-0.852049\pi\)
0.835146 + 0.550028i \(0.185383\pi\)
\(720\) 0 0
\(721\) 2.10102 0.0782461
\(722\) 11.7590 7.77563i 0.437624 0.289379i
\(723\) 0 0
\(724\) −8.04541 + 13.9351i −0.299005 + 0.517892i
\(725\) −28.2283 + 48.8929i −1.04837 + 1.81584i
\(726\) 0 0
\(727\) −1.52270 + 2.63740i −0.0564740 + 0.0978158i −0.892880 0.450294i \(-0.851319\pi\)
0.836406 + 0.548110i \(0.184652\pi\)
\(728\) −1.85491 3.21280i −0.0687475 0.119074i
\(729\) 0 0
\(730\) −12.2474 −0.453298
\(731\) 27.5613 + 47.7376i 1.01939 + 1.76564i
\(732\) 0 0
\(733\) 34.6969 1.28156 0.640780 0.767724i \(-0.278611\pi\)
0.640780 + 0.767724i \(0.278611\pi\)
\(734\) −4.19323 −0.154775
\(735\) 0 0
\(736\) 14.0227 24.2880i 0.516884 0.895269i
\(737\) 13.0387 + 22.5837i 0.480286 + 0.831880i
\(738\) 0 0
\(739\) −7.52270 + 13.0297i −0.276727 + 0.479305i −0.970569 0.240822i \(-0.922583\pi\)
0.693842 + 0.720127i \(0.255916\pi\)
\(740\) −28.2283 −1.03769
\(741\) 0 0
\(742\) 3.55051 0.130343
\(743\) −6.84443 + 11.8549i −0.251098 + 0.434914i −0.963828 0.266524i \(-0.914125\pi\)
0.712731 + 0.701438i \(0.247458\pi\)
\(744\) 0 0
\(745\) −11.4495 19.8311i −0.419477 0.726555i
\(746\) 0.483412 0.837295i 0.0176990 0.0306555i
\(747\) 0 0
\(748\) −17.3939 −0.635983
\(749\) −18.1743 −0.664075
\(750\) 0 0
\(751\) −4.52270 7.83355i −0.165036 0.285850i 0.771632 0.636069i \(-0.219441\pi\)
−0.936668 + 0.350219i \(0.886107\pi\)
\(752\) −2.96786 −0.108227
\(753\) 0 0
\(754\) 3.55051 + 6.14966i 0.129302 + 0.223958i
\(755\) −6.60272 + 11.4362i −0.240298 + 0.416208i
\(756\) 0 0
\(757\) 21.1969 36.7142i 0.770416 1.33440i −0.166919 0.985971i \(-0.553382\pi\)
0.937335 0.348429i \(-0.113285\pi\)
\(758\) −0.537734 + 0.931383i −0.0195314 + 0.0338294i
\(759\) 0 0
\(760\) 26.8207 + 25.2415i 0.972888 + 0.915607i
\(761\) 26.0774 0.945304 0.472652 0.881249i \(-0.343297\pi\)
0.472652 + 0.881249i \(0.343297\pi\)
\(762\) 0 0
\(763\) −0.651531 + 1.12848i −0.0235870 + 0.0408539i
\(764\) 1.31718 + 2.28141i 0.0476537 + 0.0825387i
\(765\) 0 0
\(766\) 5.57321 + 9.65309i 0.201368 + 0.348780i
\(767\) −8.42015 −0.304034
\(768\) 0 0
\(769\) 15.1969 + 26.3219i 0.548016 + 0.949191i 0.998410 + 0.0563614i \(0.0179499\pi\)
−0.450395 + 0.892829i \(0.648717\pi\)
\(770\) 3.22641 + 5.58830i 0.116272 + 0.201388i
\(771\) 0 0
\(772\) 14.0556 0.505873
\(773\) 1.48393 + 2.57024i 0.0533732 + 0.0924450i 0.891478 0.453065i \(-0.149669\pi\)
−0.838104 + 0.545510i \(0.816336\pi\)
\(774\) 0 0
\(775\) 13.4217 + 23.2470i 0.482121 + 0.835058i
\(776\) 16.5068 28.5906i 0.592560 1.02634i
\(777\) 0 0
\(778\) 5.14643 0.184508
\(779\) 9.42067 + 8.86601i 0.337530 + 0.317658i
\(780\) 0 0
\(781\) 8.69694 15.0635i 0.311201 0.539016i
\(782\) 11.7215 20.3023i 0.419160 0.726007i
\(783\) 0 0
\(784\) 2.44949 4.24264i 0.0874818 0.151523i
\(785\) 22.6093 + 39.1604i<