Newspace parameters
Level: | \( N \) | \(=\) | \( 171 = 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 171.f (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.36544187456\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{3})\) |
Coefficient field: | 8.0.764411904.5 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - 6x^{6} + 21x^{4} - 54x^{2} + 81 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{4}]\) |
Coefficient ring index: | \( 3^{2} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 6x^{6} + 21x^{4} - 54x^{2} + 81 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -\nu^{7} - 21\nu^{5} + 87\nu^{3} - 162\nu ) / 135 \)
|
\(\beta_{2}\) | \(=\) |
\( ( -\nu^{7} + 24\nu^{5} - 48\nu^{3} - 27\nu ) / 135 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -2\nu^{6} + 3\nu^{4} - 6\nu^{2} - 9 ) / 45 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 2\nu^{6} - 3\nu^{4} + 51\nu^{2} - 81 ) / 45 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -4\nu^{7} + 6\nu^{5} - 57\nu^{3} + 27\nu ) / 135 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -\nu^{6} + 6\nu^{4} - 12\nu^{2} + 27 ) / 9 \)
|
\(\beta_{7}\) | \(=\) |
\( ( -11\nu^{7} + 39\nu^{5} - 123\nu^{3} + 243\nu ) / 135 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{7} - 2\beta_{5} - 2\beta_{2} - \beta_1 ) / 3 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{4} + \beta_{3} + 2 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{7} - 3\beta_{5} + \beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( 2\beta_{6} + 2\beta_{4} - 3\beta_{3} - 3 \)
|
\(\nu^{5}\) | \(=\) |
\( 2\beta_{7} - 7\beta_{5} + 5\beta_{2} + \beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( 3\beta_{6} - 30\beta_{3} - 15 \)
|
\(\nu^{7}\) | \(=\) |
\( -9\beta_{7} - 6\beta_{5} + 3\beta_{2} - 15\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).
\(n\) | \(20\) | \(154\) |
\(\chi(n)\) | \(1\) | \(-1 - \beta_{3}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
64.1 |
|
−1.16721 | − | 2.02166i | 0 | −1.72474 | + | 2.98735i | −0.524648 | − | 0.908716i | 0 | −3.44949 | 3.38371 | 0 | −1.22474 | + | 2.12132i | ||||||||||||||||||||||||||||||||||
64.2 | −0.370982 | − | 0.642559i | 0 | 0.724745 | − | 1.25529i | 1.65068 | + | 2.85906i | 0 | 1.44949 | −2.55940 | 0 | 1.22474 | − | 2.12132i | |||||||||||||||||||||||||||||||||||
64.3 | 0.370982 | + | 0.642559i | 0 | 0.724745 | − | 1.25529i | −1.65068 | − | 2.85906i | 0 | 1.44949 | 2.55940 | 0 | 1.22474 | − | 2.12132i | |||||||||||||||||||||||||||||||||||
64.4 | 1.16721 | + | 2.02166i | 0 | −1.72474 | + | 2.98735i | 0.524648 | + | 0.908716i | 0 | −3.44949 | −3.38371 | 0 | −1.22474 | + | 2.12132i | |||||||||||||||||||||||||||||||||||
163.1 | −1.16721 | + | 2.02166i | 0 | −1.72474 | − | 2.98735i | −0.524648 | + | 0.908716i | 0 | −3.44949 | 3.38371 | 0 | −1.22474 | − | 2.12132i | |||||||||||||||||||||||||||||||||||
163.2 | −0.370982 | + | 0.642559i | 0 | 0.724745 | + | 1.25529i | 1.65068 | − | 2.85906i | 0 | 1.44949 | −2.55940 | 0 | 1.22474 | + | 2.12132i | |||||||||||||||||||||||||||||||||||
163.3 | 0.370982 | − | 0.642559i | 0 | 0.724745 | + | 1.25529i | −1.65068 | + | 2.85906i | 0 | 1.44949 | 2.55940 | 0 | 1.22474 | + | 2.12132i | |||||||||||||||||||||||||||||||||||
163.4 | 1.16721 | − | 2.02166i | 0 | −1.72474 | − | 2.98735i | 0.524648 | − | 0.908716i | 0 | −3.44949 | −3.38371 | 0 | −1.22474 | − | 2.12132i | |||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
19.c | even | 3 | 1 | inner |
57.h | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 171.2.f.c | ✓ | 8 |
3.b | odd | 2 | 1 | inner | 171.2.f.c | ✓ | 8 |
4.b | odd | 2 | 1 | 2736.2.s.bb | 8 | ||
12.b | even | 2 | 1 | 2736.2.s.bb | 8 | ||
19.c | even | 3 | 1 | inner | 171.2.f.c | ✓ | 8 |
19.c | even | 3 | 1 | 3249.2.a.bd | 4 | ||
19.d | odd | 6 | 1 | 3249.2.a.be | 4 | ||
57.f | even | 6 | 1 | 3249.2.a.be | 4 | ||
57.h | odd | 6 | 1 | inner | 171.2.f.c | ✓ | 8 |
57.h | odd | 6 | 1 | 3249.2.a.bd | 4 | ||
76.g | odd | 6 | 1 | 2736.2.s.bb | 8 | ||
228.m | even | 6 | 1 | 2736.2.s.bb | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
171.2.f.c | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
171.2.f.c | ✓ | 8 | 3.b | odd | 2 | 1 | inner |
171.2.f.c | ✓ | 8 | 19.c | even | 3 | 1 | inner |
171.2.f.c | ✓ | 8 | 57.h | odd | 6 | 1 | inner |
2736.2.s.bb | 8 | 4.b | odd | 2 | 1 | ||
2736.2.s.bb | 8 | 12.b | even | 2 | 1 | ||
2736.2.s.bb | 8 | 76.g | odd | 6 | 1 | ||
2736.2.s.bb | 8 | 228.m | even | 6 | 1 | ||
3249.2.a.bd | 4 | 19.c | even | 3 | 1 | ||
3249.2.a.bd | 4 | 57.h | odd | 6 | 1 | ||
3249.2.a.be | 4 | 19.d | odd | 6 | 1 | ||
3249.2.a.be | 4 | 57.f | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} + 6T_{2}^{6} + 33T_{2}^{4} + 18T_{2}^{2} + 9 \)
acting on \(S_{2}^{\mathrm{new}}(171, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} + 6 T^{6} + 33 T^{4} + 18 T^{2} + \cdots + 9 \)
$3$
\( T^{8} \)
$5$
\( T^{8} + 12 T^{6} + 132 T^{4} + \cdots + 144 \)
$7$
\( (T^{2} + 2 T - 5)^{4} \)
$11$
\( (T^{4} - 36 T^{2} + 108)^{2} \)
$13$
\( (T^{2} - T + 1)^{4} \)
$17$
\( T^{8} + 48 T^{6} + 2112 T^{4} + \cdots + 36864 \)
$19$
\( (T^{2} - 2 T + 19)^{4} \)
$23$
\( T^{8} + 36 T^{6} + 996 T^{4} + \cdots + 90000 \)
$29$
\( T^{8} + 144 T^{6} + \cdots + 23040000 \)
$31$
\( (T^{2} + 14 T + 43)^{4} \)
$37$
\( (T^{2} + 2 T - 23)^{4} \)
$41$
\( T^{8} + 96 T^{6} + 8448 T^{4} + \cdots + 589824 \)
$43$
\( (T^{4} - 2 T^{3} + 57 T^{2} + 106 T + 2809)^{2} \)
$47$
\( T^{8} + 96 T^{6} + 8448 T^{4} + \cdots + 589824 \)
$53$
\( T^{8} + 12 T^{6} + 132 T^{4} + \cdots + 144 \)
$59$
\( T^{8} + 132 T^{6} + \cdots + 18766224 \)
$61$
\( (T^{2} + 5 T + 25)^{4} \)
$67$
\( (T^{4} - 14 T^{3} + 201 T^{2} + 70 T + 25)^{2} \)
$71$
\( T^{8} + 144 T^{6} + \cdots + 23040000 \)
$73$
\( (T^{2} + 5 T + 25)^{4} \)
$79$
\( (T^{4} - 14 T^{3} + 201 T^{2} + 70 T + 25)^{2} \)
$83$
\( (T^{4} - 144 T^{2} + 1728)^{2} \)
$89$
\( T^{8} + 300 T^{6} + \cdots + 56250000 \)
$97$
\( (T^{4} + 16 T^{3} + 216 T^{2} + 640 T + 1600)^{2} \)
show more
show less