Newspace parameters
Level: | \( N \) | \(=\) | \( 171 = 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 171.f (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.36544187456\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Relative dimension: | \(3\) over \(\Q(\zeta_{3})\) |
Coefficient field: | 6.0.954288.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{6} - x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 9x + 27 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{4}]\) |
Coefficient ring index: | \( 3 \) |
Twist minimal: | no (minimal twist has level 57) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{6} - x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 9x + 27 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -\nu^{5} + 4\nu^{4} - \nu^{3} + 9\nu^{2} - 21\nu - 9 ) / 27 \)
|
\(\beta_{2}\) | \(=\) |
\( ( -\nu^{5} + 4\nu^{4} - \nu^{3} - 18\nu^{2} + 33\nu - 9 ) / 27 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -2\nu^{5} - \nu^{4} - 2\nu^{3} + 12\nu + 36 ) / 27 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -2\nu^{5} - \nu^{4} + 7\nu^{3} + 9\nu^{2} + 12\nu + 9 ) / 27 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 4\nu^{5} + 2\nu^{4} - 5\nu^{3} + 18\nu^{2} + 3\nu - 72 ) / 27 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{5} + \beta_{4} + \beta_{3} + \beta_{2} - \beta _1 + 1 ) / 3 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 2\beta_{5} + 2\beta_{4} + 2\beta_{3} - \beta_{2} + \beta _1 + 2 ) / 3 \)
|
\(\nu^{3}\) | \(=\) |
\( ( -2\beta_{5} + 7\beta_{4} - 11\beta_{3} + \beta_{2} - \beta _1 + 7 ) / 3 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 2\beta_{5} + 2\beta_{4} - 7\beta_{3} + 8\beta_{2} + 10\beta _1 + 20 ) / 3 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 7\beta_{5} - 2\beta_{4} - 20\beta_{3} + \beta_{2} - 10\beta _1 + 43 ) / 3 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).
\(n\) | \(20\) | \(154\) |
\(\chi(n)\) | \(1\) | \(-1 + \beta_{3}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
64.1 |
|
−1.25707 | − | 2.17731i | 0 | −2.16044 | + | 3.74200i | 1.66044 | + | 2.87597i | 0 | 2.32088 | 5.83502 | 0 | 4.17458 | − | 7.23058i | ||||||||||||||||||||||||||||
64.2 | −0.285997 | − | 0.495361i | 0 | 0.836412 | − | 1.44871i | −1.33641 | − | 2.31473i | 0 | −3.67282 | −2.10083 | 0 | −0.764419 | + | 1.32401i | |||||||||||||||||||||||||||||
64.3 | 1.04307 | + | 1.80664i | 0 | −1.17597 | + | 2.03684i | 0.675970 | + | 1.17081i | 0 | 0.351939 | −0.734191 | 0 | −1.41016 | + | 2.44247i | |||||||||||||||||||||||||||||
163.1 | −1.25707 | + | 2.17731i | 0 | −2.16044 | − | 3.74200i | 1.66044 | − | 2.87597i | 0 | 2.32088 | 5.83502 | 0 | 4.17458 | + | 7.23058i | |||||||||||||||||||||||||||||
163.2 | −0.285997 | + | 0.495361i | 0 | 0.836412 | + | 1.44871i | −1.33641 | + | 2.31473i | 0 | −3.67282 | −2.10083 | 0 | −0.764419 | − | 1.32401i | |||||||||||||||||||||||||||||
163.3 | 1.04307 | − | 1.80664i | 0 | −1.17597 | − | 2.03684i | 0.675970 | − | 1.17081i | 0 | 0.351939 | −0.734191 | 0 | −1.41016 | − | 2.44247i | |||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 171.2.f.b | 6 | |
3.b | odd | 2 | 1 | 57.2.e.b | ✓ | 6 | |
4.b | odd | 2 | 1 | 2736.2.s.z | 6 | ||
12.b | even | 2 | 1 | 912.2.q.l | 6 | ||
19.c | even | 3 | 1 | inner | 171.2.f.b | 6 | |
19.c | even | 3 | 1 | 3249.2.a.y | 3 | ||
19.d | odd | 6 | 1 | 3249.2.a.t | 3 | ||
57.f | even | 6 | 1 | 1083.2.a.o | 3 | ||
57.h | odd | 6 | 1 | 57.2.e.b | ✓ | 6 | |
57.h | odd | 6 | 1 | 1083.2.a.l | 3 | ||
76.g | odd | 6 | 1 | 2736.2.s.z | 6 | ||
228.m | even | 6 | 1 | 912.2.q.l | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
57.2.e.b | ✓ | 6 | 3.b | odd | 2 | 1 | |
57.2.e.b | ✓ | 6 | 57.h | odd | 6 | 1 | |
171.2.f.b | 6 | 1.a | even | 1 | 1 | trivial | |
171.2.f.b | 6 | 19.c | even | 3 | 1 | inner | |
912.2.q.l | 6 | 12.b | even | 2 | 1 | ||
912.2.q.l | 6 | 228.m | even | 6 | 1 | ||
1083.2.a.l | 3 | 57.h | odd | 6 | 1 | ||
1083.2.a.o | 3 | 57.f | even | 6 | 1 | ||
2736.2.s.z | 6 | 4.b | odd | 2 | 1 | ||
2736.2.s.z | 6 | 76.g | odd | 6 | 1 | ||
3249.2.a.t | 3 | 19.d | odd | 6 | 1 | ||
3249.2.a.y | 3 | 19.c | even | 3 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{6} + T_{2}^{5} + 6T_{2}^{4} + T_{2}^{3} + 28T_{2}^{2} + 15T_{2} + 9 \)
acting on \(S_{2}^{\mathrm{new}}(171, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{6} + T^{5} + 6 T^{4} + T^{3} + 28 T^{2} + \cdots + 9 \)
$3$
\( T^{6} \)
$5$
\( T^{6} - 2 T^{5} + 12 T^{4} - 8 T^{3} + \cdots + 144 \)
$7$
\( (T^{3} + T^{2} - 9 T + 3)^{2} \)
$11$
\( (T^{3} - 24 T + 36)^{2} \)
$13$
\( T^{6} - T^{5} + 22 T^{4} + 27 T^{3} + \cdots + 9 \)
$17$
\( T^{6} \)
$19$
\( T^{6} - 4 T^{5} + 17 T^{4} + \cdots + 6859 \)
$23$
\( T^{6} - 14 T^{5} + 168 T^{4} + \cdots + 24336 \)
$29$
\( T^{6} - 4 T^{5} + 48 T^{4} + \cdots + 9216 \)
$31$
\( (T^{3} - 15 T^{2} + 51 T + 31)^{2} \)
$37$
\( (T + 1)^{6} \)
$41$
\( T^{6} + 4 T^{5} + 48 T^{4} + \cdots + 9216 \)
$43$
\( T^{6} - 3 T^{5} + 30 T^{4} + 89 T^{3} + \cdots + 169 \)
$47$
\( (T^{2} + 6 T + 36)^{3} \)
$53$
\( T^{6} + 6 T^{5} + 108 T^{4} + \cdots + 104976 \)
$59$
\( T^{6} + 24 T^{4} - 72 T^{3} + \cdots + 1296 \)
$61$
\( T^{6} + 13 T^{5} + 158 T^{4} + \cdots + 5329 \)
$67$
\( T^{6} + 9 T^{5} + 162 T^{4} + \cdots + 292681 \)
$71$
\( T^{6} + 18 T^{5} + 312 T^{4} + \cdots + 419904 \)
$73$
\( T^{6} + 19 T^{5} + 278 T^{4} + \cdots + 961 \)
$79$
\( T^{6} + 11 T^{5} + 118 T^{4} + \cdots + 29241 \)
$83$
\( (T^{3} - 4 T^{2} - 80 T + 192)^{2} \)
$89$
\( T^{6} + 16 T^{5} + 180 T^{4} + \cdots + 11664 \)
$97$
\( T^{6} - 2 T^{5} + 272 T^{4} + \cdots + 2096704 \)
show more
show less