Properties

Label 171.2.f.a.163.1
Level $171$
Weight $2$
Character 171.163
Analytic conductor $1.365$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,2,Mod(64,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 171.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.36544187456\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 57)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 171.163
Dual form 171.2.f.a.64.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{4} +1.00000 q^{7} +3.00000 q^{8} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{4} +1.00000 q^{7} +3.00000 q^{8} +2.00000 q^{11} +(-2.50000 - 4.33013i) q^{13} +(0.500000 - 0.866025i) q^{14} +(0.500000 - 0.866025i) q^{16} +(-2.00000 + 3.46410i) q^{17} +(-4.00000 + 1.73205i) q^{19} +(1.00000 - 1.73205i) q^{22} +(-2.00000 - 3.46410i) q^{23} +(2.50000 + 4.33013i) q^{25} -5.00000 q^{26} +(0.500000 + 0.866025i) q^{28} +(-4.00000 - 6.92820i) q^{29} -3.00000 q^{31} +(2.50000 + 4.33013i) q^{32} +(2.00000 + 3.46410i) q^{34} +3.00000 q^{37} +(-0.500000 + 4.33013i) q^{38} +(-6.00000 + 10.3923i) q^{41} +(0.500000 - 0.866025i) q^{43} +(1.00000 + 1.73205i) q^{44} -4.00000 q^{46} +(-3.00000 - 5.19615i) q^{47} -6.00000 q^{49} +5.00000 q^{50} +(2.50000 - 4.33013i) q^{52} +(2.00000 + 3.46410i) q^{53} +3.00000 q^{56} -8.00000 q^{58} +(5.00000 - 8.66025i) q^{59} +(6.50000 + 11.2583i) q^{61} +(-1.50000 + 2.59808i) q^{62} +7.00000 q^{64} +(-5.50000 - 9.52628i) q^{67} -4.00000 q^{68} +(3.00000 - 5.19615i) q^{71} +(5.50000 - 9.52628i) q^{73} +(1.50000 - 2.59808i) q^{74} +(-3.50000 - 2.59808i) q^{76} +2.00000 q^{77} +(-0.500000 + 0.866025i) q^{79} +(6.00000 + 10.3923i) q^{82} +(-0.500000 - 0.866025i) q^{86} +6.00000 q^{88} +(-3.00000 - 5.19615i) q^{89} +(-2.50000 - 4.33013i) q^{91} +(2.00000 - 3.46410i) q^{92} -6.00000 q^{94} +(-1.00000 + 1.73205i) q^{97} +(-3.00000 + 5.19615i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + q^{4} + 2 q^{7} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} + q^{4} + 2 q^{7} + 6 q^{8} + 4 q^{11} - 5 q^{13} + q^{14} + q^{16} - 4 q^{17} - 8 q^{19} + 2 q^{22} - 4 q^{23} + 5 q^{25} - 10 q^{26} + q^{28} - 8 q^{29} - 6 q^{31} + 5 q^{32} + 4 q^{34} + 6 q^{37} - q^{38} - 12 q^{41} + q^{43} + 2 q^{44} - 8 q^{46} - 6 q^{47} - 12 q^{49} + 10 q^{50} + 5 q^{52} + 4 q^{53} + 6 q^{56} - 16 q^{58} + 10 q^{59} + 13 q^{61} - 3 q^{62} + 14 q^{64} - 11 q^{67} - 8 q^{68} + 6 q^{71} + 11 q^{73} + 3 q^{74} - 7 q^{76} + 4 q^{77} - q^{79} + 12 q^{82} - q^{86} + 12 q^{88} - 6 q^{89} - 5 q^{91} + 4 q^{92} - 12 q^{94} - 2 q^{97} - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i −0.633316 0.773893i \(-0.718307\pi\)
0.986869 + 0.161521i \(0.0516399\pi\)
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964 0.188982 0.981981i \(-0.439481\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) 3.00000 1.06066
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) −2.50000 4.33013i −0.693375 1.20096i −0.970725 0.240192i \(-0.922790\pi\)
0.277350 0.960769i \(-0.410544\pi\)
\(14\) 0.500000 0.866025i 0.133631 0.231455i
\(15\) 0 0
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) −2.00000 + 3.46410i −0.485071 + 0.840168i −0.999853 0.0171533i \(-0.994540\pi\)
0.514782 + 0.857321i \(0.327873\pi\)
\(18\) 0 0
\(19\) −4.00000 + 1.73205i −0.917663 + 0.397360i
\(20\) 0 0
\(21\) 0 0
\(22\) 1.00000 1.73205i 0.213201 0.369274i
\(23\) −2.00000 3.46410i −0.417029 0.722315i 0.578610 0.815604i \(-0.303595\pi\)
−0.995639 + 0.0932891i \(0.970262\pi\)
\(24\) 0 0
\(25\) 2.50000 + 4.33013i 0.500000 + 0.866025i
\(26\) −5.00000 −0.980581
\(27\) 0 0
\(28\) 0.500000 + 0.866025i 0.0944911 + 0.163663i
\(29\) −4.00000 6.92820i −0.742781 1.28654i −0.951224 0.308500i \(-0.900173\pi\)
0.208443 0.978035i \(-0.433160\pi\)
\(30\) 0 0
\(31\) −3.00000 −0.538816 −0.269408 0.963026i \(-0.586828\pi\)
−0.269408 + 0.963026i \(0.586828\pi\)
\(32\) 2.50000 + 4.33013i 0.441942 + 0.765466i
\(33\) 0 0
\(34\) 2.00000 + 3.46410i 0.342997 + 0.594089i
\(35\) 0 0
\(36\) 0 0
\(37\) 3.00000 0.493197 0.246598 0.969118i \(-0.420687\pi\)
0.246598 + 0.969118i \(0.420687\pi\)
\(38\) −0.500000 + 4.33013i −0.0811107 + 0.702439i
\(39\) 0 0
\(40\) 0 0
\(41\) −6.00000 + 10.3923i −0.937043 + 1.62301i −0.166092 + 0.986110i \(0.553115\pi\)
−0.770950 + 0.636895i \(0.780218\pi\)
\(42\) 0 0
\(43\) 0.500000 0.866025i 0.0762493 0.132068i −0.825380 0.564578i \(-0.809039\pi\)
0.901629 + 0.432511i \(0.142372\pi\)
\(44\) 1.00000 + 1.73205i 0.150756 + 0.261116i
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) −3.00000 5.19615i −0.437595 0.757937i 0.559908 0.828554i \(-0.310836\pi\)
−0.997503 + 0.0706177i \(0.977503\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 5.00000 0.707107
\(51\) 0 0
\(52\) 2.50000 4.33013i 0.346688 0.600481i
\(53\) 2.00000 + 3.46410i 0.274721 + 0.475831i 0.970065 0.242846i \(-0.0780811\pi\)
−0.695344 + 0.718677i \(0.744748\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 3.00000 0.400892
\(57\) 0 0
\(58\) −8.00000 −1.05045
\(59\) 5.00000 8.66025i 0.650945 1.12747i −0.331949 0.943297i \(-0.607706\pi\)
0.982894 0.184172i \(-0.0589603\pi\)
\(60\) 0 0
\(61\) 6.50000 + 11.2583i 0.832240 + 1.44148i 0.896258 + 0.443533i \(0.146275\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) −1.50000 + 2.59808i −0.190500 + 0.329956i
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) 0 0
\(67\) −5.50000 9.52628i −0.671932 1.16382i −0.977356 0.211604i \(-0.932131\pi\)
0.305424 0.952217i \(-0.401202\pi\)
\(68\) −4.00000 −0.485071
\(69\) 0 0
\(70\) 0 0
\(71\) 3.00000 5.19615i 0.356034 0.616670i −0.631260 0.775571i \(-0.717462\pi\)
0.987294 + 0.158901i \(0.0507952\pi\)
\(72\) 0 0
\(73\) 5.50000 9.52628i 0.643726 1.11497i −0.340868 0.940111i \(-0.610721\pi\)
0.984594 0.174855i \(-0.0559458\pi\)
\(74\) 1.50000 2.59808i 0.174371 0.302020i
\(75\) 0 0
\(76\) −3.50000 2.59808i −0.401478 0.298020i
\(77\) 2.00000 0.227921
\(78\) 0 0
\(79\) −0.500000 + 0.866025i −0.0562544 + 0.0974355i −0.892781 0.450490i \(-0.851249\pi\)
0.836527 + 0.547926i \(0.184582\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 6.00000 + 10.3923i 0.662589 + 1.14764i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.500000 0.866025i −0.0539164 0.0933859i
\(87\) 0 0
\(88\) 6.00000 0.639602
\(89\) −3.00000 5.19615i −0.317999 0.550791i 0.662071 0.749441i \(-0.269678\pi\)
−0.980071 + 0.198650i \(0.936344\pi\)
\(90\) 0 0
\(91\) −2.50000 4.33013i −0.262071 0.453921i
\(92\) 2.00000 3.46410i 0.208514 0.361158i
\(93\) 0 0
\(94\) −6.00000 −0.618853
\(95\) 0 0
\(96\) 0 0
\(97\) −1.00000 + 1.73205i −0.101535 + 0.175863i −0.912317 0.409484i \(-0.865709\pi\)
0.810782 + 0.585348i \(0.199042\pi\)
\(98\) −3.00000 + 5.19615i −0.303046 + 0.524891i
\(99\) 0 0
\(100\) −2.50000 + 4.33013i −0.250000 + 0.433013i
\(101\) 7.00000 + 12.1244i 0.696526 + 1.20642i 0.969664 + 0.244443i \(0.0786053\pi\)
−0.273138 + 0.961975i \(0.588061\pi\)
\(102\) 0 0
\(103\) 13.0000 1.28093 0.640464 0.767988i \(-0.278742\pi\)
0.640464 + 0.767988i \(0.278742\pi\)
\(104\) −7.50000 12.9904i −0.735436 1.27381i
\(105\) 0 0
\(106\) 4.00000 0.388514
\(107\) 18.0000 1.74013 0.870063 0.492941i \(-0.164078\pi\)
0.870063 + 0.492941i \(0.164078\pi\)
\(108\) 0 0
\(109\) 1.00000 1.73205i 0.0957826 0.165900i −0.814152 0.580651i \(-0.802798\pi\)
0.909935 + 0.414751i \(0.136131\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.500000 0.866025i 0.0472456 0.0818317i
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.00000 6.92820i 0.371391 0.643268i
\(117\) 0 0
\(118\) −5.00000 8.66025i −0.460287 0.797241i
\(119\) −2.00000 + 3.46410i −0.183340 + 0.317554i
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 13.0000 1.17696
\(123\) 0 0
\(124\) −1.50000 2.59808i −0.134704 0.233314i
\(125\) 0 0
\(126\) 0 0
\(127\) 4.00000 + 6.92820i 0.354943 + 0.614779i 0.987108 0.160055i \(-0.0511671\pi\)
−0.632166 + 0.774833i \(0.717834\pi\)
\(128\) −1.50000 + 2.59808i −0.132583 + 0.229640i
\(129\) 0 0
\(130\) 0 0
\(131\) −7.00000 + 12.1244i −0.611593 + 1.05931i 0.379379 + 0.925241i \(0.376138\pi\)
−0.990972 + 0.134069i \(0.957196\pi\)
\(132\) 0 0
\(133\) −4.00000 + 1.73205i −0.346844 + 0.150188i
\(134\) −11.0000 −0.950255
\(135\) 0 0
\(136\) −6.00000 + 10.3923i −0.514496 + 0.891133i
\(137\) 9.00000 + 15.5885i 0.768922 + 1.33181i 0.938148 + 0.346235i \(0.112540\pi\)
−0.169226 + 0.985577i \(0.554127\pi\)
\(138\) 0 0
\(139\) −2.50000 4.33013i −0.212047 0.367277i 0.740308 0.672268i \(-0.234680\pi\)
−0.952355 + 0.304991i \(0.901346\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3.00000 5.19615i −0.251754 0.436051i
\(143\) −5.00000 8.66025i −0.418121 0.724207i
\(144\) 0 0
\(145\) 0 0
\(146\) −5.50000 9.52628i −0.455183 0.788400i
\(147\) 0 0
\(148\) 1.50000 + 2.59808i 0.123299 + 0.213561i
\(149\) −3.00000 + 5.19615i −0.245770 + 0.425685i −0.962348 0.271821i \(-0.912374\pi\)
0.716578 + 0.697507i \(0.245707\pi\)
\(150\) 0 0
\(151\) 12.0000 0.976546 0.488273 0.872691i \(-0.337627\pi\)
0.488273 + 0.872691i \(0.337627\pi\)
\(152\) −12.0000 + 5.19615i −0.973329 + 0.421464i
\(153\) 0 0
\(154\) 1.00000 1.73205i 0.0805823 0.139573i
\(155\) 0 0
\(156\) 0 0
\(157\) −1.50000 + 2.59808i −0.119713 + 0.207349i −0.919654 0.392730i \(-0.871531\pi\)
0.799941 + 0.600079i \(0.204864\pi\)
\(158\) 0.500000 + 0.866025i 0.0397779 + 0.0688973i
\(159\) 0 0
\(160\) 0 0
\(161\) −2.00000 3.46410i −0.157622 0.273009i
\(162\) 0 0
\(163\) 3.00000 0.234978 0.117489 0.993074i \(-0.462515\pi\)
0.117489 + 0.993074i \(0.462515\pi\)
\(164\) −12.0000 −0.937043
\(165\) 0 0
\(166\) 0 0
\(167\) −1.00000 1.73205i −0.0773823 0.134030i 0.824737 0.565516i \(-0.191323\pi\)
−0.902120 + 0.431486i \(0.857990\pi\)
\(168\) 0 0
\(169\) −6.00000 + 10.3923i −0.461538 + 0.799408i
\(170\) 0 0
\(171\) 0 0
\(172\) 1.00000 0.0762493
\(173\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(174\) 0 0
\(175\) 2.50000 + 4.33013i 0.188982 + 0.327327i
\(176\) 1.00000 1.73205i 0.0753778 0.130558i
\(177\) 0 0
\(178\) −6.00000 −0.449719
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 1.00000 + 1.73205i 0.0743294 + 0.128742i 0.900794 0.434246i \(-0.142985\pi\)
−0.826465 + 0.562988i \(0.809652\pi\)
\(182\) −5.00000 −0.370625
\(183\) 0 0
\(184\) −6.00000 10.3923i −0.442326 0.766131i
\(185\) 0 0
\(186\) 0 0
\(187\) −4.00000 + 6.92820i −0.292509 + 0.506640i
\(188\) 3.00000 5.19615i 0.218797 0.378968i
\(189\) 0 0
\(190\) 0 0
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) 0 0
\(193\) −9.50000 + 16.4545i −0.683825 + 1.18442i 0.289980 + 0.957033i \(0.406351\pi\)
−0.973805 + 0.227387i \(0.926982\pi\)
\(194\) 1.00000 + 1.73205i 0.0717958 + 0.124354i
\(195\) 0 0
\(196\) −3.00000 5.19615i −0.214286 0.371154i
\(197\) 26.0000 1.85242 0.926212 0.377004i \(-0.123046\pi\)
0.926212 + 0.377004i \(0.123046\pi\)
\(198\) 0 0
\(199\) −10.5000 18.1865i −0.744325 1.28921i −0.950509 0.310696i \(-0.899438\pi\)
0.206184 0.978513i \(-0.433895\pi\)
\(200\) 7.50000 + 12.9904i 0.530330 + 0.918559i
\(201\) 0 0
\(202\) 14.0000 0.985037
\(203\) −4.00000 6.92820i −0.280745 0.486265i
\(204\) 0 0
\(205\) 0 0
\(206\) 6.50000 11.2583i 0.452876 0.784405i
\(207\) 0 0
\(208\) −5.00000 −0.346688
\(209\) −8.00000 + 3.46410i −0.553372 + 0.239617i
\(210\) 0 0
\(211\) 7.50000 12.9904i 0.516321 0.894295i −0.483499 0.875345i \(-0.660634\pi\)
0.999820 0.0189499i \(-0.00603229\pi\)
\(212\) −2.00000 + 3.46410i −0.137361 + 0.237915i
\(213\) 0 0
\(214\) 9.00000 15.5885i 0.615227 1.06561i
\(215\) 0 0
\(216\) 0 0
\(217\) −3.00000 −0.203653
\(218\) −1.00000 1.73205i −0.0677285 0.117309i
\(219\) 0 0
\(220\) 0 0
\(221\) 20.0000 1.34535
\(222\) 0 0
\(223\) −4.50000 + 7.79423i −0.301342 + 0.521940i −0.976440 0.215788i \(-0.930768\pi\)
0.675098 + 0.737728i \(0.264101\pi\)
\(224\) 2.50000 + 4.33013i 0.167038 + 0.289319i
\(225\) 0 0
\(226\) −1.00000 + 1.73205i −0.0665190 + 0.115214i
\(227\) 24.0000 1.59294 0.796468 0.604681i \(-0.206699\pi\)
0.796468 + 0.604681i \(0.206699\pi\)
\(228\) 0 0
\(229\) 13.0000 0.859064 0.429532 0.903052i \(-0.358679\pi\)
0.429532 + 0.903052i \(0.358679\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −12.0000 20.7846i −0.787839 1.36458i
\(233\) −3.00000 + 5.19615i −0.196537 + 0.340411i −0.947403 0.320043i \(-0.896303\pi\)
0.750867 + 0.660454i \(0.229636\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 10.0000 0.650945
\(237\) 0 0
\(238\) 2.00000 + 3.46410i 0.129641 + 0.224544i
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) 3.50000 + 6.06218i 0.225455 + 0.390499i 0.956456 0.291877i \(-0.0942799\pi\)
−0.731001 + 0.682376i \(0.760947\pi\)
\(242\) −3.50000 + 6.06218i −0.224989 + 0.389692i
\(243\) 0 0
\(244\) −6.50000 + 11.2583i −0.416120 + 0.720741i
\(245\) 0 0
\(246\) 0 0
\(247\) 17.5000 + 12.9904i 1.11350 + 0.826558i
\(248\) −9.00000 −0.571501
\(249\) 0 0
\(250\) 0 0
\(251\) −1.00000 1.73205i −0.0631194 0.109326i 0.832739 0.553666i \(-0.186772\pi\)
−0.895858 + 0.444340i \(0.853438\pi\)
\(252\) 0 0
\(253\) −4.00000 6.92820i −0.251478 0.435572i
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 8.50000 + 14.7224i 0.531250 + 0.920152i
\(257\) −10.0000 17.3205i −0.623783 1.08042i −0.988775 0.149413i \(-0.952262\pi\)
0.364992 0.931011i \(-0.381072\pi\)
\(258\) 0 0
\(259\) 3.00000 0.186411
\(260\) 0 0
\(261\) 0 0
\(262\) 7.00000 + 12.1244i 0.432461 + 0.749045i
\(263\) 13.0000 22.5167i 0.801614 1.38844i −0.116939 0.993139i \(-0.537308\pi\)
0.918553 0.395298i \(-0.129359\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −0.500000 + 4.33013i −0.0306570 + 0.265497i
\(267\) 0 0
\(268\) 5.50000 9.52628i 0.335966 0.581910i
\(269\) 5.00000 8.66025i 0.304855 0.528025i −0.672374 0.740212i \(-0.734725\pi\)
0.977229 + 0.212187i \(0.0680585\pi\)
\(270\) 0 0
\(271\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(272\) 2.00000 + 3.46410i 0.121268 + 0.210042i
\(273\) 0 0
\(274\) 18.0000 1.08742
\(275\) 5.00000 + 8.66025i 0.301511 + 0.522233i
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) −5.00000 −0.299880
\(279\) 0 0
\(280\) 0 0
\(281\) −4.00000 6.92820i −0.238620 0.413302i 0.721699 0.692207i \(-0.243362\pi\)
−0.960319 + 0.278906i \(0.910028\pi\)
\(282\) 0 0
\(283\) 2.00000 3.46410i 0.118888 0.205919i −0.800439 0.599414i \(-0.795400\pi\)
0.919327 + 0.393494i \(0.128734\pi\)
\(284\) 6.00000 0.356034
\(285\) 0 0
\(286\) −10.0000 −0.591312
\(287\) −6.00000 + 10.3923i −0.354169 + 0.613438i
\(288\) 0 0
\(289\) 0.500000 + 0.866025i 0.0294118 + 0.0509427i
\(290\) 0 0
\(291\) 0 0
\(292\) 11.0000 0.643726
\(293\) −14.0000 −0.817889 −0.408944 0.912559i \(-0.634103\pi\)
−0.408944 + 0.912559i \(0.634103\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 9.00000 0.523114
\(297\) 0 0
\(298\) 3.00000 + 5.19615i 0.173785 + 0.301005i
\(299\) −10.0000 + 17.3205i −0.578315 + 1.00167i
\(300\) 0 0
\(301\) 0.500000 0.866025i 0.0288195 0.0499169i
\(302\) 6.00000 10.3923i 0.345261 0.598010i
\(303\) 0 0
\(304\) −0.500000 + 4.33013i −0.0286770 + 0.248350i
\(305\) 0 0
\(306\) 0 0
\(307\) 6.00000 10.3923i 0.342438 0.593120i −0.642447 0.766330i \(-0.722081\pi\)
0.984885 + 0.173210i \(0.0554140\pi\)
\(308\) 1.00000 + 1.73205i 0.0569803 + 0.0986928i
\(309\) 0 0
\(310\) 0 0
\(311\) −18.0000 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(312\) 0 0
\(313\) −11.0000 19.0526i −0.621757 1.07691i −0.989158 0.146852i \(-0.953086\pi\)
0.367402 0.930062i \(-0.380247\pi\)
\(314\) 1.50000 + 2.59808i 0.0846499 + 0.146618i
\(315\) 0 0
\(316\) −1.00000 −0.0562544
\(317\) −2.00000 3.46410i −0.112331 0.194563i 0.804379 0.594117i \(-0.202498\pi\)
−0.916710 + 0.399554i \(0.869165\pi\)
\(318\) 0 0
\(319\) −8.00000 13.8564i −0.447914 0.775810i
\(320\) 0 0
\(321\) 0 0
\(322\) −4.00000 −0.222911
\(323\) 2.00000 17.3205i 0.111283 0.963739i
\(324\) 0 0
\(325\) 12.5000 21.6506i 0.693375 1.20096i
\(326\) 1.50000 2.59808i 0.0830773 0.143894i
\(327\) 0 0
\(328\) −18.0000 + 31.1769i −0.993884 + 1.72146i
\(329\) −3.00000 5.19615i −0.165395 0.286473i
\(330\) 0 0
\(331\) −25.0000 −1.37412 −0.687062 0.726599i \(-0.741100\pi\)
−0.687062 + 0.726599i \(0.741100\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −2.00000 −0.109435
\(335\) 0 0
\(336\) 0 0
\(337\) −6.50000 + 11.2583i −0.354078 + 0.613280i −0.986960 0.160968i \(-0.948538\pi\)
0.632882 + 0.774248i \(0.281872\pi\)
\(338\) 6.00000 + 10.3923i 0.326357 + 0.565267i
\(339\) 0 0
\(340\) 0 0
\(341\) −6.00000 −0.324918
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 1.50000 2.59808i 0.0808746 0.140079i
\(345\) 0 0
\(346\) 0 0
\(347\) −8.00000 + 13.8564i −0.429463 + 0.743851i −0.996826 0.0796169i \(-0.974630\pi\)
0.567363 + 0.823468i \(0.307964\pi\)
\(348\) 0 0
\(349\) −21.0000 −1.12410 −0.562052 0.827102i \(-0.689988\pi\)
−0.562052 + 0.827102i \(0.689988\pi\)
\(350\) 5.00000 0.267261
\(351\) 0 0
\(352\) 5.00000 + 8.66025i 0.266501 + 0.461593i
\(353\) −4.00000 −0.212899 −0.106449 0.994318i \(-0.533948\pi\)
−0.106449 + 0.994318i \(0.533948\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 3.00000 5.19615i 0.159000 0.275396i
\(357\) 0 0
\(358\) −6.00000 + 10.3923i −0.317110 + 0.549250i
\(359\) −10.0000 + 17.3205i −0.527780 + 0.914141i 0.471696 + 0.881761i \(0.343642\pi\)
−0.999476 + 0.0323801i \(0.989691\pi\)
\(360\) 0 0
\(361\) 13.0000 13.8564i 0.684211 0.729285i
\(362\) 2.00000 0.105118
\(363\) 0 0
\(364\) 2.50000 4.33013i 0.131036 0.226960i
\(365\) 0 0
\(366\) 0 0
\(367\) −3.50000 6.06218i −0.182699 0.316443i 0.760100 0.649806i \(-0.225150\pi\)
−0.942799 + 0.333363i \(0.891817\pi\)
\(368\) −4.00000 −0.208514
\(369\) 0 0
\(370\) 0 0
\(371\) 2.00000 + 3.46410i 0.103835 + 0.179847i
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 4.00000 + 6.92820i 0.206835 + 0.358249i
\(375\) 0 0
\(376\) −9.00000 15.5885i −0.464140 0.803913i
\(377\) −20.0000 + 34.6410i −1.03005 + 1.78410i
\(378\) 0 0
\(379\) −5.00000 −0.256833 −0.128416 0.991720i \(-0.540989\pi\)
−0.128416 + 0.991720i \(0.540989\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −12.0000 + 20.7846i −0.613973 + 1.06343i
\(383\) 7.00000 12.1244i 0.357683 0.619526i −0.629890 0.776684i \(-0.716900\pi\)
0.987573 + 0.157159i \(0.0502334\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 9.50000 + 16.4545i 0.483537 + 0.837511i
\(387\) 0 0
\(388\) −2.00000 −0.101535
\(389\) −12.0000 20.7846i −0.608424 1.05382i −0.991500 0.130105i \(-0.958469\pi\)
0.383076 0.923717i \(-0.374865\pi\)
\(390\) 0 0
\(391\) 16.0000 0.809155
\(392\) −18.0000 −0.909137
\(393\) 0 0
\(394\) 13.0000 22.5167i 0.654931 1.13437i
\(395\) 0 0
\(396\) 0 0
\(397\) −3.50000 + 6.06218i −0.175660 + 0.304252i −0.940389 0.340099i \(-0.889539\pi\)
0.764730 + 0.644351i \(0.222873\pi\)
\(398\) −21.0000 −1.05263
\(399\) 0 0
\(400\) 5.00000 0.250000
\(401\) −3.00000 + 5.19615i −0.149813 + 0.259483i −0.931158 0.364615i \(-0.881200\pi\)
0.781345 + 0.624099i \(0.214534\pi\)
\(402\) 0 0
\(403\) 7.50000 + 12.9904i 0.373602 + 0.647097i
\(404\) −7.00000 + 12.1244i −0.348263 + 0.603209i
\(405\) 0 0
\(406\) −8.00000 −0.397033
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) 7.00000 + 12.1244i 0.346128 + 0.599511i 0.985558 0.169338i \(-0.0541630\pi\)
−0.639430 + 0.768849i \(0.720830\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 6.50000 + 11.2583i 0.320232 + 0.554658i
\(413\) 5.00000 8.66025i 0.246034 0.426143i
\(414\) 0 0
\(415\) 0 0
\(416\) 12.5000 21.6506i 0.612863 1.06151i
\(417\) 0 0
\(418\) −1.00000 + 8.66025i −0.0489116 + 0.423587i
\(419\) 14.0000 0.683945 0.341972 0.939710i \(-0.388905\pi\)
0.341972 + 0.939710i \(0.388905\pi\)
\(420\) 0 0
\(421\) 11.0000 19.0526i 0.536107 0.928565i −0.463002 0.886357i \(-0.653228\pi\)
0.999109 0.0422075i \(-0.0134391\pi\)
\(422\) −7.50000 12.9904i −0.365094 0.632362i
\(423\) 0 0
\(424\) 6.00000 + 10.3923i 0.291386 + 0.504695i
\(425\) −20.0000 −0.970143
\(426\) 0 0
\(427\) 6.50000 + 11.2583i 0.314557 + 0.544829i
\(428\) 9.00000 + 15.5885i 0.435031 + 0.753497i
\(429\) 0 0
\(430\) 0 0
\(431\) −5.00000 8.66025i −0.240842 0.417150i 0.720113 0.693857i \(-0.244090\pi\)
−0.960954 + 0.276707i \(0.910757\pi\)
\(432\) 0 0
\(433\) 4.50000 + 7.79423i 0.216256 + 0.374567i 0.953660 0.300885i \(-0.0972820\pi\)
−0.737404 + 0.675452i \(0.763949\pi\)
\(434\) −1.50000 + 2.59808i −0.0720023 + 0.124712i
\(435\) 0 0
\(436\) 2.00000 0.0957826
\(437\) 14.0000 + 10.3923i 0.669711 + 0.497131i
\(438\) 0 0
\(439\) −17.5000 + 30.3109i −0.835229 + 1.44666i 0.0586141 + 0.998281i \(0.481332\pi\)
−0.893843 + 0.448379i \(0.852001\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 10.0000 17.3205i 0.475651 0.823853i
\(443\) −16.0000 27.7128i −0.760183 1.31668i −0.942756 0.333483i \(-0.891776\pi\)
0.182573 0.983192i \(-0.441557\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 4.50000 + 7.79423i 0.213081 + 0.369067i
\(447\) 0 0
\(448\) 7.00000 0.330719
\(449\) 12.0000 0.566315 0.283158 0.959073i \(-0.408618\pi\)
0.283158 + 0.959073i \(0.408618\pi\)
\(450\) 0 0
\(451\) −12.0000 + 20.7846i −0.565058 + 0.978709i
\(452\) −1.00000 1.73205i −0.0470360 0.0814688i
\(453\) 0 0
\(454\) 12.0000 20.7846i 0.563188 0.975470i
\(455\) 0 0
\(456\) 0 0
\(457\) −11.0000 −0.514558 −0.257279 0.966337i \(-0.582826\pi\)
−0.257279 + 0.966337i \(0.582826\pi\)
\(458\) 6.50000 11.2583i 0.303725 0.526067i
\(459\) 0 0
\(460\) 0 0
\(461\) 15.0000 25.9808i 0.698620 1.21004i −0.270326 0.962769i \(-0.587131\pi\)
0.968945 0.247276i \(-0.0795353\pi\)
\(462\) 0 0
\(463\) 23.0000 1.06890 0.534450 0.845200i \(-0.320519\pi\)
0.534450 + 0.845200i \(0.320519\pi\)
\(464\) −8.00000 −0.371391
\(465\) 0 0
\(466\) 3.00000 + 5.19615i 0.138972 + 0.240707i
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) 0 0
\(469\) −5.50000 9.52628i −0.253966 0.439883i
\(470\) 0 0
\(471\) 0 0
\(472\) 15.0000 25.9808i 0.690431 1.19586i
\(473\) 1.00000 1.73205i 0.0459800 0.0796398i
\(474\) 0 0
\(475\) −17.5000 12.9904i −0.802955 0.596040i
\(476\) −4.00000 −0.183340
\(477\) 0 0
\(478\) 6.00000 10.3923i 0.274434 0.475333i
\(479\) 7.00000 + 12.1244i 0.319838 + 0.553976i 0.980454 0.196748i \(-0.0630381\pi\)
−0.660616 + 0.750724i \(0.729705\pi\)
\(480\) 0 0
\(481\) −7.50000 12.9904i −0.341971 0.592310i
\(482\) 7.00000 0.318841
\(483\) 0 0
\(484\) −3.50000 6.06218i −0.159091 0.275554i
\(485\) 0 0
\(486\) 0 0
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) 19.5000 + 33.7750i 0.882724 + 1.52892i
\(489\) 0 0
\(490\) 0 0
\(491\) 3.00000 5.19615i 0.135388 0.234499i −0.790358 0.612646i \(-0.790105\pi\)
0.925746 + 0.378147i \(0.123439\pi\)
\(492\) 0 0
\(493\) 32.0000 1.44121
\(494\) 20.0000 8.66025i 0.899843 0.389643i
\(495\) 0 0
\(496\) −1.50000 + 2.59808i −0.0673520 + 0.116657i
\(497\) 3.00000 5.19615i 0.134568 0.233079i
\(498\) 0 0
\(499\) −14.5000 + 25.1147i −0.649109 + 1.12429i 0.334227 + 0.942493i \(0.391525\pi\)
−0.983336 + 0.181797i \(0.941809\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −2.00000 −0.0892644
\(503\) 20.0000 + 34.6410i 0.891756 + 1.54457i 0.837769 + 0.546025i \(0.183860\pi\)
0.0539870 + 0.998542i \(0.482807\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −8.00000 −0.355643
\(507\) 0 0
\(508\) −4.00000 + 6.92820i −0.177471 + 0.307389i
\(509\) −3.00000 5.19615i −0.132973 0.230315i 0.791849 0.610718i \(-0.209119\pi\)
−0.924821 + 0.380402i \(0.875786\pi\)
\(510\) 0 0
\(511\) 5.50000 9.52628i 0.243306 0.421418i
\(512\) 11.0000 0.486136
\(513\) 0 0
\(514\) −20.0000 −0.882162
\(515\) 0 0
\(516\) 0 0
\(517\) −6.00000 10.3923i −0.263880 0.457053i
\(518\) 1.50000 2.59808i 0.0659062 0.114153i
\(519\) 0 0
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) −14.5000 25.1147i −0.634041 1.09819i −0.986718 0.162446i \(-0.948062\pi\)
0.352677 0.935745i \(-0.385272\pi\)
\(524\) −14.0000 −0.611593
\(525\) 0 0
\(526\) −13.0000 22.5167i −0.566827 0.981773i
\(527\) 6.00000 10.3923i 0.261364 0.452696i
\(528\) 0 0
\(529\) 3.50000 6.06218i 0.152174 0.263573i
\(530\) 0 0
\(531\) 0 0
\(532\) −3.50000 2.59808i −0.151744 0.112641i
\(533\) 60.0000 2.59889
\(534\) 0 0
\(535\) 0 0
\(536\) −16.5000 28.5788i −0.712691 1.23442i
\(537\) 0 0
\(538\) −5.00000 8.66025i −0.215565 0.373370i
\(539\) −12.0000 −0.516877
\(540\) 0 0
\(541\) 19.5000 + 33.7750i 0.838370 + 1.45210i 0.891256 + 0.453500i \(0.149825\pi\)
−0.0528859 + 0.998601i \(0.516842\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −20.0000 −0.857493
\(545\) 0 0
\(546\) 0 0
\(547\) 14.5000 + 25.1147i 0.619975 + 1.07383i 0.989490 + 0.144604i \(0.0461907\pi\)
−0.369514 + 0.929225i \(0.620476\pi\)
\(548\) −9.00000 + 15.5885i −0.384461 + 0.665906i
\(549\) 0 0
\(550\) 10.0000 0.426401
\(551\) 28.0000 + 20.7846i 1.19284 + 0.885454i
\(552\) 0 0
\(553\) −0.500000 + 0.866025i −0.0212622 + 0.0368271i
\(554\) −1.00000 + 1.73205i −0.0424859 + 0.0735878i
\(555\) 0 0
\(556\) 2.50000 4.33013i 0.106024 0.183638i
\(557\) −19.0000 32.9090i −0.805056 1.39440i −0.916253 0.400599i \(-0.868802\pi\)
0.111198 0.993798i \(-0.464531\pi\)
\(558\) 0 0
\(559\) −5.00000 −0.211477
\(560\) 0 0
\(561\) 0 0
\(562\) −8.00000 −0.337460
\(563\) −18.0000 −0.758610 −0.379305 0.925272i \(-0.623837\pi\)
−0.379305 + 0.925272i \(0.623837\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −2.00000 3.46410i −0.0840663 0.145607i
\(567\) 0 0
\(568\) 9.00000 15.5885i 0.377632 0.654077i
\(569\) −24.0000 −1.00613 −0.503066 0.864248i \(-0.667795\pi\)
−0.503066 + 0.864248i \(0.667795\pi\)
\(570\) 0 0
\(571\) 33.0000 1.38101 0.690504 0.723329i \(-0.257389\pi\)
0.690504 + 0.723329i \(0.257389\pi\)
\(572\) 5.00000 8.66025i 0.209061 0.362103i
\(573\) 0 0
\(574\) 6.00000 + 10.3923i 0.250435 + 0.433766i
\(575\) 10.0000 17.3205i 0.417029 0.722315i
\(576\) 0 0
\(577\) 18.0000 0.749350 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(578\) 1.00000 0.0415945
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 4.00000 + 6.92820i 0.165663 + 0.286937i
\(584\) 16.5000 28.5788i 0.682775 1.18260i
\(585\) 0 0
\(586\) −7.00000 + 12.1244i −0.289167 + 0.500853i
\(587\) −13.0000 + 22.5167i −0.536567 + 0.929362i 0.462518 + 0.886610i \(0.346946\pi\)
−0.999086 + 0.0427523i \(0.986387\pi\)
\(588\) 0 0
\(589\) 12.0000 5.19615i 0.494451 0.214104i
\(590\) 0 0
\(591\) 0 0
\(592\) 1.50000 2.59808i 0.0616496 0.106780i
\(593\) −3.00000 5.19615i −0.123195 0.213380i 0.797831 0.602881i \(-0.205981\pi\)
−0.921026 + 0.389501i \(0.872647\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) 0 0
\(598\) 10.0000 + 17.3205i 0.408930 + 0.708288i
\(599\) 9.00000 + 15.5885i 0.367730 + 0.636927i 0.989210 0.146503i \(-0.0468017\pi\)
−0.621480 + 0.783430i \(0.713468\pi\)
\(600\) 0 0
\(601\) −21.0000 −0.856608 −0.428304 0.903635i \(-0.640889\pi\)
−0.428304 + 0.903635i \(0.640889\pi\)
\(602\) −0.500000 0.866025i −0.0203785 0.0352966i
\(603\) 0 0
\(604\) 6.00000 + 10.3923i 0.244137 + 0.422857i
\(605\) 0 0
\(606\) 0 0
\(607\) −43.0000 −1.74532 −0.872658 0.488332i \(-0.837606\pi\)
−0.872658 + 0.488332i \(0.837606\pi\)
\(608\) −17.5000 12.9904i −0.709719 0.526830i
\(609\) 0 0
\(610\) 0 0
\(611\) −15.0000 + 25.9808i −0.606835 + 1.05107i
\(612\) 0 0
\(613\) 15.0000 25.9808i 0.605844 1.04935i −0.386073 0.922468i \(-0.626169\pi\)
0.991917 0.126885i \(-0.0404979\pi\)
\(614\) −6.00000 10.3923i −0.242140 0.419399i
\(615\) 0 0
\(616\) 6.00000 0.241747
\(617\) 3.00000 + 5.19615i 0.120775 + 0.209189i 0.920074 0.391745i \(-0.128129\pi\)
−0.799298 + 0.600935i \(0.794795\pi\)
\(618\) 0 0
\(619\) 25.0000 1.00483 0.502417 0.864625i \(-0.332444\pi\)
0.502417 + 0.864625i \(0.332444\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −9.00000 + 15.5885i −0.360867 + 0.625040i
\(623\) −3.00000 5.19615i −0.120192 0.208179i
\(624\) 0 0
\(625\) −12.5000 + 21.6506i −0.500000 + 0.866025i
\(626\) −22.0000 −0.879297
\(627\) 0 0
\(628\) −3.00000 −0.119713
\(629\) −6.00000 + 10.3923i −0.239236 + 0.414368i
\(630\) 0 0
\(631\) 7.50000 + 12.9904i 0.298570 + 0.517139i 0.975809 0.218624i \(-0.0701569\pi\)
−0.677239 + 0.735763i \(0.736824\pi\)
\(632\) −1.50000 + 2.59808i −0.0596668 + 0.103346i
\(633\) 0 0
\(634\) −4.00000 −0.158860
\(635\) 0 0
\(636\) 0 0
\(637\) 15.0000 + 25.9808i 0.594322 + 1.02940i
\(638\) −16.0000 −0.633446
\(639\) 0 0
\(640\) 0 0
\(641\) −15.0000 + 25.9808i −0.592464 + 1.02618i 0.401435 + 0.915888i \(0.368512\pi\)
−0.993899 + 0.110291i \(0.964822\pi\)
\(642\) 0 0
\(643\) 9.50000 16.4545i 0.374643 0.648901i −0.615630 0.788035i \(-0.711098\pi\)
0.990274 + 0.139134i \(0.0444318\pi\)
\(644\) 2.00000 3.46410i 0.0788110 0.136505i
\(645\) 0 0
\(646\) −14.0000 10.3923i −0.550823 0.408880i
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 0 0
\(649\) 10.0000 17.3205i 0.392534 0.679889i
\(650\) −12.5000 21.6506i −0.490290 0.849208i
\(651\) 0 0
\(652\) 1.50000 + 2.59808i 0.0587445 + 0.101749i
\(653\) 18.0000 0.704394 0.352197 0.935926i \(-0.385435\pi\)
0.352197 + 0.935926i \(0.385435\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 6.00000 + 10.3923i 0.234261 + 0.405751i
\(657\) 0 0
\(658\) −6.00000 −0.233904
\(659\) 17.0000 + 29.4449i 0.662226 + 1.14701i 0.980029 + 0.198852i \(0.0637214\pi\)
−0.317803 + 0.948157i \(0.602945\pi\)
\(660\) 0 0
\(661\) −21.0000 36.3731i −0.816805 1.41475i −0.908024 0.418917i \(-0.862410\pi\)
0.0912190 0.995831i \(-0.470924\pi\)
\(662\) −12.5000 + 21.6506i −0.485826 + 0.841476i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −16.0000 + 27.7128i −0.619522 + 1.07304i
\(668\) 1.00000 1.73205i 0.0386912 0.0670151i
\(669\) 0 0
\(670\) 0 0
\(671\) 13.0000 + 22.5167i 0.501859 + 0.869246i
\(672\) 0 0
\(673\) −33.0000 −1.27206 −0.636028 0.771666i \(-0.719424\pi\)
−0.636028 + 0.771666i \(0.719424\pi\)
\(674\) 6.50000 + 11.2583i 0.250371 + 0.433655i
\(675\) 0 0
\(676\) −12.0000 −0.461538
\(677\) −34.0000 −1.30673 −0.653363 0.757045i \(-0.726642\pi\)
−0.653363 + 0.757045i \(0.726642\pi\)
\(678\) 0 0
\(679\) −1.00000 + 1.73205i −0.0383765 + 0.0664700i
\(680\) 0 0
\(681\) 0 0
\(682\) −3.00000 + 5.19615i −0.114876 + 0.198971i
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −6.50000 + 11.2583i −0.248171 + 0.429845i
\(687\) 0 0
\(688\) −0.500000 0.866025i −0.0190623 0.0330169i
\(689\) 10.0000 17.3205i 0.380970 0.659859i
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 8.00000 + 13.8564i 0.303676 + 0.525982i
\(695\) 0 0
\(696\) 0 0
\(697\) −24.0000 41.5692i −0.909065 1.57455i
\(698\) −10.5000 + 18.1865i −0.397431 + 0.688370i
\(699\) 0 0
\(700\) −2.50000 + 4.33013i −0.0944911 + 0.163663i
\(701\) 10.0000 17.3205i 0.377695 0.654187i −0.613032 0.790058i \(-0.710050\pi\)
0.990726 + 0.135872i \(0.0433835\pi\)
\(702\) 0 0
\(703\) −12.0000 + 5.19615i −0.452589 + 0.195977i
\(704\) 14.0000 0.527645
\(705\) 0 0
\(706\) −2.00000 + 3.46410i −0.0752710 + 0.130373i
\(707\) 7.00000 + 12.1244i 0.263262 + 0.455983i
\(708\) 0 0
\(709\) 19.5000 + 33.7750i 0.732338 + 1.26845i 0.955882 + 0.293752i \(0.0949041\pi\)
−0.223544 + 0.974694i \(0.571763\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −9.00000 15.5885i −0.337289 0.584202i
\(713\) 6.00000 + 10.3923i 0.224702 + 0.389195i
\(714\) 0 0
\(715\) 0 0
\(716\) −6.00000 10.3923i −0.224231 0.388379i
\(717\) 0 0
\(718\) 10.0000 + 17.3205i 0.373197 + 0.646396i
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) 0 0
\(721\) 13.0000 0.484145
\(722\) −5.50000 18.1865i −0.204689 0.676833i
\(723\) 0 0
\(724\) −1.00000 + 1.73205i −0.0371647 + 0.0643712i
\(725\) 20.0000 34.6410i 0.742781 1.28654i
\(726\) 0 0
\(727\) 23.5000 40.7032i 0.871567 1.50960i 0.0111912 0.999937i \(-0.496438\pi\)
0.860376 0.509661i \(-0.170229\pi\)
\(728\) −7.50000 12.9904i −0.277968 0.481456i
\(729\) 0 0
\(730\) 0 0
\(731\) 2.00000 + 3.46410i 0.0739727 + 0.128124i
\(732\) 0 0
\(733\) −50.0000 −1.84679 −0.923396 0.383849i \(-0.874598\pi\)
−0.923396 + 0.383849i \(0.874598\pi\)
\(734\) −7.00000 −0.258375
\(735\) 0 0
\(736\) 10.0000 17.3205i 0.368605 0.638442i
\(737\) −11.0000 19.0526i −0.405190 0.701810i
\(738\) 0 0
\(739\) −9.50000 + 16.4545i −0.349463 + 0.605288i −0.986154 0.165831i \(-0.946969\pi\)
0.636691 + 0.771119i \(0.280303\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 4.00000 0.146845
\(743\) −25.0000 + 43.3013i −0.917161 + 1.58857i −0.113455 + 0.993543i \(0.536192\pi\)
−0.803706 + 0.595026i \(0.797142\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 5.00000 8.66025i 0.183063 0.317074i
\(747\) 0 0
\(748\) −8.00000 −0.292509
\(749\) 18.0000 0.657706
\(750\) 0 0
\(751\) −22.5000 38.9711i −0.821037 1.42208i −0.904911 0.425601i \(-0.860063\pi\)
0.0838743 0.996476i \(-0.473271\pi\)
\(752\) −6.00000 −0.218797
\(753\) 0 0
\(754\) 20.0000 + 34.6410i 0.728357 + 1.26155i
\(755\) 0 0
\(756\) 0 0
\(757\) −6.50000 + 11.2583i −0.236247 + 0.409191i −0.959634 0.281251i \(-0.909251\pi\)
0.723388 + 0.690442i \(0.242584\pi\)
\(758\) −2.50000 + 4.33013i −0.0908041 + 0.157277i
\(759\) 0 0
\(760\) 0 0
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 0 0
\(763\) 1.00000 1.73205i 0.0362024 0.0627044i
\(764\) −12.0000 20.7846i −0.434145 0.751961i
\(765\) 0 0
\(766\) −7.00000 12.1244i −0.252920 0.438071i
\(767\) −50.0000 −1.80540
\(768\) 0 0
\(769\) 18.5000 + 32.0429i 0.667127 + 1.15550i 0.978704 + 0.205277i \(0.0658095\pi\)
−0.311577 + 0.950221i \(0.600857\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −19.0000 −0.683825
\(773\) 7.00000 + 12.1244i 0.251773 + 0.436083i 0.964014 0.265852i \(-0.0856532\pi\)
−0.712241 + 0.701935i \(0.752320\pi\)
\(774\) 0 0
\(775\) −7.50000 12.9904i −0.269408 0.466628i
\(776\) −3.00000 + 5.19615i −0.107694 + 0.186531i
\(777\) 0 0
\(778\) −24.0000 −0.860442
\(779\) 6.00000 51.9615i 0.214972 1.86171i
\(780\) 0 0
\(781\) 6.00000 10.3923i 0.214697 0.371866i
\(782\) 8.00000 13.8564i 0.286079 0.495504i
\(783\) 0 0
\(784\) −3.00000 + 5.19615i −0.107143 + 0.185577i
\(785\) 0 0
\(786\) 0 0
\(787\) 25.0000 0.891154 0.445577 0.895244i \(-0.352999\pi\)
0.445577 + 0.895244i \(0.352999\pi\)