Defining parameters
Level: | \( N \) | \(=\) | \( 171 = 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 171.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(40\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(171))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 8 | 16 |
Cusp forms | 17 | 8 | 9 |
Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(19\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(-\) | \(-\) | \(4\) |
\(-\) | \(+\) | \(-\) | \(3\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(1\) | |
Minus space | \(-\) | \(7\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(171))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 19 | |||||||
171.2.a.a | $1$ | $1.365$ | \(\Q\) | None | \(-1\) | \(0\) | \(2\) | \(0\) | $-$ | $+$ | \(q-q^{2}-q^{4}+2q^{5}+3q^{8}-2q^{10}+\cdots\) | |
171.2.a.b | $1$ | $1.365$ | \(\Q\) | None | \(0\) | \(0\) | \(-3\) | \(-1\) | $-$ | $-$ | \(q-2q^{4}-3q^{5}-q^{7}-3q^{11}-4q^{13}+\cdots\) | |
171.2.a.c | $1$ | $1.365$ | \(\Q\) | None | \(2\) | \(0\) | \(-1\) | \(3\) | $-$ | $+$ | \(q+2q^{2}+2q^{4}-q^{5}+3q^{7}-2q^{10}+\cdots\) | |
171.2.a.d | $1$ | $1.365$ | \(\Q\) | None | \(2\) | \(0\) | \(3\) | \(-5\) | $-$ | $+$ | \(q+2q^{2}+2q^{4}+3q^{5}-5q^{7}+6q^{10}+\cdots\) | |
171.2.a.e | $4$ | $1.365$ | 4.4.13068.1 | None | \(0\) | \(0\) | \(0\) | \(2\) | $+$ | $-$ | \(q-\beta _{1}q^{2}+(2+\beta _{3})q^{4}+(\beta _{1}+\beta _{2})q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(171))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(171)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 2}\)