Defining parameters
Level: | \( N \) | \(=\) | \( 1700 = 2^{2} \cdot 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1700.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 68 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(270\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1700, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 15 | 9 |
Cusp forms | 12 | 9 | 3 |
Eisenstein series | 12 | 6 | 6 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 9 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1700, [\chi])\) into newform subspaces
Decomposition of \(S_{1}^{\mathrm{old}}(1700, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(1700, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 2}\)