Properties

Label 1700.1.h
Level $1700$
Weight $1$
Character orbit 1700.h
Rep. character $\chi_{1700}(951,\cdot)$
Character field $\Q$
Dimension $9$
Newform subspaces $7$
Sturm bound $270$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1700 = 2^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1700.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 68 \)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(270\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1700, [\chi])\).

Total New Old
Modular forms 24 15 9
Cusp forms 12 9 3
Eisenstein series 12 6 6

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 9 0 0 0

Trace form

\( 9 q + q^{2} + 9 q^{4} + q^{8} + 7 q^{9} + O(q^{10}) \) \( 9 q + q^{2} + 9 q^{4} + q^{8} + 7 q^{9} + 2 q^{13} + 9 q^{16} - q^{17} - q^{18} - 8 q^{21} - 6 q^{26} + q^{32} - q^{34} + 7 q^{36} + 7 q^{49} + 2 q^{52} - 2 q^{53} + 9 q^{64} - 8 q^{66} - q^{68} - 8 q^{69} - q^{72} + q^{81} - 8 q^{84} - 2 q^{89} - q^{98} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(1700, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1700.1.h.a 1700.h 68.d $1$ $0.848$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-17}) \) None 1700.1.h.a \(-1\) \(-1\) \(0\) \(-1\) \(q-q^{2}-q^{3}+q^{4}+q^{6}-q^{7}-q^{8}+\cdots\)
1700.1.h.b 1700.h 68.d $1$ $0.848$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-17}) \) None 1700.1.h.a \(-1\) \(1\) \(0\) \(1\) \(q-q^{2}+q^{3}+q^{4}-q^{6}+q^{7}-q^{8}+\cdots\)
1700.1.h.c 1700.h 68.d $1$ $0.848$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-17}) \) None 1700.1.h.a \(1\) \(-1\) \(0\) \(-1\) \(q+q^{2}-q^{3}+q^{4}-q^{6}-q^{7}+q^{8}+\cdots\)
1700.1.h.d 1700.h 68.d $1$ $0.848$ \(\Q\) $D_{2}$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-17}) \) \(\Q(\sqrt{17}) \) 68.1.d.a \(1\) \(0\) \(0\) \(0\) \(q+q^{2}+q^{4}+q^{8}-q^{9}+2q^{13}+q^{16}+\cdots\)
1700.1.h.e 1700.h 68.d $1$ $0.848$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-17}) \) None 1700.1.h.a \(1\) \(1\) \(0\) \(1\) \(q+q^{2}+q^{3}+q^{4}+q^{6}+q^{7}+q^{8}+\cdots\)
1700.1.h.f 1700.h 68.d $2$ $0.848$ \(\Q(\sqrt{3}) \) $D_{6}$ \(\Q(\sqrt{-17}) \) None 1700.1.h.f \(-2\) \(0\) \(0\) \(0\) \(q-q^{2}-\beta q^{3}+q^{4}+\beta q^{6}+\beta q^{7}-q^{8}+\cdots\)
1700.1.h.g 1700.h 68.d $2$ $0.848$ \(\Q(\sqrt{3}) \) $D_{6}$ \(\Q(\sqrt{-17}) \) None 1700.1.h.f \(2\) \(0\) \(0\) \(0\) \(q+q^{2}-\beta q^{3}+q^{4}-\beta q^{6}+\beta q^{7}+q^{8}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1700, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1700, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 2}\)