Defining parameters
| Level: | \( N \) | \(=\) | \( 1700 = 2^{2} \cdot 5^{2} \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1700.cf (of order \(40\) and degree \(16\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 1700 \) |
| Character field: | \(\Q(\zeta_{40})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(270\) | ||
| Trace bound: | \(10\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1700, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 96 | 96 | 0 |
| Cusp forms | 32 | 32 | 0 |
| Eisenstein series | 64 | 64 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 32 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1700, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 1700.1.cf.a | $16$ | $0.848$ | \(\Q(\zeta_{40})\) | $D_{40}$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{40}^{17}q^{2}-\zeta_{40}^{14}q^{4}-\zeta_{40}^{11}q^{5}+\cdots\) |
| 1700.1.cf.b | $16$ | $0.848$ | \(\Q(\zeta_{40})\) | $D_{40}$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{40}^{17}q^{2}-\zeta_{40}^{14}q^{4}+\zeta_{40}^{6}q^{5}+\cdots\) |