Properties

Label 170.4.a.d
Level $170$
Weight $4$
Character orbit 170.a
Self dual yes
Analytic conductor $10.030$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [170,4,Mod(1,170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(170, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("170.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 170 = 2 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 170.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-4,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.0303247010\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{145}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{145})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + (\beta + 1) q^{3} + 4 q^{4} + 5 q^{5} + ( - 2 \beta - 2) q^{6} + 14 q^{7} - 8 q^{8} + (3 \beta + 10) q^{9} - 10 q^{10} + (6 \beta - 12) q^{11} + (4 \beta + 4) q^{12} + ( - \beta - 1) q^{13}+ \cdots + (42 \beta + 528) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 3 q^{3} + 8 q^{4} + 10 q^{5} - 6 q^{6} + 28 q^{7} - 16 q^{8} + 23 q^{9} - 20 q^{10} - 18 q^{11} + 12 q^{12} - 3 q^{13} - 56 q^{14} + 15 q^{15} + 32 q^{16} + 34 q^{17} - 46 q^{18} + 69 q^{19}+ \cdots + 1098 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.52080
6.52080
−2.00000 −4.52080 4.00000 5.00000 9.04159 14.0000 −8.00000 −6.56239 −10.0000
1.2 −2.00000 7.52080 4.00000 5.00000 −15.0416 14.0000 −8.00000 29.5624 −10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 170.4.a.d 2
3.b odd 2 1 1530.4.a.t 2
4.b odd 2 1 1360.4.a.k 2
5.b even 2 1 850.4.a.h 2
5.c odd 4 2 850.4.c.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
170.4.a.d 2 1.a even 1 1 trivial
850.4.a.h 2 5.b even 2 1
850.4.c.f 4 5.c odd 4 2
1360.4.a.k 2 4.b odd 2 1
1530.4.a.t 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 3T_{3} - 34 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(170))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 3T - 34 \) Copy content Toggle raw display
$5$ \( (T - 5)^{2} \) Copy content Toggle raw display
$7$ \( (T - 14)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 18T - 1224 \) Copy content Toggle raw display
$13$ \( T^{2} + 3T - 34 \) Copy content Toggle raw display
$17$ \( (T - 17)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 69T - 4936 \) Copy content Toggle raw display
$23$ \( T^{2} - 64T - 13476 \) Copy content Toggle raw display
$29$ \( T^{2} + 43T + 426 \) Copy content Toggle raw display
$31$ \( T^{2} - 239T + 8154 \) Copy content Toggle raw display
$37$ \( T^{2} - 378T + 35576 \) Copy content Toggle raw display
$41$ \( T^{2} - 128T - 10404 \) Copy content Toggle raw display
$43$ \( T^{2} - 846T + 178784 \) Copy content Toggle raw display
$47$ \( T^{2} + 197T - 34704 \) Copy content Toggle raw display
$53$ \( T^{2} - 671T + 45534 \) Copy content Toggle raw display
$59$ \( T^{2} + 815T + 105120 \) Copy content Toggle raw display
$61$ \( T^{2} - 159T - 60706 \) Copy content Toggle raw display
$67$ \( T^{2} + 518T + 55336 \) Copy content Toggle raw display
$71$ \( T^{2} + 477T + 1746 \) Copy content Toggle raw display
$73$ \( T^{2} + 233T - 159014 \) Copy content Toggle raw display
$79$ \( T^{2} - 350 T - 1333680 \) Copy content Toggle raw display
$83$ \( T^{2} - 392T - 19584 \) Copy content Toggle raw display
$89$ \( T^{2} + 1747 T + 580266 \) Copy content Toggle raw display
$97$ \( T^{2} - 433 T - 1691714 \) Copy content Toggle raw display
show more
show less