Properties

Label 17.5
Level 17
Weight 5
Dimension 40
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 120
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 17 \)
Weight: \( k \) = \( 5 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(120\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(17))\).

Total New Old
Modular forms 56 56 0
Cusp forms 40 40 0
Eisenstein series 16 16 0

Trace form

\( 40 q - 8 q^{2} - 8 q^{3} - 8 q^{4} - 8 q^{5} - 8 q^{6} - 8 q^{7} - 8 q^{8} - 8 q^{9} + 376 q^{10} + 112 q^{11} - 776 q^{12} - 416 q^{13} - 776 q^{14} - 704 q^{15} + 256 q^{17} + 2032 q^{18} + 688 q^{19}+ \cdots + 6056 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(17))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
17.5.e \(\chi_{17}(3, \cdot)\) 17.5.e.a 40 8