Defining parameters
Level: | \( N \) | \(=\) | \( 17 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 17.d (of order \(8\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
Character field: | \(\Q(\zeta_{8})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(6\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(17, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 20 | 20 | 0 |
Cusp forms | 12 | 12 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(17, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
17.4.d.a | $12$ | $1.003$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(-4\) | \(-4\) | \(-20\) | \(-4\) | \(q+(-\beta _{3}-\beta _{10})q^{2}+\beta _{8}q^{3}+(-\beta _{1}+\cdots)q^{4}+\cdots\) |