Properties

Label 17.4.d
Level $17$
Weight $4$
Character orbit 17.d
Rep. character $\chi_{17}(2,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $12$
Newform subspaces $1$
Sturm bound $6$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 17.d (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 1 \)
Sturm bound: \(6\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(17, [\chi])\).

Total New Old
Modular forms 20 20 0
Cusp forms 12 12 0
Eisenstein series 8 8 0

Trace form

\( 12 q - 4 q^{2} - 4 q^{3} - 20 q^{5} + 20 q^{6} - 4 q^{7} + 28 q^{8} - 64 q^{9} - 116 q^{10} + 40 q^{11} + 56 q^{12} - 132 q^{14} + 244 q^{15} + 184 q^{16} + 52 q^{17} - 12 q^{19} + 572 q^{20} - 620 q^{22}+ \cdots + 3280 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(17, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
17.4.d.a 17.d 17.d $12$ $1.003$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 17.4.d.a \(-4\) \(-4\) \(-20\) \(-4\) $\mathrm{SU}(2)[C_{8}]$ \(q+(-\beta _{3}-\beta _{10})q^{2}+\beta _{8}q^{3}+(-\beta _{1}+\cdots)q^{4}+\cdots\)