Properties

Label 17.4.b.a
Level $17$
Weight $4$
Character orbit 17.b
Analytic conductor $1.003$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [17,4,Mod(16,17)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("17.16"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(17, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 17.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00303247010\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.4669632.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 74x^{2} + 1072 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - 1) q^{2} + \beta_1 q^{3} + ( - \beta_{2} + 1) q^{4} - \beta_{3} q^{5} + (\beta_{3} - 2 \beta_1) q^{6} + (\beta_{3} - \beta_1) q^{7} + ( - 7 \beta_{2} - 1) q^{8} + (6 \beta_{2} - 13) q^{9}+ \cdots + (42 \beta_{3} - 133 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 2 q^{4} - 18 q^{8} - 40 q^{9} + 140 q^{13} + 24 q^{15} - 238 q^{16} + 112 q^{17} + 218 q^{18} - 112 q^{19} + 124 q^{21} - 460 q^{25} - 532 q^{26} + 912 q^{30} + 494 q^{32} - 1036 q^{33}+ \cdots + 306 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 74x^{2} + 1072 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} + 40 ) / 6 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 46\nu ) / 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 6\beta_{2} - 40 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 6\beta_{3} - 46\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/17\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
16.1
7.36435i
7.36435i
4.44593i
4.44593i
−3.37228 7.36435i 3.37228 10.1060i 24.8347i 17.4703i 15.6060 −27.2337 34.0802i
16.2 −3.37228 7.36435i 3.37228 10.1060i 24.8347i 17.4703i 15.6060 −27.2337 34.0802i
16.3 2.37228 4.44593i −2.37228 19.4389i 10.5470i 14.9929i −24.6060 7.23369 46.1145i
16.4 2.37228 4.44593i −2.37228 19.4389i 10.5470i 14.9929i −24.6060 7.23369 46.1145i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 17.4.b.a 4
3.b odd 2 1 153.4.d.b 4
4.b odd 2 1 272.4.b.d 4
5.b even 2 1 425.4.d.c 4
5.c odd 4 2 425.4.c.c 8
17.b even 2 1 inner 17.4.b.a 4
17.c even 4 2 289.4.a.e 4
51.c odd 2 1 153.4.d.b 4
68.d odd 2 1 272.4.b.d 4
85.c even 2 1 425.4.d.c 4
85.g odd 4 2 425.4.c.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
17.4.b.a 4 1.a even 1 1 trivial
17.4.b.a 4 17.b even 2 1 inner
153.4.d.b 4 3.b odd 2 1
153.4.d.b 4 51.c odd 2 1
272.4.b.d 4 4.b odd 2 1
272.4.b.d 4 68.d odd 2 1
289.4.a.e 4 17.c even 4 2
425.4.c.c 8 5.c odd 4 2
425.4.c.c 8 85.g odd 4 2
425.4.d.c 4 5.b even 2 1
425.4.d.c 4 85.c even 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(17, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T - 8)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 74T^{2} + 1072 \) Copy content Toggle raw display
$5$ \( T^{4} + 480 T^{2} + 38592 \) Copy content Toggle raw display
$7$ \( T^{4} + 530 T^{2} + 68608 \) Copy content Toggle raw display
$11$ \( T^{4} + 3626 T^{2} + 2573872 \) Copy content Toggle raw display
$13$ \( (T^{2} - 70 T - 392)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 112 T^{3} + \cdots + 24137569 \) Copy content Toggle raw display
$19$ \( (T + 28)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + 28322 T^{2} + 10295488 \) Copy content Toggle raw display
$29$ \( T^{4} + 23520 T^{2} + 92659392 \) Copy content Toggle raw display
$31$ \( T^{4} + 4274 T^{2} + 4390912 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 1245754048 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 2799480832 \) Copy content Toggle raw display
$43$ \( (T^{2} + 260 T - 30752)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 476 T + 50176)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 288 T - 49092)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 588 T - 75264)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 7146728128 \) Copy content Toggle raw display
$67$ \( (T^{2} + 120 T - 30192)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 52626 T^{2} + 92659392 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 647466319872 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 70925616832 \) Copy content Toggle raw display
$83$ \( (T^{2} + 1428 T + 451584)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 994 T + 232456)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 16878665728 \) Copy content Toggle raw display
show more
show less