Properties

Label 17.4.a.b
Level $17$
Weight $4$
Character orbit 17.a
Self dual yes
Analytic conductor $1.003$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [17,4,Mod(1,17)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(17, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("17.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 17.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.00303247010\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.2636.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 14x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} + \beta_1) q^{2} + (2 \beta_{2} - \beta_1 + 2) q^{3} + ( - \beta_{2} - 3 \beta_1 + 8) q^{4} + (2 \beta_{2} - 2) q^{5} + (2 \beta_{2} + 6 \beta_1 - 24) q^{6} + ( - 4 \beta_{2} - \beta_1 + 6) q^{7} + ( - 9 \beta_{2} + 5 \beta_1 - 16) q^{8} + ( - 2 \beta_{2} - 8 \beta_1 + 19) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{2} + \beta_1) q^{2} + (2 \beta_{2} - \beta_1 + 2) q^{3} + ( - \beta_{2} - 3 \beta_1 + 8) q^{4} + (2 \beta_{2} - 2) q^{5} + (2 \beta_{2} + 6 \beta_1 - 24) q^{6} + ( - 4 \beta_{2} - \beta_1 + 6) q^{7} + ( - 9 \beta_{2} + 5 \beta_1 - 16) q^{8} + ( - 2 \beta_{2} - 8 \beta_1 + 19) q^{9} + (8 \beta_{2} - 16) q^{10} + ( - 2 \beta_{2} + 11 \beta_1 - 10) q^{11} + (26 \beta_{2} - 26 \beta_1 + 16) q^{12} + (6 \beta_{2} + 8 \beta_1 + 12) q^{13} + ( - 20 \beta_{2} + 4 \beta_1 + 24) q^{14} + ( - 12 \beta_{2} + 2 \beta_1 + 32) q^{15} + (7 \beta_{2} - 11 \beta_1 + 48) q^{16} - 17 q^{17} + ( - 41 \beta_{2} + 33 \beta_1 - 48) q^{18} + ( - 8 \beta_{2} + 22 \beta_1 + 24) q^{19} + (24 \beta_{2} - 8 \beta_1 - 48) q^{20} + (30 \beta_{2} - 12 \beta_1 - 54) q^{21} + (26 \beta_{2} - 34 \beta_1 + 104) q^{22} + ( - 4 \beta_{2} - 39 \beta_1 + 46) q^{23} + ( - 6 \beta_{2} + 46 \beta_1 - 224) q^{24} + ( - 20 \beta_{2} + 4 \beta_1 - 81) q^{25} + (22 \beta_{2} + 2 \beta_1 + 16) q^{26} + (8 \beta_{2} - 40 \beta_1 - 4) q^{27} + ( - 44 \beta_{2} + 4 \beta_1 + 144) q^{28} + (30 \beta_{2} - 16 \beta_1 - 142) q^{29} + ( - 64 \beta_{2} + 16 \beta_1 + 112) q^{30} + (16 \beta_{2} + 39 \beta_1 + 82) q^{31} + (23 \beta_{2} + 37 \beta_1 - 16) q^{32} + ( - 34 \beta_{2} + 76 \beta_1 - 122) q^{33} + (17 \beta_{2} - 17 \beta_1) q^{34} + (44 \beta_{2} - 10 \beta_1 - 96) q^{35} + (7 \beta_{2} - 91 \beta_1 + 440) q^{36} + ( - 50 \beta_{2} - 28 \beta_1 + 102) q^{37} + ( - 4 \beta_{2} - 28 \beta_1 + 240) q^{38} + ( - 16 \beta_{2} + 36 \beta_1 + 84) q^{39} + (40 \beta_{2} - 8 \beta_1 - 128) q^{40} + ( - 60 \beta_{2} - 52 \beta_1 - 118) q^{41} + (120 \beta_{2} - 336) q^{42} + (56 \beta_{2} + 2 \beta_1 + 204) q^{43} + ( - 78 \beta_{2} + 110 \beta_1 - 400) q^{44} + (54 \beta_{2} - 20 \beta_1 - 110) q^{45} + ( - 136 \beta_{2} + 120 \beta_1 - 280) q^{46} + (44 \beta_{2} - 48 \beta_1 + 228) q^{47} + (90 \beta_{2} - 114 \beta_1 + 288) q^{48} + ( - 94 \beta_{2} + 20 \beta_1 - 121) q^{49} + (29 \beta_{2} - 109 \beta_1 + 192) q^{50} + ( - 34 \beta_{2} + 17 \beta_1 - 34) q^{51} + (6 \beta_{2} - 30 \beta_1 - 256) q^{52} + ( - 8 \beta_{2} + 116 \beta_1 + 98) q^{53} + ( - 52 \beta_{2} + 84 \beta_1 - 384) q^{54} + ( - 4 \beta_{2} + 18 \beta_1 + 24) q^{55} + ( - 108 \beta_{2} + 60 \beta_1 + 192) q^{56} + (36 \beta_{2} + 108 \beta_1 - 228) q^{57} + (200 \beta_{2} - 80 \beta_1 - 368) q^{58} + ( - 130 \beta_1 + 212) q^{59} + ( - 176 \beta_{2} + 384) q^{60} + (78 \beta_{2} - 64 \beta_1 - 2) q^{61} + (44 \beta_{2} + 20 \beta_1 + 184) q^{62} + ( - 96 \beta_{2} + 9 \beta_1 + 342) q^{63} + (103 \beta_{2} + 21 \beta_1 - 272) q^{64} + ( - 24 \beta_{2} + 28 \beta_1 + 128) q^{65} + (172 \beta_{2} - 308 \beta_1 + 880) q^{66} + ( - 132 \beta_{2} + 24 \beta_1 + 292) q^{67} + (17 \beta_{2} + 51 \beta_1 - 136) q^{68} + (186 \beta_{2} - 280 \beta_1 + 254) q^{69} + (208 \beta_{2} - 32 \beta_1 - 432) q^{70} + (72 \beta_{2} + 185 \beta_1 - 110) q^{71} + ( - 273 \beta_{2} + 365 \beta_1 - 400) q^{72} + ( - 16 \beta_{2} + 16 \beta_1 + 274) q^{73} + ( - 308 \beta_{2} + 108 \beta_1 + 176) q^{74} + ( - 90 \beta_{2} + 105 \beta_1 - 546) q^{75} + ( - 244 \beta_{2} + 116 \beta_1 - 384) q^{76} + ( - 18 \beta_{2} - 174) q^{77} + ( - 60 \beta_{2} - 4 \beta_1 + 416) q^{78} + (180 \beta_{2} - 267 \beta_1 - 138) q^{79} + (40 \beta_{2} - 8 \beta_1) q^{80} + (94 \beta_{2} - 20 \beta_1 - 137) q^{81} + ( - 166 \beta_{2} - 74 \beta_1 + 64) q^{82} + (128 \beta_{2} + 82 \beta_1 - 756) q^{83} + (456 \beta_{2} - 120 \beta_1 - 528) q^{84} + ( - 34 \beta_{2} + 34) q^{85} + ( - 32 \beta_{2} + 256 \beta_1 - 432) q^{86} + ( - 372 \beta_{2} + 46 \beta_1 + 352) q^{87} + (178 \beta_{2} - 426 \beta_1 + 672) q^{88} + (110 \beta_{2} - 276 \beta_1 - 20) q^{89} + (232 \beta_{2} - 16 \beta_1 - 592) q^{90} + (44 \beta_{2} - 64 \beta_1 - 324) q^{91} + (144 \beta_{2} - 344 \beta_1 + 1680) q^{92} + (22 \beta_{2} + 152 \beta_1 + 218) q^{93} + ( - 192 \beta_{2} + 368 \beta_1 - 736) q^{94} + (112 \beta_{2} + 28 \beta_1 - 120) q^{95} + ( - 198 \beta_{2} + 238 \beta_1 + 160) q^{96} + (120 \beta_{2} + 140 \beta_1 - 50) q^{97} + ( - 121 \beta_{2} - 255 \beta_1 + 912) q^{98} + ( - 206 \beta_{2} + 281 \beta_1 - 1042) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + 4 q^{3} + 25 q^{4} - 8 q^{5} - 74 q^{6} + 22 q^{7} - 39 q^{8} + 59 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + q^{2} + 4 q^{3} + 25 q^{4} - 8 q^{5} - 74 q^{6} + 22 q^{7} - 39 q^{8} + 59 q^{9} - 56 q^{10} - 28 q^{11} + 22 q^{12} + 30 q^{13} + 92 q^{14} + 108 q^{15} + 137 q^{16} - 51 q^{17} - 103 q^{18} + 80 q^{19} - 168 q^{20} - 192 q^{21} + 286 q^{22} + 142 q^{23} - 666 q^{24} - 223 q^{25} + 26 q^{26} - 20 q^{27} + 476 q^{28} - 456 q^{29} + 400 q^{30} + 230 q^{31} - 71 q^{32} - 332 q^{33} - 17 q^{34} - 332 q^{35} + 1313 q^{36} + 356 q^{37} + 724 q^{38} + 268 q^{39} - 424 q^{40} - 294 q^{41} - 1128 q^{42} + 556 q^{43} - 1122 q^{44} - 384 q^{45} - 704 q^{46} + 640 q^{47} + 774 q^{48} - 269 q^{49} + 547 q^{50} - 68 q^{51} - 774 q^{52} + 302 q^{53} - 1100 q^{54} + 76 q^{55} + 684 q^{56} - 720 q^{57} - 1304 q^{58} + 636 q^{59} + 1328 q^{60} - 84 q^{61} + 508 q^{62} + 1122 q^{63} - 919 q^{64} + 408 q^{65} + 2468 q^{66} + 1008 q^{67} - 425 q^{68} + 576 q^{69} - 1504 q^{70} - 402 q^{71} - 927 q^{72} + 838 q^{73} + 836 q^{74} - 1548 q^{75} - 908 q^{76} - 504 q^{77} + 1308 q^{78} - 594 q^{79} - 40 q^{80} - 505 q^{81} + 358 q^{82} - 2396 q^{83} - 2040 q^{84} + 136 q^{85} - 1264 q^{86} + 1428 q^{87} + 1838 q^{88} - 170 q^{89} - 2008 q^{90} - 1016 q^{91} + 4896 q^{92} + 632 q^{93} - 2016 q^{94} - 472 q^{95} + 678 q^{96} - 270 q^{97} + 2857 q^{98} - 2920 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 14x - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - 10 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} + 10 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.58966
3.87707
−0.287410
−5.03251 8.47535 17.3261 0.885690 −42.6523 3.81828 −46.9339 44.8316 −4.45724
1.2 1.36122 3.15463 −6.14708 3.03171 4.29415 −7.94049 −19.2573 −17.0483 4.12682
1.3 4.67129 −7.62999 13.8209 −11.9174 −35.6419 26.1222 27.1912 31.2167 −55.6696
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 17.4.a.b 3
3.b odd 2 1 153.4.a.g 3
4.b odd 2 1 272.4.a.h 3
5.b even 2 1 425.4.a.g 3
5.c odd 4 2 425.4.b.f 6
7.b odd 2 1 833.4.a.d 3
8.b even 2 1 1088.4.a.v 3
8.d odd 2 1 1088.4.a.x 3
11.b odd 2 1 2057.4.a.e 3
12.b even 2 1 2448.4.a.bi 3
17.b even 2 1 289.4.a.b 3
17.c even 4 2 289.4.b.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
17.4.a.b 3 1.a even 1 1 trivial
153.4.a.g 3 3.b odd 2 1
272.4.a.h 3 4.b odd 2 1
289.4.a.b 3 17.b even 2 1
289.4.b.b 6 17.c even 4 2
425.4.a.g 3 5.b even 2 1
425.4.b.f 6 5.c odd 4 2
833.4.a.d 3 7.b odd 2 1
1088.4.a.v 3 8.b even 2 1
1088.4.a.x 3 8.d odd 2 1
2057.4.a.e 3 11.b odd 2 1
2448.4.a.bi 3 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - T_{2}^{2} - 24T_{2} + 32 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(17))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - T^{2} + \cdots + 32 \) Copy content Toggle raw display
$3$ \( T^{3} - 4 T^{2} + \cdots + 204 \) Copy content Toggle raw display
$5$ \( T^{3} + 8 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$7$ \( T^{3} - 22 T^{2} + \cdots + 792 \) Copy content Toggle raw display
$11$ \( T^{3} + 28 T^{2} + \cdots - 4692 \) Copy content Toggle raw display
$13$ \( T^{3} - 30 T^{2} + \cdots - 9392 \) Copy content Toggle raw display
$17$ \( (T + 17)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} - 80 T^{2} + \cdots + 340128 \) Copy content Toggle raw display
$23$ \( T^{3} - 142 T^{2} + \cdots + 1600544 \) Copy content Toggle raw display
$29$ \( T^{3} + 456 T^{2} + \cdots + 1518624 \) Copy content Toggle raw display
$31$ \( T^{3} - 230 T^{2} + \cdots - 81608 \) Copy content Toggle raw display
$37$ \( T^{3} - 356 T^{2} + \cdots + 6176752 \) Copy content Toggle raw display
$41$ \( T^{3} + 294 T^{2} + \cdots - 1638744 \) Copy content Toggle raw display
$43$ \( T^{3} - 556 T^{2} + \cdots + 7270272 \) Copy content Toggle raw display
$47$ \( T^{3} - 640 T^{2} + \cdots - 1671168 \) Copy content Toggle raw display
$53$ \( T^{3} - 302 T^{2} + \cdots + 18162072 \) Copy content Toggle raw display
$59$ \( T^{3} - 636 T^{2} + \cdots + 49419072 \) Copy content Toggle raw display
$61$ \( T^{3} + 84 T^{2} + \cdots - 6792784 \) Copy content Toggle raw display
$67$ \( T^{3} - 1008 T^{2} + \cdots - 765952 \) Copy content Toggle raw display
$71$ \( T^{3} + 402 T^{2} + \cdots - 274866016 \) Copy content Toggle raw display
$73$ \( T^{3} - 838 T^{2} + \cdots - 19957512 \) Copy content Toggle raw display
$79$ \( T^{3} + 594 T^{2} + \cdots - 742135824 \) Copy content Toggle raw display
$83$ \( T^{3} + 2396 T^{2} + \cdots + 142080704 \) Copy content Toggle raw display
$89$ \( T^{3} + 170 T^{2} + \cdots - 446571376 \) Copy content Toggle raw display
$97$ \( T^{3} + 270 T^{2} + \cdots - 206623000 \) Copy content Toggle raw display
show more
show less