Properties

Label 17.2.d
Level $17$
Weight $2$
Character orbit 17.d
Rep. character $\chi_{17}(2,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $4$
Newform subspaces $1$
Sturm bound $3$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 17.d (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 1 \)
Sturm bound: \(3\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(17, [\chi])\).

Total New Old
Modular forms 12 12 0
Cusp forms 4 4 0
Eisenstein series 8 8 0

Trace form

\( 4 q - 4 q^{2} - 4 q^{3} + 4 q^{6} - 4 q^{7} + 4 q^{8} + 8 q^{9} + 4 q^{10} - 4 q^{11} - 4 q^{12} + 4 q^{14} - 8 q^{15} - 12 q^{16} - 12 q^{18} + 8 q^{19} + 4 q^{20} + 12 q^{22} + 4 q^{23} + 12 q^{24} - 4 q^{25}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(17, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
17.2.d.a 17.d 17.d $4$ $0.136$ \(\Q(\zeta_{8})\) None 17.2.d.a \(-4\) \(-4\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{8}]$ \(q+(-1+\zeta_{8}^{2}-\zeta_{8}^{3})q^{2}+(-1-\zeta_{8}+\cdots)q^{3}+\cdots\)