Properties

Label 17.2.a
Level $17$
Weight $2$
Character orbit 17.a
Rep. character $\chi_{17}(1,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $3$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 17.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(3\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(17))\).

Total New Old
Modular forms 2 2 0
Cusp forms 1 1 0
Eisenstein series 1 1 0

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(17\)Dim
\(-\)\(1\)

Trace form

\( q - q^{2} - q^{4} - 2 q^{5} + 4 q^{7} + 3 q^{8} - 3 q^{9} + 2 q^{10} - 2 q^{13} - 4 q^{14} - q^{16} + q^{17} + 3 q^{18} - 4 q^{19} + 2 q^{20} + 4 q^{23} - q^{25} + 2 q^{26} - 4 q^{28} + 6 q^{29} + 4 q^{31}+ \cdots - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 17
17.2.a.a 17.a 1.a $1$ $0.136$ \(\Q\) None 17.2.a.a \(-1\) \(0\) \(-2\) \(4\) $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{4}-2q^{5}+4q^{7}+3q^{8}-3q^{9}+\cdots\)