Defining parameters
Level: | \( N \) | = | \( 17 \) |
Weight: | \( k \) | = | \( 2 \) |
Character orbit: | \([\chi]\) | = | 17.a (trivial) |
Character field: | \(\Q\) | ||
Newforms: | \( 1 \) | ||
Sturm bound: | \(3\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(17))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2 | 2 | 0 |
Cusp forms | 1 | 1 | 0 |
Eisenstein series | 1 | 1 | 0 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators.
\(17\) | Dim. |
---|---|
\(-\) | \(1\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\) into irreducible Hecke orbits
Label | Dim. | \(A\) | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | 17 | |||||||
17.2.a.a | \(1\) | \(0.136\) | \(\Q\) | None | \(-1\) | \(0\) | \(-2\) | \(4\) | \(-\) | \(q-q^{2}-q^{4}-2q^{5}+4q^{7}+3q^{8}-3q^{9}+\cdots\) |