Properties

Label 17.2.a
Level 17
Weight 2
Character orbit a
Rep. character \(\chi_{17}(1,\cdot)\)
Character field \(\Q\)
Dimension 1
Newforms 1
Sturm bound 3
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 17 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 17.a (trivial)
Character field: \(\Q\)
Newforms: \( 1 \)
Sturm bound: \(3\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(17))\).

Total New Old
Modular forms 2 2 0
Cusp forms 1 1 0
Eisenstein series 1 1 0

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators.

\(17\)Dim.
\(-\)\(1\)

Trace form

\( q - q^{2} - q^{4} - 2q^{5} + 4q^{7} + 3q^{8} - 3q^{9} + O(q^{10}) \) \( q - q^{2} - q^{4} - 2q^{5} + 4q^{7} + 3q^{8} - 3q^{9} + 2q^{10} - 2q^{13} - 4q^{14} - q^{16} + q^{17} + 3q^{18} - 4q^{19} + 2q^{20} + 4q^{23} - q^{25} + 2q^{26} - 4q^{28} + 6q^{29} + 4q^{31} - 5q^{32} - q^{34} - 8q^{35} + 3q^{36} - 2q^{37} + 4q^{38} - 6q^{40} - 6q^{41} + 4q^{43} + 6q^{45} - 4q^{46} + 9q^{49} + q^{50} + 2q^{52} + 6q^{53} + 12q^{56} - 6q^{58} - 12q^{59} - 10q^{61} - 4q^{62} - 12q^{63} + 7q^{64} + 4q^{65} + 4q^{67} - q^{68} + 8q^{70} - 4q^{71} - 9q^{72} - 6q^{73} + 2q^{74} + 4q^{76} + 12q^{79} + 2q^{80} + 9q^{81} + 6q^{82} - 4q^{83} - 2q^{85} - 4q^{86} + 10q^{89} - 6q^{90} - 8q^{91} - 4q^{92} + 8q^{95} + 2q^{97} - 9q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 17
17.2.a.a \(1\) \(0.136\) \(\Q\) None \(-1\) \(0\) \(-2\) \(4\) \(-\) \(q-q^{2}-q^{4}-2q^{5}+4q^{7}+3q^{8}-3q^{9}+\cdots\)