Properties

Label 17.10.b
Level $17$
Weight $10$
Character orbit 17.b
Rep. character $\chi_{17}(16,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $1$
Sturm bound $15$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 17 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 17.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(15\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(17, [\chi])\).

Total New Old
Modular forms 14 14 0
Cusp forms 12 12 0
Eisenstein series 2 2 0

Trace form

\( 12 q + 30 q^{2} + 1874 q^{4} + 23550 q^{8} - 9184 q^{9} - 63204 q^{13} - 243480 q^{15} + 38978 q^{16} - 105960 q^{17} + 547706 q^{18} + 1110672 q^{19} - 172580 q^{21} - 4441796 q^{25} + 1336332 q^{26} - 500496 q^{30}+ \cdots - 152046078 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(17, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
17.10.b.a 17.b 17.b $12$ $8.756$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 17.10.b.a \(30\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(2+\beta _{2})q^{2}+\beta _{1}q^{3}+(154+4\beta _{2}+\cdots)q^{4}+\cdots\)