Properties

Label 17.10
Level 17
Weight 10
Dimension 100
Nonzero newspaces 4
Newform subspaces 5
Sturm bound 240
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 17 \)
Weight: \( k \) = \( 10 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 5 \)
Sturm bound: \(240\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(17))\).

Total New Old
Modular forms 116 114 2
Cusp forms 100 100 0
Eisenstein series 16 14 2

Trace form

\( 100 q - 8 q^{2} - 8 q^{3} - 8 q^{4} - 8 q^{5} - 8 q^{6} - 8 q^{7} - 8 q^{8} - 8 q^{9} - 30792 q^{10} - 30136 q^{11} - 448520 q^{12} + 188888 q^{13} + 485112 q^{14} - 483512 q^{15} - 1835024 q^{16} - 308872 q^{17}+ \cdots - 7407555576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(17))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
17.10.a \(\chi_{17}(1, \cdot)\) 17.10.a.a 5 1
17.10.a.b 7
17.10.b \(\chi_{17}(16, \cdot)\) 17.10.b.a 12 1
17.10.c \(\chi_{17}(4, \cdot)\) 17.10.c.a 24 2
17.10.d \(\chi_{17}(2, \cdot)\) 17.10.d.a 52 4