Properties

Label 1690.2.l.f.361.2
Level $1690$
Weight $2$
Character 1690.361
Analytic conductor $13.495$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(361,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,0,0,0,0,6,2,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1690.361
Dual form 1690.2.l.f.1161.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +1.00000i q^{5} -1.00000i q^{8} +(1.50000 - 2.59808i) q^{9} +(0.500000 + 0.866025i) q^{10} +(-0.500000 - 0.866025i) q^{16} +(1.00000 - 1.73205i) q^{17} -3.00000i q^{18} +(6.92820 + 4.00000i) q^{19} +(0.866025 + 0.500000i) q^{20} +(-2.00000 - 3.46410i) q^{23} -1.00000 q^{25} +(1.00000 + 1.73205i) q^{29} -4.00000i q^{31} +(-0.866025 - 0.500000i) q^{32} -2.00000i q^{34} +(-1.50000 - 2.59808i) q^{36} +(-5.19615 + 3.00000i) q^{37} +8.00000 q^{38} +1.00000 q^{40} +(8.66025 - 5.00000i) q^{41} +(2.59808 + 1.50000i) q^{45} +(-3.46410 - 2.00000i) q^{46} -8.00000i q^{47} +(-3.50000 - 6.06218i) q^{49} +(-0.866025 + 0.500000i) q^{50} +6.00000 q^{53} +(1.73205 + 1.00000i) q^{58} +(6.92820 + 4.00000i) q^{59} +(1.00000 - 1.73205i) q^{61} +(-2.00000 - 3.46410i) q^{62} -1.00000 q^{64} +(3.46410 - 2.00000i) q^{67} +(-1.00000 - 1.73205i) q^{68} +(10.3923 + 6.00000i) q^{71} +(-2.59808 - 1.50000i) q^{72} -10.0000i q^{73} +(-3.00000 + 5.19615i) q^{74} +(6.92820 - 4.00000i) q^{76} -8.00000 q^{79} +(0.866025 - 0.500000i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(5.00000 - 8.66025i) q^{82} +12.0000i q^{83} +(1.73205 + 1.00000i) q^{85} +(-8.66025 + 5.00000i) q^{89} +3.00000 q^{90} -4.00000 q^{92} +(-4.00000 - 6.92820i) q^{94} +(-4.00000 + 6.92820i) q^{95} +(12.1244 + 7.00000i) q^{97} +(-6.06218 - 3.50000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 6 q^{9} + 2 q^{10} - 2 q^{16} + 4 q^{17} - 8 q^{23} - 4 q^{25} + 4 q^{29} - 6 q^{36} + 32 q^{38} + 4 q^{40} - 14 q^{49} + 24 q^{53} + 4 q^{61} - 8 q^{62} - 4 q^{64} - 4 q^{68} - 12 q^{74}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) 0.500000 + 0.866025i 0.158114 + 0.273861i
\(11\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.00000 1.73205i 0.242536 0.420084i −0.718900 0.695113i \(-0.755354\pi\)
0.961436 + 0.275029i \(0.0886875\pi\)
\(18\) 3.00000i 0.707107i
\(19\) 6.92820 + 4.00000i 1.58944 + 0.917663i 0.993399 + 0.114708i \(0.0365932\pi\)
0.596040 + 0.802955i \(0.296740\pi\)
\(20\) 0.866025 + 0.500000i 0.193649 + 0.111803i
\(21\) 0 0
\(22\) 0 0
\(23\) −2.00000 3.46410i −0.417029 0.722315i 0.578610 0.815604i \(-0.303595\pi\)
−0.995639 + 0.0932891i \(0.970262\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.00000 + 1.73205i 0.185695 + 0.321634i 0.943811 0.330487i \(-0.107213\pi\)
−0.758115 + 0.652121i \(0.773880\pi\)
\(30\) 0 0
\(31\) 4.00000i 0.718421i −0.933257 0.359211i \(-0.883046\pi\)
0.933257 0.359211i \(-0.116954\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 0 0
\(34\) 2.00000i 0.342997i
\(35\) 0 0
\(36\) −1.50000 2.59808i −0.250000 0.433013i
\(37\) −5.19615 + 3.00000i −0.854242 + 0.493197i −0.862080 0.506772i \(-0.830838\pi\)
0.00783774 + 0.999969i \(0.497505\pi\)
\(38\) 8.00000 1.29777
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) 8.66025 5.00000i 1.35250 0.780869i 0.363905 0.931436i \(-0.381443\pi\)
0.988600 + 0.150567i \(0.0481100\pi\)
\(42\) 0 0
\(43\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(44\) 0 0
\(45\) 2.59808 + 1.50000i 0.387298 + 0.223607i
\(46\) −3.46410 2.00000i −0.510754 0.294884i
\(47\) 8.00000i 1.16692i −0.812142 0.583460i \(-0.801699\pi\)
0.812142 0.583460i \(-0.198301\pi\)
\(48\) 0 0
\(49\) −3.50000 6.06218i −0.500000 0.866025i
\(50\) −0.866025 + 0.500000i −0.122474 + 0.0707107i
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 1.73205 + 1.00000i 0.227429 + 0.131306i
\(59\) 6.92820 + 4.00000i 0.901975 + 0.520756i 0.877841 0.478953i \(-0.158984\pi\)
0.0241347 + 0.999709i \(0.492317\pi\)
\(60\) 0 0
\(61\) 1.00000 1.73205i 0.128037 0.221766i −0.794879 0.606768i \(-0.792466\pi\)
0.922916 + 0.385002i \(0.125799\pi\)
\(62\) −2.00000 3.46410i −0.254000 0.439941i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 3.46410 2.00000i 0.423207 0.244339i −0.273241 0.961946i \(-0.588096\pi\)
0.696449 + 0.717607i \(0.254762\pi\)
\(68\) −1.00000 1.73205i −0.121268 0.210042i
\(69\) 0 0
\(70\) 0 0
\(71\) 10.3923 + 6.00000i 1.23334 + 0.712069i 0.967725 0.252010i \(-0.0810916\pi\)
0.265615 + 0.964079i \(0.414425\pi\)
\(72\) −2.59808 1.50000i −0.306186 0.176777i
\(73\) 10.0000i 1.17041i −0.810885 0.585206i \(-0.801014\pi\)
0.810885 0.585206i \(-0.198986\pi\)
\(74\) −3.00000 + 5.19615i −0.348743 + 0.604040i
\(75\) 0 0
\(76\) 6.92820 4.00000i 0.794719 0.458831i
\(77\) 0 0
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0.866025 0.500000i 0.0968246 0.0559017i
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 5.00000 8.66025i 0.552158 0.956365i
\(83\) 12.0000i 1.31717i 0.752506 + 0.658586i \(0.228845\pi\)
−0.752506 + 0.658586i \(0.771155\pi\)
\(84\) 0 0
\(85\) 1.73205 + 1.00000i 0.187867 + 0.108465i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −8.66025 + 5.00000i −0.917985 + 0.529999i −0.882992 0.469389i \(-0.844474\pi\)
−0.0349934 + 0.999388i \(0.511141\pi\)
\(90\) 3.00000 0.316228
\(91\) 0 0
\(92\) −4.00000 −0.417029
\(93\) 0 0
\(94\) −4.00000 6.92820i −0.412568 0.714590i
\(95\) −4.00000 + 6.92820i −0.410391 + 0.710819i
\(96\) 0 0
\(97\) 12.1244 + 7.00000i 1.23104 + 0.710742i 0.967247 0.253837i \(-0.0816925\pi\)
0.263795 + 0.964579i \(0.415026\pi\)
\(98\) −6.06218 3.50000i −0.612372 0.353553i
\(99\) 0 0
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) 3.00000 + 5.19615i 0.298511 + 0.517036i 0.975796 0.218685i \(-0.0701767\pi\)
−0.677284 + 0.735721i \(0.736843\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 5.19615 3.00000i 0.504695 0.291386i
\(107\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(108\) 0 0
\(109\) 2.00000i 0.191565i −0.995402 0.0957826i \(-0.969465\pi\)
0.995402 0.0957826i \(-0.0305354\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.00000 12.1244i 0.658505 1.14056i −0.322498 0.946570i \(-0.604523\pi\)
0.981003 0.193993i \(-0.0621440\pi\)
\(114\) 0 0
\(115\) 3.46410 2.00000i 0.323029 0.186501i
\(116\) 2.00000 0.185695
\(117\) 0 0
\(118\) 8.00000 0.736460
\(119\) 0 0
\(120\) 0 0
\(121\) −5.50000 + 9.52628i −0.500000 + 0.866025i
\(122\) 2.00000i 0.181071i
\(123\) 0 0
\(124\) −3.46410 2.00000i −0.311086 0.179605i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −10.0000 17.3205i −0.887357 1.53695i −0.842989 0.537931i \(-0.819206\pi\)
−0.0443678 0.999015i \(-0.514127\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 2.00000 3.46410i 0.172774 0.299253i
\(135\) 0 0
\(136\) −1.73205 1.00000i −0.148522 0.0857493i
\(137\) −5.19615 3.00000i −0.443937 0.256307i 0.261329 0.965250i \(-0.415839\pi\)
−0.705266 + 0.708942i \(0.749173\pi\)
\(138\) 0 0
\(139\) −2.00000 + 3.46410i −0.169638 + 0.293821i −0.938293 0.345843i \(-0.887593\pi\)
0.768655 + 0.639664i \(0.220926\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 12.0000 1.00702
\(143\) 0 0
\(144\) −3.00000 −0.250000
\(145\) −1.73205 + 1.00000i −0.143839 + 0.0830455i
\(146\) −5.00000 8.66025i −0.413803 0.716728i
\(147\) 0 0
\(148\) 6.00000i 0.493197i
\(149\) −5.19615 3.00000i −0.425685 0.245770i 0.271821 0.962348i \(-0.412374\pi\)
−0.697507 + 0.716578i \(0.745707\pi\)
\(150\) 0 0
\(151\) 20.0000i 1.62758i 0.581161 + 0.813788i \(0.302599\pi\)
−0.581161 + 0.813788i \(0.697401\pi\)
\(152\) 4.00000 6.92820i 0.324443 0.561951i
\(153\) −3.00000 5.19615i −0.242536 0.420084i
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) −18.0000 −1.43656 −0.718278 0.695756i \(-0.755069\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(158\) −6.92820 + 4.00000i −0.551178 + 0.318223i
\(159\) 0 0
\(160\) 0.500000 0.866025i 0.0395285 0.0684653i
\(161\) 0 0
\(162\) −7.79423 4.50000i −0.612372 0.353553i
\(163\) 17.3205 + 10.0000i 1.35665 + 0.783260i 0.989170 0.146772i \(-0.0468885\pi\)
0.367477 + 0.930033i \(0.380222\pi\)
\(164\) 10.0000i 0.780869i
\(165\) 0 0
\(166\) 6.00000 + 10.3923i 0.465690 + 0.806599i
\(167\) −13.8564 + 8.00000i −1.07224 + 0.619059i −0.928793 0.370599i \(-0.879152\pi\)
−0.143448 + 0.989658i \(0.545819\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 2.00000 0.153393
\(171\) 20.7846 12.0000i 1.58944 0.917663i
\(172\) 0 0
\(173\) −9.00000 + 15.5885i −0.684257 + 1.18517i 0.289412 + 0.957205i \(0.406540\pi\)
−0.973670 + 0.227964i \(0.926793\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −5.00000 + 8.66025i −0.374766 + 0.649113i
\(179\) 2.00000 + 3.46410i 0.149487 + 0.258919i 0.931038 0.364922i \(-0.118904\pi\)
−0.781551 + 0.623841i \(0.785571\pi\)
\(180\) 2.59808 1.50000i 0.193649 0.111803i
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −3.46410 + 2.00000i −0.255377 + 0.147442i
\(185\) −3.00000 5.19615i −0.220564 0.382029i
\(186\) 0 0
\(187\) 0 0
\(188\) −6.92820 4.00000i −0.505291 0.291730i
\(189\) 0 0
\(190\) 8.00000i 0.580381i
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) 0 0
\(193\) −15.5885 + 9.00000i −1.12208 + 0.647834i −0.941932 0.335805i \(-0.890992\pi\)
−0.180150 + 0.983639i \(0.557658\pi\)
\(194\) 14.0000 1.00514
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) −22.5167 + 13.0000i −1.60425 + 0.926212i −0.613621 + 0.789601i \(0.710288\pi\)
−0.990625 + 0.136611i \(0.956379\pi\)
\(198\) 0 0
\(199\) 12.0000 20.7846i 0.850657 1.47338i −0.0299585 0.999551i \(-0.509538\pi\)
0.880616 0.473831i \(-0.157129\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) 0 0
\(202\) 5.19615 + 3.00000i 0.365600 + 0.211079i
\(203\) 0 0
\(204\) 0 0
\(205\) 5.00000 + 8.66025i 0.349215 + 0.604858i
\(206\) 3.46410 2.00000i 0.241355 0.139347i
\(207\) −12.0000 −0.834058
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −2.00000 3.46410i −0.137686 0.238479i 0.788935 0.614477i \(-0.210633\pi\)
−0.926620 + 0.375999i \(0.877300\pi\)
\(212\) 3.00000 5.19615i 0.206041 0.356873i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −1.00000 1.73205i −0.0677285 0.117309i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −6.92820 + 4.00000i −0.463947 + 0.267860i −0.713702 0.700449i \(-0.752983\pi\)
0.249756 + 0.968309i \(0.419650\pi\)
\(224\) 0 0
\(225\) −1.50000 + 2.59808i −0.100000 + 0.173205i
\(226\) 14.0000i 0.931266i
\(227\) −17.3205 10.0000i −1.14960 0.663723i −0.200812 0.979630i \(-0.564358\pi\)
−0.948790 + 0.315906i \(0.897691\pi\)
\(228\) 0 0
\(229\) 10.0000i 0.660819i 0.943838 + 0.330409i \(0.107187\pi\)
−0.943838 + 0.330409i \(0.892813\pi\)
\(230\) 2.00000 3.46410i 0.131876 0.228416i
\(231\) 0 0
\(232\) 1.73205 1.00000i 0.113715 0.0656532i
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 8.00000 0.521862
\(236\) 6.92820 4.00000i 0.450988 0.260378i
\(237\) 0 0
\(238\) 0 0
\(239\) 20.0000i 1.29369i 0.762620 + 0.646846i \(0.223912\pi\)
−0.762620 + 0.646846i \(0.776088\pi\)
\(240\) 0 0
\(241\) 1.73205 + 1.00000i 0.111571 + 0.0644157i 0.554747 0.832019i \(-0.312815\pi\)
−0.443176 + 0.896435i \(0.646148\pi\)
\(242\) 11.0000i 0.707107i
\(243\) 0 0
\(244\) −1.00000 1.73205i −0.0640184 0.110883i
\(245\) 6.06218 3.50000i 0.387298 0.223607i
\(246\) 0 0
\(247\) 0 0
\(248\) −4.00000 −0.254000
\(249\) 0 0
\(250\) −0.500000 0.866025i −0.0316228 0.0547723i
\(251\) −14.0000 + 24.2487i −0.883672 + 1.53057i −0.0364441 + 0.999336i \(0.511603\pi\)
−0.847228 + 0.531229i \(0.821730\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −17.3205 10.0000i −1.08679 0.627456i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 1.00000 + 1.73205i 0.0623783 + 0.108042i 0.895528 0.445005i \(-0.146798\pi\)
−0.833150 + 0.553047i \(0.813465\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 3.46410 2.00000i 0.214013 0.123560i
\(263\) 14.0000 + 24.2487i 0.863277 + 1.49524i 0.868748 + 0.495255i \(0.164925\pi\)
−0.00547092 + 0.999985i \(0.501741\pi\)
\(264\) 0 0
\(265\) 6.00000i 0.368577i
\(266\) 0 0
\(267\) 0 0
\(268\) 4.00000i 0.244339i
\(269\) 9.00000 15.5885i 0.548740 0.950445i −0.449622 0.893219i \(-0.648441\pi\)
0.998361 0.0572259i \(-0.0182255\pi\)
\(270\) 0 0
\(271\) 24.2487 14.0000i 1.47300 0.850439i 0.473466 0.880812i \(-0.343003\pi\)
0.999539 + 0.0303728i \(0.00966946\pi\)
\(272\) −2.00000 −0.121268
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) 0 0
\(276\) 0 0
\(277\) 11.0000 19.0526i 0.660926 1.14476i −0.319447 0.947604i \(-0.603497\pi\)
0.980373 0.197153i \(-0.0631696\pi\)
\(278\) 4.00000i 0.239904i
\(279\) −10.3923 6.00000i −0.622171 0.359211i
\(280\) 0 0
\(281\) 22.0000i 1.31241i 0.754583 + 0.656205i \(0.227839\pi\)
−0.754583 + 0.656205i \(0.772161\pi\)
\(282\) 0 0
\(283\) 8.00000 + 13.8564i 0.475551 + 0.823678i 0.999608 0.0280052i \(-0.00891551\pi\)
−0.524057 + 0.851683i \(0.675582\pi\)
\(284\) 10.3923 6.00000i 0.616670 0.356034i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −2.59808 + 1.50000i −0.153093 + 0.0883883i
\(289\) 6.50000 + 11.2583i 0.382353 + 0.662255i
\(290\) −1.00000 + 1.73205i −0.0587220 + 0.101710i
\(291\) 0 0
\(292\) −8.66025 5.00000i −0.506803 0.292603i
\(293\) 5.19615 + 3.00000i 0.303562 + 0.175262i 0.644042 0.764990i \(-0.277256\pi\)
−0.340480 + 0.940252i \(0.610589\pi\)
\(294\) 0 0
\(295\) −4.00000 + 6.92820i −0.232889 + 0.403376i
\(296\) 3.00000 + 5.19615i 0.174371 + 0.302020i
\(297\) 0 0
\(298\) −6.00000 −0.347571
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 10.0000 + 17.3205i 0.575435 + 0.996683i
\(303\) 0 0
\(304\) 8.00000i 0.458831i
\(305\) 1.73205 + 1.00000i 0.0991769 + 0.0572598i
\(306\) −5.19615 3.00000i −0.297044 0.171499i
\(307\) 28.0000i 1.59804i −0.601302 0.799022i \(-0.705351\pi\)
0.601302 0.799022i \(-0.294649\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 3.46410 2.00000i 0.196748 0.113592i
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) −15.5885 + 9.00000i −0.879708 + 0.507899i
\(315\) 0 0
\(316\) −4.00000 + 6.92820i −0.225018 + 0.389742i
\(317\) 2.00000i 0.112331i −0.998421 0.0561656i \(-0.982113\pi\)
0.998421 0.0561656i \(-0.0178875\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.00000i 0.0559017i
\(321\) 0 0
\(322\) 0 0
\(323\) 13.8564 8.00000i 0.770991 0.445132i
\(324\) −9.00000 −0.500000
\(325\) 0 0
\(326\) 20.0000 1.10770
\(327\) 0 0
\(328\) −5.00000 8.66025i −0.276079 0.478183i
\(329\) 0 0
\(330\) 0 0
\(331\) 6.92820 + 4.00000i 0.380808 + 0.219860i 0.678170 0.734905i \(-0.262773\pi\)
−0.297361 + 0.954765i \(0.596107\pi\)
\(332\) 10.3923 + 6.00000i 0.570352 + 0.329293i
\(333\) 18.0000i 0.986394i
\(334\) −8.00000 + 13.8564i −0.437741 + 0.758189i
\(335\) 2.00000 + 3.46410i 0.109272 + 0.189264i
\(336\) 0 0
\(337\) −18.0000 −0.980522 −0.490261 0.871576i \(-0.663099\pi\)
−0.490261 + 0.871576i \(0.663099\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 1.73205 1.00000i 0.0939336 0.0542326i
\(341\) 0 0
\(342\) 12.0000 20.7846i 0.648886 1.12390i
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 18.0000i 0.967686i
\(347\) −16.0000 + 27.7128i −0.858925 + 1.48770i 0.0140303 + 0.999902i \(0.495534\pi\)
−0.872955 + 0.487800i \(0.837799\pi\)
\(348\) 0 0
\(349\) −12.1244 + 7.00000i −0.649002 + 0.374701i −0.788074 0.615581i \(-0.788921\pi\)
0.139072 + 0.990282i \(0.455588\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −25.9808 + 15.0000i −1.38282 + 0.798369i −0.992492 0.122308i \(-0.960970\pi\)
−0.390324 + 0.920677i \(0.627637\pi\)
\(354\) 0 0
\(355\) −6.00000 + 10.3923i −0.318447 + 0.551566i
\(356\) 10.0000i 0.529999i
\(357\) 0 0
\(358\) 3.46410 + 2.00000i 0.183083 + 0.105703i
\(359\) 4.00000i 0.211112i −0.994413 0.105556i \(-0.966338\pi\)
0.994413 0.105556i \(-0.0336622\pi\)
\(360\) 1.50000 2.59808i 0.0790569 0.136931i
\(361\) 22.5000 + 38.9711i 1.18421 + 2.05111i
\(362\) −19.0526 + 11.0000i −1.00138 + 0.578147i
\(363\) 0 0
\(364\) 0 0
\(365\) 10.0000 0.523424
\(366\) 0 0
\(367\) 6.00000 + 10.3923i 0.313197 + 0.542474i 0.979053 0.203607i \(-0.0652665\pi\)
−0.665855 + 0.746081i \(0.731933\pi\)
\(368\) −2.00000 + 3.46410i −0.104257 + 0.180579i
\(369\) 30.0000i 1.56174i
\(370\) −5.19615 3.00000i −0.270135 0.155963i
\(371\) 0 0
\(372\) 0 0
\(373\) −3.00000 + 5.19615i −0.155334 + 0.269047i −0.933181 0.359408i \(-0.882979\pi\)
0.777847 + 0.628454i \(0.216312\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −8.00000 −0.412568
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(380\) 4.00000 + 6.92820i 0.205196 + 0.355409i
\(381\) 0 0
\(382\) 0 0
\(383\) −6.92820 4.00000i −0.354015 0.204390i 0.312437 0.949938i \(-0.398855\pi\)
−0.666452 + 0.745548i \(0.732188\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −9.00000 + 15.5885i −0.458088 + 0.793432i
\(387\) 0 0
\(388\) 12.1244 7.00000i 0.615521 0.355371i
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) −6.06218 + 3.50000i −0.306186 + 0.176777i
\(393\) 0 0
\(394\) −13.0000 + 22.5167i −0.654931 + 1.13437i
\(395\) 8.00000i 0.402524i
\(396\) 0 0
\(397\) −15.5885 9.00000i −0.782362 0.451697i 0.0549046 0.998492i \(-0.482515\pi\)
−0.837267 + 0.546795i \(0.815848\pi\)
\(398\) 24.0000i 1.20301i
\(399\) 0 0
\(400\) 0.500000 + 0.866025i 0.0250000 + 0.0433013i
\(401\) 25.9808 15.0000i 1.29742 0.749064i 0.317460 0.948272i \(-0.397170\pi\)
0.979957 + 0.199207i \(0.0638367\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 6.00000 0.298511
\(405\) 7.79423 4.50000i 0.387298 0.223607i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −22.5167 13.0000i −1.11338 0.642809i −0.173675 0.984803i \(-0.555564\pi\)
−0.939702 + 0.341994i \(0.888898\pi\)
\(410\) 8.66025 + 5.00000i 0.427699 + 0.246932i
\(411\) 0 0
\(412\) 2.00000 3.46410i 0.0985329 0.170664i
\(413\) 0 0
\(414\) −10.3923 + 6.00000i −0.510754 + 0.294884i
\(415\) −12.0000 −0.589057
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 18.0000 + 31.1769i 0.879358 + 1.52309i 0.852047 + 0.523465i \(0.175361\pi\)
0.0273103 + 0.999627i \(0.491306\pi\)
\(420\) 0 0
\(421\) 26.0000i 1.26716i −0.773676 0.633581i \(-0.781584\pi\)
0.773676 0.633581i \(-0.218416\pi\)
\(422\) −3.46410 2.00000i −0.168630 0.0973585i
\(423\) −20.7846 12.0000i −1.01058 0.583460i
\(424\) 6.00000i 0.291386i
\(425\) −1.00000 + 1.73205i −0.0485071 + 0.0840168i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.3923 6.00000i 0.500580 0.289010i −0.228373 0.973574i \(-0.573341\pi\)
0.728953 + 0.684564i \(0.240007\pi\)
\(432\) 0 0
\(433\) 17.0000 29.4449i 0.816968 1.41503i −0.0909384 0.995857i \(-0.528987\pi\)
0.907906 0.419173i \(-0.137680\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.73205 1.00000i −0.0829502 0.0478913i
\(437\) 32.0000i 1.53077i
\(438\) 0 0
\(439\) −12.0000 20.7846i −0.572729 0.991995i −0.996284 0.0861252i \(-0.972552\pi\)
0.423556 0.905870i \(-0.360782\pi\)
\(440\) 0 0
\(441\) −21.0000 −1.00000
\(442\) 0 0
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) 0 0
\(445\) −5.00000 8.66025i −0.237023 0.410535i
\(446\) −4.00000 + 6.92820i −0.189405 + 0.328060i
\(447\) 0 0
\(448\) 0 0
\(449\) 15.5885 + 9.00000i 0.735665 + 0.424736i 0.820491 0.571660i \(-0.193700\pi\)
−0.0848262 + 0.996396i \(0.527033\pi\)
\(450\) 3.00000i 0.141421i
\(451\) 0 0
\(452\) −7.00000 12.1244i −0.329252 0.570282i
\(453\) 0 0
\(454\) −20.0000 −0.938647
\(455\) 0 0
\(456\) 0 0
\(457\) −32.9090 + 19.0000i −1.53942 + 0.888783i −0.540544 + 0.841316i \(0.681781\pi\)
−0.998873 + 0.0474665i \(0.984885\pi\)
\(458\) 5.00000 + 8.66025i 0.233635 + 0.404667i
\(459\) 0 0
\(460\) 4.00000i 0.186501i
\(461\) −12.1244 7.00000i −0.564688 0.326023i 0.190337 0.981719i \(-0.439042\pi\)
−0.755025 + 0.655696i \(0.772375\pi\)
\(462\) 0 0
\(463\) 16.0000i 0.743583i 0.928316 + 0.371792i \(0.121256\pi\)
−0.928316 + 0.371792i \(0.878744\pi\)
\(464\) 1.00000 1.73205i 0.0464238 0.0804084i
\(465\) 0 0
\(466\) 5.19615 3.00000i 0.240707 0.138972i
\(467\) 16.0000 0.740392 0.370196 0.928954i \(-0.379291\pi\)
0.370196 + 0.928954i \(0.379291\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 6.92820 4.00000i 0.319574 0.184506i
\(471\) 0 0
\(472\) 4.00000 6.92820i 0.184115 0.318896i
\(473\) 0 0
\(474\) 0 0
\(475\) −6.92820 4.00000i −0.317888 0.183533i
\(476\) 0 0
\(477\) 9.00000 15.5885i 0.412082 0.713746i
\(478\) 10.0000 + 17.3205i 0.457389 + 0.792222i
\(479\) 3.46410 2.00000i 0.158279 0.0913823i −0.418769 0.908093i \(-0.637538\pi\)
0.577047 + 0.816711i \(0.304205\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 2.00000 0.0910975
\(483\) 0 0
\(484\) 5.50000 + 9.52628i 0.250000 + 0.433013i
\(485\) −7.00000 + 12.1244i −0.317854 + 0.550539i
\(486\) 0 0
\(487\) 6.92820 + 4.00000i 0.313947 + 0.181257i 0.648691 0.761052i \(-0.275317\pi\)
−0.334744 + 0.942309i \(0.608650\pi\)
\(488\) −1.73205 1.00000i −0.0784063 0.0452679i
\(489\) 0 0
\(490\) 3.50000 6.06218i 0.158114 0.273861i
\(491\) 10.0000 + 17.3205i 0.451294 + 0.781664i 0.998467 0.0553560i \(-0.0176294\pi\)
−0.547173 + 0.837020i \(0.684296\pi\)
\(492\) 0 0
\(493\) 4.00000 0.180151
\(494\) 0 0
\(495\) 0 0
\(496\) −3.46410 + 2.00000i −0.155543 + 0.0898027i
\(497\) 0 0
\(498\) 0 0
\(499\) 8.00000i 0.358129i 0.983837 + 0.179065i \(0.0573071\pi\)
−0.983837 + 0.179065i \(0.942693\pi\)
\(500\) −0.866025 0.500000i −0.0387298 0.0223607i
\(501\) 0 0
\(502\) 28.0000i 1.24970i
\(503\) −10.0000 + 17.3205i −0.445878 + 0.772283i −0.998113 0.0614052i \(-0.980442\pi\)
0.552235 + 0.833689i \(0.313775\pi\)
\(504\) 0 0
\(505\) −5.19615 + 3.00000i −0.231226 + 0.133498i
\(506\) 0 0
\(507\) 0 0
\(508\) −20.0000 −0.887357
\(509\) −15.5885 + 9.00000i −0.690946 + 0.398918i −0.803966 0.594675i \(-0.797281\pi\)
0.113020 + 0.993593i \(0.463948\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 1.73205 + 1.00000i 0.0763975 + 0.0441081i
\(515\) 4.00000i 0.176261i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 26.0000 1.13908 0.569540 0.821963i \(-0.307121\pi\)
0.569540 + 0.821963i \(0.307121\pi\)
\(522\) 5.19615 3.00000i 0.227429 0.131306i
\(523\) 4.00000 + 6.92820i 0.174908 + 0.302949i 0.940129 0.340818i \(-0.110704\pi\)
−0.765222 + 0.643767i \(0.777371\pi\)
\(524\) 2.00000 3.46410i 0.0873704 0.151330i
\(525\) 0 0
\(526\) 24.2487 + 14.0000i 1.05729 + 0.610429i
\(527\) −6.92820 4.00000i −0.301797 0.174243i
\(528\) 0 0
\(529\) 3.50000 6.06218i 0.152174 0.263573i
\(530\) 3.00000 + 5.19615i 0.130312 + 0.225706i
\(531\) 20.7846 12.0000i 0.901975 0.520756i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −2.00000 3.46410i −0.0863868 0.149626i
\(537\) 0 0
\(538\) 18.0000i 0.776035i
\(539\) 0 0
\(540\) 0 0
\(541\) 2.00000i 0.0859867i 0.999075 + 0.0429934i \(0.0136894\pi\)
−0.999075 + 0.0429934i \(0.986311\pi\)
\(542\) 14.0000 24.2487i 0.601351 1.04157i
\(543\) 0 0
\(544\) −1.73205 + 1.00000i −0.0742611 + 0.0428746i
\(545\) 2.00000 0.0856706
\(546\) 0 0
\(547\) −40.0000 −1.71028 −0.855138 0.518400i \(-0.826528\pi\)
−0.855138 + 0.518400i \(0.826528\pi\)
\(548\) −5.19615 + 3.00000i −0.221969 + 0.128154i
\(549\) −3.00000 5.19615i −0.128037 0.221766i
\(550\) 0 0
\(551\) 16.0000i 0.681623i
\(552\) 0 0
\(553\) 0 0
\(554\) 22.0000i 0.934690i
\(555\) 0 0
\(556\) 2.00000 + 3.46410i 0.0848189 + 0.146911i
\(557\) −12.1244 + 7.00000i −0.513725 + 0.296600i −0.734364 0.678756i \(-0.762519\pi\)
0.220638 + 0.975356i \(0.429186\pi\)
\(558\) −12.0000 −0.508001
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 11.0000 + 19.0526i 0.464007 + 0.803684i
\(563\) 12.0000 20.7846i 0.505740 0.875967i −0.494238 0.869326i \(-0.664553\pi\)
0.999978 0.00664037i \(-0.00211371\pi\)
\(564\) 0 0
\(565\) 12.1244 + 7.00000i 0.510075 + 0.294492i
\(566\) 13.8564 + 8.00000i 0.582428 + 0.336265i
\(567\) 0 0
\(568\) 6.00000 10.3923i 0.251754 0.436051i
\(569\) 5.00000 + 8.66025i 0.209611 + 0.363057i 0.951592 0.307364i \(-0.0994469\pi\)
−0.741981 + 0.670421i \(0.766114\pi\)
\(570\) 0 0
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.00000 + 3.46410i 0.0834058 + 0.144463i
\(576\) −1.50000 + 2.59808i −0.0625000 + 0.108253i
\(577\) 2.00000i 0.0832611i 0.999133 + 0.0416305i \(0.0132552\pi\)
−0.999133 + 0.0416305i \(0.986745\pi\)
\(578\) 11.2583 + 6.50000i 0.468285 + 0.270364i
\(579\) 0 0
\(580\) 2.00000i 0.0830455i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −10.0000 −0.413803
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) −17.3205 + 10.0000i −0.714894 + 0.412744i −0.812870 0.582445i \(-0.802096\pi\)
0.0979766 + 0.995189i \(0.468763\pi\)
\(588\) 0 0
\(589\) 16.0000 27.7128i 0.659269 1.14189i
\(590\) 8.00000i 0.329355i
\(591\) 0 0
\(592\) 5.19615 + 3.00000i 0.213561 + 0.123299i
\(593\) 2.00000i 0.0821302i −0.999156 0.0410651i \(-0.986925\pi\)
0.999156 0.0410651i \(-0.0130751\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −5.19615 + 3.00000i −0.212843 + 0.122885i
\(597\) 0 0
\(598\) 0 0
\(599\) 32.0000 1.30748 0.653742 0.756717i \(-0.273198\pi\)
0.653742 + 0.756717i \(0.273198\pi\)
\(600\) 0 0
\(601\) −13.0000 22.5167i −0.530281 0.918474i −0.999376 0.0353259i \(-0.988753\pi\)
0.469095 0.883148i \(-0.344580\pi\)
\(602\) 0 0
\(603\) 12.0000i 0.488678i
\(604\) 17.3205 + 10.0000i 0.704761 + 0.406894i
\(605\) −9.52628 5.50000i −0.387298 0.223607i
\(606\) 0 0
\(607\) −18.0000 + 31.1769i −0.730597 + 1.26543i 0.226031 + 0.974120i \(0.427425\pi\)
−0.956628 + 0.291312i \(0.905908\pi\)
\(608\) −4.00000 6.92820i −0.162221 0.280976i
\(609\) 0 0
\(610\) 2.00000 0.0809776
\(611\) 0 0
\(612\) −6.00000 −0.242536
\(613\) 32.9090 19.0000i 1.32918 0.767403i 0.344008 0.938967i \(-0.388215\pi\)
0.985173 + 0.171564i \(0.0548821\pi\)
\(614\) −14.0000 24.2487i −0.564994 0.978598i
\(615\) 0 0
\(616\) 0 0
\(617\) −22.5167 13.0000i −0.906487 0.523360i −0.0271876 0.999630i \(-0.508655\pi\)
−0.879299 + 0.476270i \(0.841988\pi\)
\(618\) 0 0
\(619\) 24.0000i 0.964641i 0.875995 + 0.482321i \(0.160206\pi\)
−0.875995 + 0.482321i \(0.839794\pi\)
\(620\) 2.00000 3.46410i 0.0803219 0.139122i
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −5.19615 + 3.00000i −0.207680 + 0.119904i
\(627\) 0 0
\(628\) −9.00000 + 15.5885i −0.359139 + 0.622047i
\(629\) 12.0000i 0.478471i
\(630\) 0 0
\(631\) 10.3923 + 6.00000i 0.413711 + 0.238856i 0.692383 0.721530i \(-0.256561\pi\)
−0.278672 + 0.960386i \(0.589894\pi\)
\(632\) 8.00000i 0.318223i
\(633\) 0 0
\(634\) −1.00000 1.73205i −0.0397151 0.0687885i
\(635\) 17.3205 10.0000i 0.687343 0.396838i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 31.1769 18.0000i 1.23334 0.712069i
\(640\) −0.500000 0.866025i −0.0197642 0.0342327i
\(641\) −15.0000 + 25.9808i −0.592464 + 1.02618i 0.401435 + 0.915888i \(0.368512\pi\)
−0.993899 + 0.110291i \(0.964822\pi\)
\(642\) 0 0
\(643\) −24.2487 14.0000i −0.956276 0.552106i −0.0612510 0.998122i \(-0.519509\pi\)
−0.895025 + 0.446016i \(0.852842\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 8.00000 13.8564i 0.314756 0.545173i
\(647\) −14.0000 24.2487i −0.550397 0.953315i −0.998246 0.0592060i \(-0.981143\pi\)
0.447849 0.894109i \(-0.352190\pi\)
\(648\) −7.79423 + 4.50000i −0.306186 + 0.176777i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 17.3205 10.0000i 0.678323 0.391630i
\(653\) −23.0000 39.8372i −0.900060 1.55895i −0.827415 0.561591i \(-0.810189\pi\)
−0.0726446 0.997358i \(-0.523144\pi\)
\(654\) 0 0
\(655\) 4.00000i 0.156293i
\(656\) −8.66025 5.00000i −0.338126 0.195217i
\(657\) −25.9808 15.0000i −1.01361 0.585206i
\(658\) 0 0
\(659\) 18.0000 31.1769i 0.701180 1.21448i −0.266872 0.963732i \(-0.585990\pi\)
0.968052 0.250748i \(-0.0806766\pi\)
\(660\) 0 0
\(661\) −19.0526 + 11.0000i −0.741059 + 0.427850i −0.822454 0.568831i \(-0.807396\pi\)
0.0813955 + 0.996682i \(0.474062\pi\)
\(662\) 8.00000 0.310929
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) 9.00000 + 15.5885i 0.348743 + 0.604040i
\(667\) 4.00000 6.92820i 0.154881 0.268261i
\(668\) 16.0000i 0.619059i
\(669\) 0 0
\(670\) 3.46410 + 2.00000i 0.133830 + 0.0772667i
\(671\) 0 0
\(672\) 0 0
\(673\) −7.00000 12.1244i −0.269830 0.467360i 0.698988 0.715134i \(-0.253634\pi\)
−0.968818 + 0.247774i \(0.920301\pi\)
\(674\) −15.5885 + 9.00000i −0.600445 + 0.346667i
\(675\) 0 0
\(676\) 0 0
\(677\) 22.0000 0.845529 0.422764 0.906240i \(-0.361060\pi\)
0.422764 + 0.906240i \(0.361060\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.00000 1.73205i 0.0383482 0.0664211i
\(681\) 0 0
\(682\) 0 0
\(683\) 24.2487 + 14.0000i 0.927851 + 0.535695i 0.886131 0.463434i \(-0.153383\pi\)
0.0417198 + 0.999129i \(0.486716\pi\)
\(684\) 24.0000i 0.917663i
\(685\) 3.00000 5.19615i 0.114624 0.198535i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 27.7128 16.0000i 1.05425 0.608669i 0.130410 0.991460i \(-0.458371\pi\)
0.923835 + 0.382791i \(0.125037\pi\)
\(692\) 9.00000 + 15.5885i 0.342129 + 0.592584i
\(693\) 0 0
\(694\) 32.0000i 1.21470i
\(695\) −3.46410 2.00000i −0.131401 0.0758643i
\(696\) 0 0
\(697\) 20.0000i 0.757554i
\(698\) −7.00000 + 12.1244i −0.264954 + 0.458914i
\(699\) 0 0
\(700\) 0 0
\(701\) 34.0000 1.28416 0.642081 0.766637i \(-0.278071\pi\)
0.642081 + 0.766637i \(0.278071\pi\)
\(702\) 0 0
\(703\) −48.0000 −1.81035
\(704\) 0 0
\(705\) 0 0
\(706\) −15.0000 + 25.9808i −0.564532 + 0.977799i
\(707\) 0 0
\(708\) 0 0
\(709\) −8.66025 5.00000i −0.325243 0.187779i 0.328484 0.944509i \(-0.393462\pi\)
−0.653727 + 0.756730i \(0.726796\pi\)
\(710\) 12.0000i 0.450352i
\(711\) −12.0000 + 20.7846i −0.450035 + 0.779484i
\(712\) 5.00000 + 8.66025i 0.187383 + 0.324557i
\(713\) −13.8564 + 8.00000i −0.518927 + 0.299602i
\(714\) 0 0
\(715\) 0 0
\(716\) 4.00000 0.149487
\(717\) 0 0
\(718\) −2.00000 3.46410i −0.0746393 0.129279i
\(719\) 8.00000 13.8564i 0.298350 0.516757i −0.677409 0.735607i \(-0.736897\pi\)
0.975759 + 0.218850i \(0.0702305\pi\)
\(720\) 3.00000i 0.111803i
\(721\) 0 0
\(722\) 38.9711 + 22.5000i 1.45036 + 0.837363i
\(723\) 0 0
\(724\) −11.0000 + 19.0526i −0.408812 + 0.708083i
\(725\) −1.00000 1.73205i −0.0371391 0.0643268i
\(726\) 0 0
\(727\) 28.0000 1.03846 0.519231 0.854634i \(-0.326218\pi\)
0.519231 + 0.854634i \(0.326218\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 8.66025 5.00000i 0.320530 0.185058i
\(731\) 0 0
\(732\) 0 0
\(733\) 34.0000i 1.25582i −0.778287 0.627909i \(-0.783911\pi\)
0.778287 0.627909i \(-0.216089\pi\)
\(734\) 10.3923 + 6.00000i 0.383587 + 0.221464i
\(735\) 0 0
\(736\) 4.00000i 0.147442i
\(737\) 0 0
\(738\) −15.0000 25.9808i −0.552158 0.956365i
\(739\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) −6.00000 −0.220564
\(741\) 0 0
\(742\) 0 0
\(743\) 13.8564 8.00000i 0.508342 0.293492i −0.223810 0.974633i \(-0.571849\pi\)
0.732152 + 0.681141i \(0.238516\pi\)
\(744\) 0 0
\(745\) 3.00000 5.19615i 0.109911 0.190372i
\(746\) 6.00000i 0.219676i
\(747\) 31.1769 + 18.0000i 1.14070 + 0.658586i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −20.0000 34.6410i −0.729810 1.26407i −0.956963 0.290209i \(-0.906275\pi\)
0.227153 0.973859i \(-0.427058\pi\)
\(752\) −6.92820 + 4.00000i −0.252646 + 0.145865i
\(753\) 0 0
\(754\) 0 0
\(755\) −20.0000 −0.727875
\(756\) 0 0
\(757\) −11.0000 19.0526i −0.399802 0.692477i 0.593899 0.804539i \(-0.297588\pi\)
−0.993701 + 0.112062i \(0.964254\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 6.92820 + 4.00000i 0.251312 + 0.145095i
\(761\) −5.19615 3.00000i −0.188360 0.108750i 0.402854 0.915264i \(-0.368018\pi\)
−0.591215 + 0.806514i \(0.701351\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 5.19615 3.00000i 0.187867 0.108465i
\(766\) −8.00000 −0.289052
\(767\) 0 0
\(768\) 0 0
\(769\) −12.1244 + 7.00000i −0.437215 + 0.252426i −0.702416 0.711767i \(-0.747895\pi\)
0.265200 + 0.964193i \(0.414562\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 18.0000i 0.647834i
\(773\) 22.5167 + 13.0000i 0.809868 + 0.467578i 0.846910 0.531736i \(-0.178460\pi\)
−0.0370420 + 0.999314i \(0.511794\pi\)
\(774\) 0 0
\(775\) 4.00000i 0.143684i
\(776\) 7.00000 12.1244i 0.251285 0.435239i
\(777\) 0 0
\(778\) −5.19615 + 3.00000i −0.186291 + 0.107555i
\(779\) 80.0000 2.86630
\(780\) 0 0
\(781\) 0 0
\(782\) −6.92820 + 4.00000i −0.247752 + 0.143040i
\(783\) 0 0
\(784\) −3.50000 + 6.06218i −0.125000 + 0.216506i
\(785\) 18.0000i 0.642448i
\(786\) 0 0
\(787\) −3.46410 2.00000i −0.123482 0.0712923i 0.436987 0.899468i \(-0.356046\pi\)
−0.560469 + 0.828176i \(0.689379\pi\)
\(788\) 26.0000i 0.926212i
\(789\) 0 0
\(790\) −4.00000 6.92820i −0.142314 0.246494i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −18.0000 −0.638796
\(795\) 0 0
\(796\) −12.0000 20.7846i −0.425329 0.736691i
\(797\) −17.0000 + 29.4449i −0.602171 + 1.04299i 0.390321 + 0.920679i \(0.372364\pi\)
−0.992492 + 0.122312i \(0.960969\pi\)
\(798\) 0 0
\(799\) −13.8564 8.00000i −0.490204 0.283020i
\(800\) 0.866025 + 0.500000i 0.0306186 + 0.0176777i
\(801\) 30.0000i 1.06000i
\(802\) 15.0000 25.9808i 0.529668 0.917413i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 5.19615 3.00000i 0.182800 0.105540i
\(809\) −13.0000 22.5167i −0.457056 0.791644i 0.541748 0.840541i \(-0.317763\pi\)
−0.998804 + 0.0488972i \(0.984429\pi\)
\(810\) 4.50000 7.79423i 0.158114 0.273861i
\(811\) 24.0000i 0.842754i 0.906886 + 0.421377i \(0.138453\pi\)
−0.906886 + 0.421377i \(0.861547\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −10.0000 + 17.3205i −0.350285 + 0.606711i
\(816\) 0 0
\(817\) 0 0
\(818\) −26.0000 −0.909069
\(819\) 0 0
\(820\) 10.0000 0.349215
\(821\) −36.3731 + 21.0000i −1.26943 + 0.732905i −0.974880 0.222731i \(-0.928503\pi\)
−0.294549 + 0.955636i \(0.595169\pi\)
\(822\) 0 0
\(823\) −2.00000 + 3.46410i −0.0697156 + 0.120751i −0.898776 0.438408i \(-0.855543\pi\)
0.829060 + 0.559159i \(0.188876\pi\)
\(824\) 4.00000i 0.139347i
\(825\) 0 0
\(826\) 0 0
\(827\) 36.0000i 1.25184i −0.779886 0.625921i \(-0.784723\pi\)
0.779886 0.625921i \(-0.215277\pi\)
\(828\) −6.00000 + 10.3923i −0.208514 + 0.361158i
\(829\) −17.0000 29.4449i −0.590434 1.02266i −0.994174 0.107788i \(-0.965623\pi\)
0.403739 0.914874i \(-0.367710\pi\)
\(830\) −10.3923 + 6.00000i −0.360722 + 0.208263i
\(831\) 0 0
\(832\) 0 0
\(833\) −14.0000 −0.485071
\(834\) 0 0
\(835\) −8.00000 13.8564i −0.276851 0.479521i
\(836\) 0 0
\(837\) 0 0
\(838\) 31.1769 + 18.0000i 1.07699 + 0.621800i
\(839\) 3.46410 + 2.00000i 0.119594 + 0.0690477i 0.558604 0.829435i \(-0.311337\pi\)
−0.439010 + 0.898482i \(0.644671\pi\)
\(840\) 0 0
\(841\) 12.5000 21.6506i 0.431034 0.746574i
\(842\) −13.0000 22.5167i −0.448010 0.775975i
\(843\) 0 0
\(844\) −4.00000 −0.137686
\(845\) 0 0
\(846\) −24.0000 −0.825137
\(847\) 0 0
\(848\) −3.00000 5.19615i −0.103020 0.178437i
\(849\) 0 0
\(850\) 2.00000i 0.0685994i
\(851\) 20.7846 + 12.0000i 0.712487 + 0.411355i
\(852\) 0 0
\(853\) 22.0000i 0.753266i −0.926363 0.376633i \(-0.877082\pi\)
0.926363 0.376633i \(-0.122918\pi\)
\(854\) 0 0
\(855\) 12.0000 + 20.7846i 0.410391 + 0.710819i
\(856\) 0 0
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 0 0
\(859\) −28.0000 −0.955348 −0.477674 0.878537i \(-0.658520\pi\)
−0.477674 + 0.878537i \(0.658520\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 6.00000 10.3923i 0.204361 0.353963i
\(863\) 40.0000i 1.36162i 0.732462 + 0.680808i \(0.238371\pi\)
−0.732462 + 0.680808i \(0.761629\pi\)
\(864\) 0 0
\(865\) −15.5885 9.00000i −0.530023 0.306009i
\(866\) 34.0000i 1.15537i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −2.00000 −0.0677285
\(873\) 36.3731 21.0000i 1.23104 0.710742i
\(874\) −16.0000 27.7128i −0.541208 0.937400i
\(875\) 0 0
\(876\) 0 0
\(877\) −12.1244 7.00000i −0.409410 0.236373i 0.281126 0.959671i \(-0.409292\pi\)
−0.690536 + 0.723298i \(0.742625\pi\)
\(878\) −20.7846 12.0000i −0.701447 0.404980i
\(879\) 0 0
\(880\) 0 0
\(881\) 1.00000 + 1.73205i 0.0336909 + 0.0583543i 0.882379 0.470539i \(-0.155941\pi\)
−0.848688 + 0.528893i \(0.822607\pi\)
\(882\) −18.1865 + 10.5000i −0.612372 + 0.353553i
\(883\) 8.00000 0.269221 0.134611 0.990899i \(-0.457022\pi\)
0.134611 + 0.990899i \(0.457022\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 20.7846 12.0000i 0.698273 0.403148i
\(887\) −22.0000 38.1051i −0.738688 1.27944i −0.953086 0.302698i \(-0.902113\pi\)
0.214399 0.976746i \(-0.431221\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −8.66025 5.00000i −0.290292 0.167600i
\(891\) 0 0
\(892\) 8.00000i 0.267860i
\(893\) 32.0000 55.4256i 1.07084 1.85475i
\(894\) 0 0
\(895\) −3.46410 + 2.00000i −0.115792 + 0.0668526i
\(896\) 0 0
\(897\) 0 0
\(898\) 18.0000 0.600668
\(899\) 6.92820 4.00000i 0.231069 0.133407i
\(900\) 1.50000 + 2.59808i 0.0500000 + 0.0866025i
\(901\) 6.00000 10.3923i 0.199889 0.346218i
\(902\) 0 0
\(903\) 0 0
\(904\) −12.1244 7.00000i −0.403250 0.232817i
\(905\) 22.0000i 0.731305i
\(906\) 0 0
\(907\) 4.00000 + 6.92820i 0.132818 + 0.230047i 0.924762 0.380547i \(-0.124264\pi\)
−0.791944 + 0.610594i \(0.790931\pi\)
\(908\) −17.3205 + 10.0000i −0.574801 + 0.331862i
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −19.0000 + 32.9090i −0.628464 + 1.08853i
\(915\) 0 0
\(916\) 8.66025 + 5.00000i 0.286143 + 0.165205i
\(917\) 0 0
\(918\) 0 0
\(919\) −16.0000 + 27.7128i −0.527791 + 0.914161i 0.471684 + 0.881768i \(0.343646\pi\)
−0.999475 + 0.0323936i \(0.989687\pi\)
\(920\) −2.00000 3.46410i −0.0659380 0.114208i
\(921\) 0 0
\(922\) −14.0000 −0.461065
\(923\) 0 0
\(924\) 0 0
\(925\) 5.19615 3.00000i 0.170848 0.0986394i
\(926\) 8.00000 + 13.8564i 0.262896 + 0.455350i
\(927\) 6.00000 10.3923i 0.197066 0.341328i
\(928\) 2.00000i 0.0656532i
\(929\) 12.1244 + 7.00000i 0.397787 + 0.229663i 0.685529 0.728046i \(-0.259571\pi\)
−0.287742 + 0.957708i \(0.592904\pi\)
\(930\) 0 0
\(931\) 56.0000i 1.83533i
\(932\) 3.00000 5.19615i 0.0982683 0.170206i
\(933\) 0 0
\(934\) 13.8564 8.00000i 0.453395 0.261768i
\(935\) 0 0
\(936\) 0 0
\(937\) 26.0000 0.849383 0.424691 0.905338i \(-0.360383\pi\)
0.424691 + 0.905338i \(0.360383\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 4.00000 6.92820i 0.130466 0.225973i
\(941\) 30.0000i 0.977972i 0.872292 + 0.488986i \(0.162633\pi\)
−0.872292 + 0.488986i \(0.837367\pi\)
\(942\) 0 0
\(943\) −34.6410 20.0000i −1.12807 0.651290i
\(944\) 8.00000i 0.260378i
\(945\) 0 0
\(946\) 0 0
\(947\) 3.46410 2.00000i 0.112568 0.0649913i −0.442659 0.896690i \(-0.645965\pi\)
0.555227 + 0.831699i \(0.312631\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −8.00000 −0.259554
\(951\) 0 0
\(952\) 0 0
\(953\) 13.0000 22.5167i 0.421111 0.729386i −0.574937 0.818198i \(-0.694974\pi\)
0.996048 + 0.0888114i \(0.0283068\pi\)
\(954\) 18.0000i 0.582772i
\(955\) 0 0
\(956\) 17.3205 + 10.0000i 0.560185 + 0.323423i
\(957\) 0 0
\(958\) 2.00000 3.46410i 0.0646171 0.111920i
\(959\) 0 0
\(960\) 0 0
\(961\) 15.0000 0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) 1.73205 1.00000i 0.0557856 0.0322078i
\(965\) −9.00000 15.5885i −0.289720 0.501810i
\(966\) 0 0
\(967\) 24.0000i 0.771788i 0.922543 + 0.385894i \(0.126107\pi\)
−0.922543 + 0.385894i \(0.873893\pi\)
\(968\) 9.52628 + 5.50000i 0.306186 + 0.176777i
\(969\) 0 0
\(970\) 14.0000i 0.449513i
\(971\) 2.00000 3.46410i 0.0641831 0.111168i −0.832148 0.554553i \(-0.812889\pi\)
0.896331 + 0.443385i \(0.146223\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 8.00000 0.256337
\(975\) 0 0
\(976\) −2.00000 −0.0640184
\(977\) 15.5885 9.00000i 0.498719 0.287936i −0.229465 0.973317i \(-0.573698\pi\)
0.728184 + 0.685381i \(0.240364\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 7.00000i 0.223607i
\(981\) −5.19615 3.00000i −0.165900 0.0957826i
\(982\) 17.3205 + 10.0000i 0.552720 + 0.319113i
\(983\) 24.0000i 0.765481i 0.923856 + 0.382741i \(0.125020\pi\)
−0.923856 + 0.382741i \(0.874980\pi\)
\(984\) 0 0
\(985\) −13.0000 22.5167i −0.414214 0.717440i
\(986\) 3.46410 2.00000i 0.110319 0.0636930i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −16.0000 27.7128i −0.508257 0.880327i −0.999954 0.00956046i \(-0.996957\pi\)
0.491698 0.870766i \(-0.336377\pi\)
\(992\) −2.00000 + 3.46410i −0.0635001 + 0.109985i
\(993\) 0 0
\(994\) 0 0
\(995\) 20.7846 + 12.0000i 0.658916 + 0.380426i
\(996\) 0 0
\(997\) −11.0000 + 19.0526i −0.348373 + 0.603401i −0.985961 0.166978i \(-0.946599\pi\)
0.637587 + 0.770378i \(0.279933\pi\)
\(998\) 4.00000 + 6.92820i 0.126618 + 0.219308i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.l.f.361.2 4
13.2 odd 12 130.2.a.b.1.1 1
13.3 even 3 1690.2.d.d.1351.2 2
13.4 even 6 inner 1690.2.l.f.1161.2 4
13.5 odd 4 1690.2.e.c.991.1 2
13.6 odd 12 1690.2.e.c.191.1 2
13.7 odd 12 1690.2.e.i.191.1 2
13.8 odd 4 1690.2.e.i.991.1 2
13.9 even 3 inner 1690.2.l.f.1161.1 4
13.10 even 6 1690.2.d.d.1351.1 2
13.11 odd 12 1690.2.a.b.1.1 1
13.12 even 2 inner 1690.2.l.f.361.1 4
39.2 even 12 1170.2.a.b.1.1 1
52.15 even 12 1040.2.a.e.1.1 1
65.2 even 12 650.2.b.e.599.2 2
65.24 odd 12 8450.2.a.r.1.1 1
65.28 even 12 650.2.b.e.599.1 2
65.54 odd 12 650.2.a.d.1.1 1
91.41 even 12 6370.2.a.r.1.1 1
104.67 even 12 4160.2.a.h.1.1 1
104.93 odd 12 4160.2.a.i.1.1 1
156.119 odd 12 9360.2.a.l.1.1 1
195.2 odd 12 5850.2.e.q.5149.1 2
195.119 even 12 5850.2.a.bq.1.1 1
195.158 odd 12 5850.2.e.q.5149.2 2
260.119 even 12 5200.2.a.r.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.a.b.1.1 1 13.2 odd 12
650.2.a.d.1.1 1 65.54 odd 12
650.2.b.e.599.1 2 65.28 even 12
650.2.b.e.599.2 2 65.2 even 12
1040.2.a.e.1.1 1 52.15 even 12
1170.2.a.b.1.1 1 39.2 even 12
1690.2.a.b.1.1 1 13.11 odd 12
1690.2.d.d.1351.1 2 13.10 even 6
1690.2.d.d.1351.2 2 13.3 even 3
1690.2.e.c.191.1 2 13.6 odd 12
1690.2.e.c.991.1 2 13.5 odd 4
1690.2.e.i.191.1 2 13.7 odd 12
1690.2.e.i.991.1 2 13.8 odd 4
1690.2.l.f.361.1 4 13.12 even 2 inner
1690.2.l.f.361.2 4 1.1 even 1 trivial
1690.2.l.f.1161.1 4 13.9 even 3 inner
1690.2.l.f.1161.2 4 13.4 even 6 inner
4160.2.a.h.1.1 1 104.67 even 12
4160.2.a.i.1.1 1 104.93 odd 12
5200.2.a.r.1.1 1 260.119 even 12
5850.2.a.bq.1.1 1 195.119 even 12
5850.2.e.q.5149.1 2 195.2 odd 12
5850.2.e.q.5149.2 2 195.158 odd 12
6370.2.a.r.1.1 1 91.41 even 12
8450.2.a.r.1.1 1 65.24 odd 12
9360.2.a.l.1.1 1 156.119 odd 12