Properties

Label 1690.2.e.s.191.1
Level $1690$
Weight $2$
Character 1690.191
Analytic conductor $13.495$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(191,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.191"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-4,-2,-4,8,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.22581504.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 191.1
Root \(-1.27597 - 0.609843i\) of defining polynomial
Character \(\chi\) \(=\) 1690.191
Dual form 1690.2.e.s.991.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-1.66612 + 2.88581i) q^{3} +(-0.500000 - 0.866025i) q^{4} +1.00000 q^{5} +(-1.66612 - 2.88581i) q^{6} +(0.719687 + 1.24653i) q^{7} +1.00000 q^{8} +(-4.05193 - 7.01815i) q^{9} +(-0.500000 + 0.866025i) q^{10} +(2.01978 - 3.49837i) q^{11} +3.33225 q^{12} -1.43937 q^{14} +(-1.66612 + 2.88581i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-1.15376 - 1.99837i) q^{17} +8.10387 q^{18} +(-0.199902 - 0.346241i) q^{19} +(-0.500000 - 0.866025i) q^{20} -4.79635 q^{21} +(2.01978 + 3.49837i) q^{22} +(-0.780313 + 1.35154i) q^{23} +(-1.66612 + 2.88581i) q^{24} +1.00000 q^{25} +17.0073 q^{27} +(0.719687 - 1.24653i) q^{28} +(3.93244 - 6.81119i) q^{29} +(-1.66612 - 2.88581i) q^{30} +3.10713 q^{31} +(-0.500000 - 0.866025i) q^{32} +(6.73042 + 11.6574i) q^{33} +2.30752 q^{34} +(0.719687 + 1.24653i) q^{35} +(-4.05193 + 7.01815i) q^{36} +(-3.11786 + 5.40029i) q^{37} +0.399804 q^{38} +1.00000 q^{40} +(0.380509 - 0.659061i) q^{41} +(2.39817 - 4.15376i) q^{42} +(5.50367 + 9.53264i) q^{43} -4.03957 q^{44} +(-4.05193 - 7.01815i) q^{45} +(-0.780313 - 1.35154i) q^{46} +5.84016 q^{47} +(-1.66612 - 2.88581i) q^{48} +(2.46410 - 4.26795i) q^{49} +(-0.500000 + 0.866025i) q^{50} +7.68922 q^{51} +10.6249 q^{53} +(-8.50367 + 14.7288i) q^{54} +(2.01978 - 3.49837i) q^{55} +(0.719687 + 1.24653i) q^{56} +1.33225 q^{57} +(3.93244 + 6.81119i) q^{58} +(1.73205 + 3.00000i) q^{59} +3.33225 q^{60} +(2.84624 + 4.92983i) q^{61} +(-1.55356 + 2.69085i) q^{62} +(5.83225 - 10.1017i) q^{63} +1.00000 q^{64} -13.4608 q^{66} +(5.20039 - 9.00734i) q^{67} +(-1.15376 + 1.99837i) q^{68} +(-2.60020 - 4.50367i) q^{69} -1.43937 q^{70} +(3.00000 + 5.19615i) q^{71} +(-4.05193 - 7.01815i) q^{72} -13.4608 q^{73} +(-3.11786 - 5.40029i) q^{74} +(-1.66612 + 2.88581i) q^{75} +(-0.199902 + 0.346241i) q^{76} +5.81445 q^{77} +0.931464 q^{79} +(-0.500000 + 0.866025i) q^{80} +(-16.1805 + 28.0255i) q^{81} +(0.380509 + 0.659061i) q^{82} -10.3867 q^{83} +(2.39817 + 4.15376i) q^{84} +(-1.15376 - 1.99837i) q^{85} -11.0073 q^{86} +(13.1039 + 22.6966i) q^{87} +(2.01978 - 3.49837i) q^{88} +(-0.485517 + 0.840939i) q^{89} +8.10387 q^{90} +1.56063 q^{92} +(-5.17686 + 8.96658i) q^{93} +(-2.92008 + 5.05772i) q^{94} +(-0.199902 - 0.346241i) q^{95} +3.33225 q^{96} +(-6.15919 - 10.6680i) q^{97} +(2.46410 + 4.26795i) q^{98} -32.7361 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 2 q^{3} - 4 q^{4} + 8 q^{5} - 2 q^{6} + 8 q^{8} - 4 q^{9} - 4 q^{10} + 6 q^{11} + 4 q^{12} - 2 q^{15} - 4 q^{16} - 6 q^{17} + 8 q^{18} - 6 q^{19} - 4 q^{20} + 12 q^{21} + 6 q^{22} - 12 q^{23}+ \cdots - 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −1.66612 + 2.88581i −0.961937 + 1.66612i −0.244308 + 0.969698i \(0.578561\pi\)
−0.717629 + 0.696425i \(0.754773\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.00000 0.447214
\(6\) −1.66612 2.88581i −0.680192 1.17813i
\(7\) 0.719687 + 1.24653i 0.272016 + 0.471146i 0.969378 0.245574i \(-0.0789763\pi\)
−0.697362 + 0.716719i \(0.745643\pi\)
\(8\) 1.00000 0.353553
\(9\) −4.05193 7.01815i −1.35064 2.33938i
\(10\) −0.500000 + 0.866025i −0.158114 + 0.273861i
\(11\) 2.01978 3.49837i 0.608988 1.05480i −0.382420 0.923989i \(-0.624909\pi\)
0.991408 0.130809i \(-0.0417576\pi\)
\(12\) 3.33225 0.961937
\(13\) 0 0
\(14\) −1.43937 −0.384689
\(15\) −1.66612 + 2.88581i −0.430191 + 0.745113i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.15376 1.99837i −0.279828 0.484676i 0.691514 0.722363i \(-0.256944\pi\)
−0.971342 + 0.237687i \(0.923611\pi\)
\(18\) 8.10387 1.91010
\(19\) −0.199902 0.346241i −0.0458607 0.0794331i 0.842184 0.539190i \(-0.181270\pi\)
−0.888045 + 0.459757i \(0.847936\pi\)
\(20\) −0.500000 0.866025i −0.111803 0.193649i
\(21\) −4.79635 −1.04665
\(22\) 2.01978 + 3.49837i 0.430620 + 0.745855i
\(23\) −0.780313 + 1.35154i −0.162707 + 0.281816i −0.935838 0.352429i \(-0.885356\pi\)
0.773132 + 0.634245i \(0.218689\pi\)
\(24\) −1.66612 + 2.88581i −0.340096 + 0.589064i
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 17.0073 3.27306
\(28\) 0.719687 1.24653i 0.136008 0.235573i
\(29\) 3.93244 6.81119i 0.730236 1.26481i −0.226546 0.974000i \(-0.572743\pi\)
0.956782 0.290806i \(-0.0939233\pi\)
\(30\) −1.66612 2.88581i −0.304191 0.526874i
\(31\) 3.10713 0.558057 0.279028 0.960283i \(-0.409988\pi\)
0.279028 + 0.960283i \(0.409988\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 6.73042 + 11.6574i 1.17162 + 2.02930i
\(34\) 2.30752 0.395736
\(35\) 0.719687 + 1.24653i 0.121649 + 0.210703i
\(36\) −4.05193 + 7.01815i −0.675322 + 1.16969i
\(37\) −3.11786 + 5.40029i −0.512573 + 0.887803i 0.487321 + 0.873223i \(0.337974\pi\)
−0.999894 + 0.0145796i \(0.995359\pi\)
\(38\) 0.399804 0.0648568
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) 0.380509 0.659061i 0.0594255 0.102928i −0.834782 0.550580i \(-0.814406\pi\)
0.894208 + 0.447652i \(0.147740\pi\)
\(42\) 2.39817 4.15376i 0.370046 0.640939i
\(43\) 5.50367 + 9.53264i 0.839302 + 1.45371i 0.890479 + 0.455024i \(0.150369\pi\)
−0.0511772 + 0.998690i \(0.516297\pi\)
\(44\) −4.03957 −0.608988
\(45\) −4.05193 7.01815i −0.604027 1.04620i
\(46\) −0.780313 1.35154i −0.115051 0.199274i
\(47\) 5.84016 0.851874 0.425937 0.904753i \(-0.359944\pi\)
0.425937 + 0.904753i \(0.359944\pi\)
\(48\) −1.66612 2.88581i −0.240484 0.416531i
\(49\) 2.46410 4.26795i 0.352015 0.609707i
\(50\) −0.500000 + 0.866025i −0.0707107 + 0.122474i
\(51\) 7.68922 1.07671
\(52\) 0 0
\(53\) 10.6249 1.45945 0.729723 0.683743i \(-0.239649\pi\)
0.729723 + 0.683743i \(0.239649\pi\)
\(54\) −8.50367 + 14.7288i −1.15720 + 2.00433i
\(55\) 2.01978 3.49837i 0.272348 0.471720i
\(56\) 0.719687 + 1.24653i 0.0961722 + 0.166575i
\(57\) 1.33225 0.176460
\(58\) 3.93244 + 6.81119i 0.516355 + 0.894353i
\(59\) 1.73205 + 3.00000i 0.225494 + 0.390567i 0.956467 0.291839i \(-0.0942671\pi\)
−0.730974 + 0.682406i \(0.760934\pi\)
\(60\) 3.33225 0.430191
\(61\) 2.84624 + 4.92983i 0.364424 + 0.631200i 0.988684 0.150016i \(-0.0479326\pi\)
−0.624260 + 0.781217i \(0.714599\pi\)
\(62\) −1.55356 + 2.69085i −0.197303 + 0.341738i
\(63\) 5.83225 10.1017i 0.734794 1.27270i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −13.4608 −1.65692
\(67\) 5.20039 9.00734i 0.635329 1.10042i −0.351116 0.936332i \(-0.614198\pi\)
0.986445 0.164090i \(-0.0524688\pi\)
\(68\) −1.15376 + 1.99837i −0.139914 + 0.242338i
\(69\) −2.60020 4.50367i −0.313027 0.542178i
\(70\) −1.43937 −0.172038
\(71\) 3.00000 + 5.19615i 0.356034 + 0.616670i 0.987294 0.158901i \(-0.0507952\pi\)
−0.631260 + 0.775571i \(0.717462\pi\)
\(72\) −4.05193 7.01815i −0.477525 0.827097i
\(73\) −13.4608 −1.57547 −0.787736 0.616013i \(-0.788747\pi\)
−0.787736 + 0.616013i \(0.788747\pi\)
\(74\) −3.11786 5.40029i −0.362444 0.627771i
\(75\) −1.66612 + 2.88581i −0.192387 + 0.333225i
\(76\) −0.199902 + 0.346241i −0.0229303 + 0.0397165i
\(77\) 5.81445 0.662618
\(78\) 0 0
\(79\) 0.931464 0.104798 0.0523989 0.998626i \(-0.483313\pi\)
0.0523989 + 0.998626i \(0.483313\pi\)
\(80\) −0.500000 + 0.866025i −0.0559017 + 0.0968246i
\(81\) −16.1805 + 28.0255i −1.79784 + 3.11394i
\(82\) 0.380509 + 0.659061i 0.0420202 + 0.0727811i
\(83\) −10.3867 −1.14008 −0.570042 0.821616i \(-0.693073\pi\)
−0.570042 + 0.821616i \(0.693073\pi\)
\(84\) 2.39817 + 4.15376i 0.261662 + 0.453212i
\(85\) −1.15376 1.99837i −0.125143 0.216754i
\(86\) −11.0073 −1.18695
\(87\) 13.1039 + 22.6966i 1.40488 + 2.43333i
\(88\) 2.01978 3.49837i 0.215310 0.372927i
\(89\) −0.485517 + 0.840939i −0.0514647 + 0.0891394i −0.890610 0.454768i \(-0.849722\pi\)
0.839145 + 0.543907i \(0.183056\pi\)
\(90\) 8.10387 0.854223
\(91\) 0 0
\(92\) 1.56063 0.162707
\(93\) −5.17686 + 8.96658i −0.536815 + 0.929791i
\(94\) −2.92008 + 5.05772i −0.301183 + 0.521664i
\(95\) −0.199902 0.346241i −0.0205095 0.0355235i
\(96\) 3.33225 0.340096
\(97\) −6.15919 10.6680i −0.625371 1.08317i −0.988469 0.151424i \(-0.951614\pi\)
0.363098 0.931751i \(-0.381719\pi\)
\(98\) 2.46410 + 4.26795i 0.248912 + 0.431128i
\(99\) −32.7361 −3.29011
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) −2.41747 + 4.18718i −0.240547 + 0.416640i −0.960870 0.276999i \(-0.910660\pi\)
0.720323 + 0.693639i \(0.243994\pi\)
\(102\) −3.84461 + 6.65906i −0.380673 + 0.659345i
\(103\) 5.73205 0.564796 0.282398 0.959297i \(-0.408870\pi\)
0.282398 + 0.959297i \(0.408870\pi\)
\(104\) 0 0
\(105\) −4.79635 −0.468076
\(106\) −5.31246 + 9.20145i −0.515992 + 0.893724i
\(107\) 6.43774 11.1505i 0.622360 1.07796i −0.366685 0.930345i \(-0.619507\pi\)
0.989045 0.147614i \(-0.0471594\pi\)
\(108\) −8.50367 14.7288i −0.818266 1.41728i
\(109\) 0.214254 0.0205219 0.0102609 0.999947i \(-0.496734\pi\)
0.0102609 + 0.999947i \(0.496734\pi\)
\(110\) 2.01978 + 3.49837i 0.192579 + 0.333556i
\(111\) −10.3895 17.9951i −0.986126 1.70802i
\(112\) −1.43937 −0.136008
\(113\) 0.0642973 + 0.111366i 0.00604858 + 0.0104765i 0.869034 0.494753i \(-0.164741\pi\)
−0.862985 + 0.505229i \(0.831408\pi\)
\(114\) −0.666123 + 1.15376i −0.0623882 + 0.108059i
\(115\) −0.780313 + 1.35154i −0.0727646 + 0.126032i
\(116\) −7.86488 −0.730236
\(117\) 0 0
\(118\) −3.46410 −0.318896
\(119\) 1.66069 2.87640i 0.152235 0.263679i
\(120\) −1.66612 + 2.88581i −0.152096 + 0.263437i
\(121\) −2.65906 4.60563i −0.241733 0.418693i
\(122\) −5.69248 −0.515373
\(123\) 1.26795 + 2.19615i 0.114327 + 0.198020i
\(124\) −1.55356 2.69085i −0.139514 0.241646i
\(125\) 1.00000 0.0894427
\(126\) 5.83225 + 10.1017i 0.519578 + 0.899935i
\(127\) 8.06218 13.9641i 0.715403 1.23911i −0.247401 0.968913i \(-0.579577\pi\)
0.962804 0.270201i \(-0.0870900\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −36.6792 −3.22942
\(130\) 0 0
\(131\) 2.78010 0.242898 0.121449 0.992598i \(-0.461246\pi\)
0.121449 + 0.992598i \(0.461246\pi\)
\(132\) 6.73042 11.6574i 0.585808 1.01465i
\(133\) 0.287734 0.498370i 0.0249497 0.0432141i
\(134\) 5.20039 + 9.00734i 0.449245 + 0.778116i
\(135\) 17.0073 1.46376
\(136\) −1.15376 1.99837i −0.0989340 0.171359i
\(137\) 2.73368 + 4.73487i 0.233554 + 0.404528i 0.958851 0.283908i \(-0.0916311\pi\)
−0.725297 + 0.688436i \(0.758298\pi\)
\(138\) 5.20039 0.442687
\(139\) 0.107258 + 0.185777i 0.00909753 + 0.0157574i 0.870538 0.492101i \(-0.163771\pi\)
−0.861441 + 0.507858i \(0.830437\pi\)
\(140\) 0.719687 1.24653i 0.0608246 0.105351i
\(141\) −9.73042 + 16.8536i −0.819449 + 1.41933i
\(142\) −6.00000 −0.503509
\(143\) 0 0
\(144\) 8.10387 0.675322
\(145\) 3.93244 6.81119i 0.326572 0.565639i
\(146\) 6.73042 11.6574i 0.557014 0.964776i
\(147\) 8.21099 + 14.2219i 0.677231 + 1.17300i
\(148\) 6.23572 0.512573
\(149\) 8.26469 + 14.3149i 0.677070 + 1.17272i 0.975859 + 0.218400i \(0.0700838\pi\)
−0.298790 + 0.954319i \(0.596583\pi\)
\(150\) −1.66612 2.88581i −0.136038 0.235625i
\(151\) 6.70830 0.545914 0.272957 0.962026i \(-0.411998\pi\)
0.272957 + 0.962026i \(0.411998\pi\)
\(152\) −0.199902 0.346241i −0.0162142 0.0280838i
\(153\) −9.34991 + 16.1945i −0.755896 + 1.30925i
\(154\) −2.90723 + 5.03546i −0.234271 + 0.405769i
\(155\) 3.10713 0.249570
\(156\) 0 0
\(157\) 5.81684 0.464234 0.232117 0.972688i \(-0.425435\pi\)
0.232117 + 0.972688i \(0.425435\pi\)
\(158\) −0.465732 + 0.806671i −0.0370516 + 0.0641753i
\(159\) −17.7024 + 30.6615i −1.40389 + 2.43162i
\(160\) −0.500000 0.866025i −0.0395285 0.0684653i
\(161\) −2.24632 −0.177035
\(162\) −16.1805 28.0255i −1.27126 2.20189i
\(163\) −2.08620 3.61341i −0.163404 0.283024i 0.772683 0.634792i \(-0.218914\pi\)
−0.936087 + 0.351768i \(0.885581\pi\)
\(164\) −0.761018 −0.0594255
\(165\) 6.73042 + 11.6574i 0.523963 + 0.907530i
\(166\) 5.19333 8.99511i 0.403080 0.698156i
\(167\) −7.80426 + 13.5174i −0.603912 + 1.04601i 0.388311 + 0.921528i \(0.373059\pi\)
−0.992222 + 0.124477i \(0.960275\pi\)
\(168\) −4.79635 −0.370046
\(169\) 0 0
\(170\) 2.30752 0.176979
\(171\) −1.61998 + 2.80589i −0.123883 + 0.214572i
\(172\) 5.50367 9.53264i 0.419651 0.726857i
\(173\) −2.90723 5.03546i −0.221032 0.382839i 0.734089 0.679053i \(-0.237609\pi\)
−0.955122 + 0.296214i \(0.904276\pi\)
\(174\) −26.2077 −1.98680
\(175\) 0.719687 + 1.24653i 0.0544032 + 0.0942291i
\(176\) 2.01978 + 3.49837i 0.152247 + 0.263700i
\(177\) −11.5432 −0.867643
\(178\) −0.485517 0.840939i −0.0363910 0.0630311i
\(179\) 8.43611 14.6118i 0.630545 1.09214i −0.356896 0.934144i \(-0.616165\pi\)
0.987441 0.157991i \(-0.0505018\pi\)
\(180\) −4.05193 + 7.01815i −0.302013 + 0.523102i
\(181\) −12.6207 −0.938088 −0.469044 0.883175i \(-0.655401\pi\)
−0.469044 + 0.883175i \(0.655401\pi\)
\(182\) 0 0
\(183\) −18.9688 −1.40221
\(184\) −0.780313 + 1.35154i −0.0575254 + 0.0996370i
\(185\) −3.11786 + 5.40029i −0.229230 + 0.397037i
\(186\) −5.17686 8.96658i −0.379586 0.657461i
\(187\) −9.32138 −0.681647
\(188\) −2.92008 5.05772i −0.212969 0.368872i
\(189\) 12.2400 + 21.2002i 0.890326 + 1.54209i
\(190\) 0.399804 0.0290049
\(191\) −0.670362 1.16110i −0.0485057 0.0840143i 0.840753 0.541419i \(-0.182113\pi\)
−0.889259 + 0.457404i \(0.848779\pi\)
\(192\) −1.66612 + 2.88581i −0.120242 + 0.208265i
\(193\) −8.37182 + 14.5004i −0.602616 + 1.04376i 0.389807 + 0.920897i \(0.372542\pi\)
−0.992423 + 0.122866i \(0.960792\pi\)
\(194\) 12.3184 0.884408
\(195\) 0 0
\(196\) −4.92820 −0.352015
\(197\) −0.498370 + 0.863202i −0.0355074 + 0.0615006i −0.883233 0.468934i \(-0.844638\pi\)
0.847726 + 0.530435i \(0.177971\pi\)
\(198\) 16.3681 28.3503i 1.16323 2.01477i
\(199\) 1.30752 + 2.26469i 0.0926875 + 0.160540i 0.908641 0.417578i \(-0.137121\pi\)
−0.815954 + 0.578117i \(0.803788\pi\)
\(200\) 1.00000 0.0707107
\(201\) 17.3290 + 30.0147i 1.22229 + 2.11707i
\(202\) −2.41747 4.18718i −0.170093 0.294609i
\(203\) 11.3205 0.794544
\(204\) −3.84461 6.65906i −0.269177 0.466227i
\(205\) 0.380509 0.659061i 0.0265759 0.0460308i
\(206\) −2.86603 + 4.96410i −0.199685 + 0.345865i
\(207\) 12.6471 0.879035
\(208\) 0 0
\(209\) −1.61504 −0.111714
\(210\) 2.39817 4.15376i 0.165490 0.286637i
\(211\) 4.56691 7.91011i 0.314399 0.544555i −0.664911 0.746923i \(-0.731530\pi\)
0.979310 + 0.202368i \(0.0648638\pi\)
\(212\) −5.31246 9.20145i −0.364861 0.631958i
\(213\) −19.9935 −1.36993
\(214\) 6.43774 + 11.1505i 0.440075 + 0.762232i
\(215\) 5.50367 + 9.53264i 0.375347 + 0.650121i
\(216\) 17.0073 1.15720
\(217\) 2.23616 + 3.87314i 0.151800 + 0.262926i
\(218\) −0.107127 + 0.185550i −0.00725557 + 0.0125670i
\(219\) 22.4274 38.8454i 1.51550 2.62493i
\(220\) −4.03957 −0.272348
\(221\) 0 0
\(222\) 20.7790 1.39459
\(223\) −2.90595 + 5.03326i −0.194597 + 0.337052i −0.946768 0.321916i \(-0.895673\pi\)
0.752171 + 0.658968i \(0.229007\pi\)
\(224\) 0.719687 1.24653i 0.0480861 0.0832876i
\(225\) −4.05193 7.01815i −0.270129 0.467877i
\(226\) −0.128595 −0.00855399
\(227\) −5.77162 9.99674i −0.383076 0.663507i 0.608424 0.793612i \(-0.291802\pi\)
−0.991500 + 0.130105i \(0.958469\pi\)
\(228\) −0.666123 1.15376i −0.0441151 0.0764096i
\(229\) 12.8755 0.850836 0.425418 0.904997i \(-0.360127\pi\)
0.425418 + 0.904997i \(0.360127\pi\)
\(230\) −0.780313 1.35154i −0.0514523 0.0891180i
\(231\) −9.68759 + 16.7794i −0.637397 + 1.10400i
\(232\) 3.93244 6.81119i 0.258177 0.447177i
\(233\) 10.4149 0.682303 0.341152 0.940008i \(-0.389183\pi\)
0.341152 + 0.940008i \(0.389183\pi\)
\(234\) 0 0
\(235\) 5.84016 0.380970
\(236\) 1.73205 3.00000i 0.112747 0.195283i
\(237\) −1.55193 + 2.68803i −0.100809 + 0.174606i
\(238\) 1.66069 + 2.87640i 0.107647 + 0.186449i
\(239\) 18.3801 1.18891 0.594456 0.804128i \(-0.297367\pi\)
0.594456 + 0.804128i \(0.297367\pi\)
\(240\) −1.66612 2.88581i −0.107548 0.186278i
\(241\) −0.309853 0.536681i −0.0199594 0.0345707i 0.855873 0.517186i \(-0.173020\pi\)
−0.875833 + 0.482615i \(0.839687\pi\)
\(242\) 5.31812 0.341862
\(243\) −28.4065 49.2015i −1.82228 3.15628i
\(244\) 2.84624 4.92983i 0.182212 0.315600i
\(245\) 2.46410 4.26795i 0.157426 0.272669i
\(246\) −2.53590 −0.161683
\(247\) 0 0
\(248\) 3.10713 0.197303
\(249\) 17.3055 29.9739i 1.09669 1.89952i
\(250\) −0.500000 + 0.866025i −0.0316228 + 0.0547723i
\(251\) 2.65376 + 4.59645i 0.167504 + 0.290125i 0.937542 0.347873i \(-0.113096\pi\)
−0.770038 + 0.637998i \(0.779763\pi\)
\(252\) −11.6645 −0.734794
\(253\) 3.15213 + 5.45965i 0.198173 + 0.343245i
\(254\) 8.06218 + 13.9641i 0.505866 + 0.876186i
\(255\) 7.68922 0.481518
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −12.3686 + 21.4230i −0.771529 + 1.33633i 0.165195 + 0.986261i \(0.447175\pi\)
−0.936725 + 0.350067i \(0.886159\pi\)
\(258\) 18.3396 31.7651i 1.14177 1.97761i
\(259\) −8.97553 −0.557713
\(260\) 0 0
\(261\) −63.7360 −3.94516
\(262\) −1.39005 + 2.40764i −0.0858775 + 0.148744i
\(263\) −2.56466 + 4.44211i −0.158143 + 0.273912i −0.934199 0.356752i \(-0.883884\pi\)
0.776056 + 0.630664i \(0.217218\pi\)
\(264\) 6.73042 + 11.6574i 0.414229 + 0.717465i
\(265\) 10.6249 0.652684
\(266\) 0.287734 + 0.498370i 0.0176421 + 0.0305570i
\(267\) −1.61786 2.80222i −0.0990115 0.171493i
\(268\) −10.4008 −0.635329
\(269\) −3.40687 5.90087i −0.207720 0.359782i 0.743276 0.668985i \(-0.233271\pi\)
−0.950996 + 0.309203i \(0.899938\pi\)
\(270\) −8.50367 + 14.7288i −0.517517 + 0.896366i
\(271\) −11.0106 + 19.0709i −0.668846 + 1.15848i 0.309381 + 0.950938i \(0.399878\pi\)
−0.978227 + 0.207538i \(0.933455\pi\)
\(272\) 2.30752 0.139914
\(273\) 0 0
\(274\) −5.46736 −0.330295
\(275\) 2.01978 3.49837i 0.121798 0.210960i
\(276\) −2.60020 + 4.50367i −0.156513 + 0.271089i
\(277\) −12.7152 22.0233i −0.763980 1.32325i −0.940784 0.339006i \(-0.889909\pi\)
0.176805 0.984246i \(-0.443424\pi\)
\(278\) −0.214517 −0.0128659
\(279\) −12.5899 21.8063i −0.753736 1.30551i
\(280\) 0.719687 + 1.24653i 0.0430095 + 0.0744947i
\(281\) 25.0954 1.49707 0.748533 0.663098i \(-0.230759\pi\)
0.748533 + 0.663098i \(0.230759\pi\)
\(282\) −9.73042 16.8536i −0.579438 1.00362i
\(283\) −0.882986 + 1.52938i −0.0524881 + 0.0909120i −0.891076 0.453855i \(-0.850048\pi\)
0.838588 + 0.544767i \(0.183382\pi\)
\(284\) 3.00000 5.19615i 0.178017 0.308335i
\(285\) 1.33225 0.0789155
\(286\) 0 0
\(287\) 1.09539 0.0646588
\(288\) −4.05193 + 7.01815i −0.238762 + 0.413549i
\(289\) 5.83768 10.1112i 0.343393 0.594774i
\(290\) 3.93244 + 6.81119i 0.230921 + 0.399967i
\(291\) 41.0479 2.40627
\(292\) 6.73042 + 11.6574i 0.393868 + 0.682200i
\(293\) 9.20145 + 15.9374i 0.537555 + 0.931072i 0.999035 + 0.0439215i \(0.0139852\pi\)
−0.461480 + 0.887150i \(0.652682\pi\)
\(294\) −16.4220 −0.957750
\(295\) 1.73205 + 3.00000i 0.100844 + 0.174667i
\(296\) −3.11786 + 5.40029i −0.181222 + 0.313886i
\(297\) 34.3512 59.4980i 1.99326 3.45242i
\(298\) −16.5294 −0.957521
\(299\) 0 0
\(300\) 3.33225 0.192387
\(301\) −7.92184 + 13.7210i −0.456607 + 0.790867i
\(302\) −3.35415 + 5.80956i −0.193010 + 0.334303i
\(303\) −8.05560 13.9527i −0.462782 0.801563i
\(304\) 0.399804 0.0229303
\(305\) 2.84624 + 4.92983i 0.162975 + 0.282281i
\(306\) −9.34991 16.1945i −0.534499 0.925779i
\(307\) −8.40730 −0.479830 −0.239915 0.970794i \(-0.577120\pi\)
−0.239915 + 0.970794i \(0.577120\pi\)
\(308\) −2.90723 5.03546i −0.165655 0.286922i
\(309\) −9.55030 + 16.5416i −0.543298 + 0.941019i
\(310\) −1.55356 + 2.69085i −0.0882365 + 0.152830i
\(311\) 33.6601 1.90869 0.954344 0.298708i \(-0.0965557\pi\)
0.954344 + 0.298708i \(0.0965557\pi\)
\(312\) 0 0
\(313\) 27.0008 1.52618 0.763088 0.646294i \(-0.223682\pi\)
0.763088 + 0.646294i \(0.223682\pi\)
\(314\) −2.90842 + 5.03753i −0.164132 + 0.284284i
\(315\) 5.83225 10.1017i 0.328610 0.569169i
\(316\) −0.465732 0.806671i −0.0261995 0.0453788i
\(317\) 10.2569 0.576086 0.288043 0.957617i \(-0.406995\pi\)
0.288043 + 0.957617i \(0.406995\pi\)
\(318\) −17.7024 30.6615i −0.992703 1.71941i
\(319\) −15.8854 27.5143i −0.889410 1.54050i
\(320\) 1.00000 0.0559017
\(321\) 21.4521 + 37.1562i 1.19734 + 2.07386i
\(322\) 1.12316 1.94537i 0.0625914 0.108411i
\(323\) −0.461278 + 0.798957i −0.0256662 + 0.0444551i
\(324\) 32.3611 1.79784
\(325\) 0 0
\(326\) 4.17240 0.231088
\(327\) −0.356974 + 0.618298i −0.0197407 + 0.0341919i
\(328\) 0.380509 0.659061i 0.0210101 0.0363905i
\(329\) 4.20308 + 7.27995i 0.231724 + 0.401357i
\(330\) −13.4608 −0.740995
\(331\) −2.26469 3.92256i −0.124479 0.215603i 0.797050 0.603913i \(-0.206392\pi\)
−0.921529 + 0.388310i \(0.873059\pi\)
\(332\) 5.19333 + 8.99511i 0.285021 + 0.493671i
\(333\) 50.5335 2.76922
\(334\) −7.80426 13.5174i −0.427030 0.739638i
\(335\) 5.20039 9.00734i 0.284128 0.492124i
\(336\) 2.39817 4.15376i 0.130831 0.226606i
\(337\) −6.72755 −0.366473 −0.183236 0.983069i \(-0.558657\pi\)
−0.183236 + 0.983069i \(0.558657\pi\)
\(338\) 0 0
\(339\) −0.428509 −0.0232734
\(340\) −1.15376 + 1.99837i −0.0625714 + 0.108377i
\(341\) 6.27573 10.8699i 0.339850 0.588637i
\(342\) −1.61998 2.80589i −0.0875985 0.151725i
\(343\) 17.1691 0.927047
\(344\) 5.50367 + 9.53264i 0.296738 + 0.513965i
\(345\) −2.60020 4.50367i −0.139990 0.242469i
\(346\) 5.81445 0.312587
\(347\) −1.57286 2.72427i −0.0844355 0.146247i 0.820715 0.571338i \(-0.193575\pi\)
−0.905151 + 0.425091i \(0.860242\pi\)
\(348\) 13.1039 22.6966i 0.702441 1.21666i
\(349\) −5.25246 + 9.09752i −0.281158 + 0.486979i −0.971670 0.236341i \(-0.924052\pi\)
0.690513 + 0.723320i \(0.257385\pi\)
\(350\) −1.43937 −0.0769378
\(351\) 0 0
\(352\) −4.03957 −0.215310
\(353\) 16.4988 28.5767i 0.878141 1.52099i 0.0247633 0.999693i \(-0.492117\pi\)
0.853378 0.521292i \(-0.174550\pi\)
\(354\) 5.77162 9.99674i 0.306758 0.531321i
\(355\) 3.00000 + 5.19615i 0.159223 + 0.275783i
\(356\) 0.971033 0.0514647
\(357\) 5.53383 + 9.58488i 0.292881 + 0.507285i
\(358\) 8.43611 + 14.6118i 0.445862 + 0.772256i
\(359\) 24.2487 1.27980 0.639899 0.768459i \(-0.278976\pi\)
0.639899 + 0.768459i \(0.278976\pi\)
\(360\) −4.05193 7.01815i −0.213556 0.369889i
\(361\) 9.42008 16.3161i 0.495794 0.858740i
\(362\) 6.31034 10.9298i 0.331664 0.574459i
\(363\) 17.7213 0.930127
\(364\) 0 0
\(365\) −13.4608 −0.704573
\(366\) 9.48438 16.4274i 0.495756 0.858675i
\(367\) 9.89924 17.1460i 0.516736 0.895013i −0.483075 0.875579i \(-0.660480\pi\)
0.999811 0.0194340i \(-0.00618643\pi\)
\(368\) −0.780313 1.35154i −0.0406766 0.0704540i
\(369\) −6.16719 −0.321051
\(370\) −3.11786 5.40029i −0.162090 0.280748i
\(371\) 7.64662 + 13.2443i 0.396993 + 0.687611i
\(372\) 10.3537 0.536815
\(373\) −2.39557 4.14924i −0.124038 0.214840i 0.797319 0.603559i \(-0.206251\pi\)
−0.921356 + 0.388719i \(0.872918\pi\)
\(374\) 4.66069 8.07255i 0.240999 0.417422i
\(375\) −1.66612 + 2.88581i −0.0860382 + 0.149023i
\(376\) 5.84016 0.301183
\(377\) 0 0
\(378\) −24.4799 −1.25911
\(379\) 9.74760 16.8833i 0.500700 0.867239i −0.499299 0.866430i \(-0.666409\pi\)
1.00000 0.000808945i \(-0.000257495\pi\)
\(380\) −0.199902 + 0.346241i −0.0102548 + 0.0177618i
\(381\) 26.8652 + 46.5318i 1.37634 + 2.38390i
\(382\) 1.34072 0.0685974
\(383\) 6.43068 + 11.1383i 0.328592 + 0.569139i 0.982233 0.187667i \(-0.0600924\pi\)
−0.653640 + 0.756805i \(0.726759\pi\)
\(384\) −1.66612 2.88581i −0.0850240 0.147266i
\(385\) 5.81445 0.296332
\(386\) −8.37182 14.5004i −0.426114 0.738051i
\(387\) 44.6010 77.2512i 2.26720 3.92690i
\(388\) −6.15919 + 10.6680i −0.312686 + 0.541587i
\(389\) −6.94233 −0.351990 −0.175995 0.984391i \(-0.556314\pi\)
−0.175995 + 0.984391i \(0.556314\pi\)
\(390\) 0 0
\(391\) 3.60117 0.182119
\(392\) 2.46410 4.26795i 0.124456 0.215564i
\(393\) −4.63199 + 8.02284i −0.233653 + 0.404699i
\(394\) −0.498370 0.863202i −0.0251075 0.0434875i
\(395\) 0.931464 0.0468670
\(396\) 16.3681 + 28.3503i 0.822526 + 1.42466i
\(397\) 2.16612 + 3.75184i 0.108715 + 0.188299i 0.915250 0.402887i \(-0.131993\pi\)
−0.806535 + 0.591186i \(0.798660\pi\)
\(398\) −2.61504 −0.131080
\(399\) 0.958800 + 1.66069i 0.0480001 + 0.0831385i
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) −11.8616 + 20.5448i −0.592339 + 1.02596i 0.401578 + 0.915825i \(0.368462\pi\)
−0.993917 + 0.110136i \(0.964871\pi\)
\(402\) −34.6580 −1.72858
\(403\) 0 0
\(404\) 4.83494 0.240547
\(405\) −16.1805 + 28.0255i −0.804017 + 1.39260i
\(406\) −5.66025 + 9.80385i −0.280914 + 0.486557i
\(407\) 12.5948 + 21.8149i 0.624302 + 1.08132i
\(408\) 7.68922 0.380673
\(409\) −19.1896 33.2373i −0.948864 1.64348i −0.747824 0.663897i \(-0.768901\pi\)
−0.201039 0.979583i \(-0.564432\pi\)
\(410\) 0.380509 + 0.659061i 0.0187920 + 0.0325487i
\(411\) −18.2186 −0.898657
\(412\) −2.86603 4.96410i −0.141199 0.244564i
\(413\) −2.49307 + 4.31812i −0.122676 + 0.212481i
\(414\) −6.32355 + 10.9527i −0.310786 + 0.538297i
\(415\) −10.3867 −0.509861
\(416\) 0 0
\(417\) −0.714822 −0.0350050
\(418\) 0.807519 1.39866i 0.0394970 0.0684109i
\(419\) 19.2946 33.4192i 0.942602 1.63263i 0.182120 0.983276i \(-0.441704\pi\)
0.760482 0.649359i \(-0.224963\pi\)
\(420\) 2.39817 + 4.15376i 0.117019 + 0.202683i
\(421\) −40.6199 −1.97969 −0.989847 0.142134i \(-0.954603\pi\)
−0.989847 + 0.142134i \(0.954603\pi\)
\(422\) 4.56691 + 7.91011i 0.222314 + 0.385058i
\(423\) −23.6639 40.9871i −1.15058 1.99286i
\(424\) 10.6249 0.515992
\(425\) −1.15376 1.99837i −0.0559655 0.0969352i
\(426\) 9.99674 17.3149i 0.484344 0.838908i
\(427\) −4.09680 + 7.09587i −0.198258 + 0.343393i
\(428\) −12.8755 −0.622360
\(429\) 0 0
\(430\) −11.0073 −0.530821
\(431\) −5.88581 + 10.1945i −0.283509 + 0.491053i −0.972247 0.233958i \(-0.924832\pi\)
0.688737 + 0.725011i \(0.258165\pi\)
\(432\) −8.50367 + 14.7288i −0.409133 + 0.708639i
\(433\) 16.5004 + 28.5795i 0.792959 + 1.37345i 0.924127 + 0.382085i \(0.124794\pi\)
−0.131168 + 0.991360i \(0.541873\pi\)
\(434\) −4.47232 −0.214678
\(435\) 13.1039 + 22.6966i 0.628282 + 1.08822i
\(436\) −0.107127 0.185550i −0.00513046 0.00888622i
\(437\) 0.623945 0.0298473
\(438\) 22.4274 + 38.8454i 1.07162 + 1.85611i
\(439\) −0.348718 + 0.603998i −0.0166434 + 0.0288272i −0.874227 0.485517i \(-0.838631\pi\)
0.857584 + 0.514344i \(0.171965\pi\)
\(440\) 2.01978 3.49837i 0.0962895 0.166778i
\(441\) −39.9375 −1.90179
\(442\) 0 0
\(443\) 28.6297 1.36024 0.680120 0.733101i \(-0.261928\pi\)
0.680120 + 0.733101i \(0.261928\pi\)
\(444\) −10.3895 + 17.9951i −0.493063 + 0.854010i
\(445\) −0.485517 + 0.840939i −0.0230157 + 0.0398644i
\(446\) −2.90595 5.03326i −0.137601 0.238332i
\(447\) −55.0800 −2.60519
\(448\) 0.719687 + 1.24653i 0.0340020 + 0.0588932i
\(449\) 3.39251 + 5.87601i 0.160103 + 0.277306i 0.934905 0.354897i \(-0.115484\pi\)
−0.774803 + 0.632203i \(0.782151\pi\)
\(450\) 8.10387 0.382020
\(451\) −1.53709 2.66232i −0.0723788 0.125364i
\(452\) 0.0642973 0.111366i 0.00302429 0.00523823i
\(453\) −11.1769 + 19.3589i −0.525135 + 0.909560i
\(454\) 11.5432 0.541751
\(455\) 0 0
\(456\) 1.33225 0.0623882
\(457\) −8.96940 + 15.5355i −0.419571 + 0.726718i −0.995896 0.0905021i \(-0.971153\pi\)
0.576325 + 0.817220i \(0.304486\pi\)
\(458\) −6.43774 + 11.1505i −0.300816 + 0.521029i
\(459\) −19.6224 33.9870i −0.915894 1.58638i
\(460\) 1.56063 0.0727646
\(461\) −13.4486 23.2937i −0.626364 1.08489i −0.988275 0.152682i \(-0.951209\pi\)
0.361911 0.932213i \(-0.382124\pi\)
\(462\) −9.68759 16.7794i −0.450708 0.780648i
\(463\) −26.8402 −1.24737 −0.623684 0.781677i \(-0.714365\pi\)
−0.623684 + 0.781677i \(0.714365\pi\)
\(464\) 3.93244 + 6.81119i 0.182559 + 0.316202i
\(465\) −5.17686 + 8.96658i −0.240071 + 0.415815i
\(466\) −5.20745 + 9.01957i −0.241231 + 0.417824i
\(467\) −9.48726 −0.439018 −0.219509 0.975610i \(-0.570446\pi\)
−0.219509 + 0.975610i \(0.570446\pi\)
\(468\) 0 0
\(469\) 14.9706 0.691279
\(470\) −2.92008 + 5.05772i −0.134693 + 0.233295i
\(471\) −9.69157 + 16.7863i −0.446564 + 0.773471i
\(472\) 1.73205 + 3.00000i 0.0797241 + 0.138086i
\(473\) 44.4649 2.04450
\(474\) −1.55193 2.68803i −0.0712827 0.123465i
\(475\) −0.199902 0.346241i −0.00917214 0.0158866i
\(476\) −3.32138 −0.152235
\(477\) −43.0515 74.5674i −1.97119 3.41420i
\(478\) −9.19007 + 15.9177i −0.420344 + 0.728057i
\(479\) 5.60726 9.71206i 0.256202 0.443755i −0.709019 0.705189i \(-0.750862\pi\)
0.965221 + 0.261434i \(0.0841954\pi\)
\(480\) 3.33225 0.152096
\(481\) 0 0
\(482\) 0.619706 0.0282268
\(483\) 3.74265 6.48247i 0.170297 0.294962i
\(484\) −2.65906 + 4.60563i −0.120866 + 0.209347i
\(485\) −6.15919 10.6680i −0.279674 0.484410i
\(486\) 56.8130 2.57709
\(487\) 13.8643 + 24.0137i 0.628252 + 1.08816i 0.987902 + 0.155077i \(0.0495627\pi\)
−0.359650 + 0.933087i \(0.617104\pi\)
\(488\) 2.84624 + 4.92983i 0.128843 + 0.223163i
\(489\) 13.9035 0.628737
\(490\) 2.46410 + 4.26795i 0.111317 + 0.192806i
\(491\) −13.9377 + 24.1409i −0.629002 + 1.08946i 0.358751 + 0.933433i \(0.383203\pi\)
−0.987752 + 0.156029i \(0.950131\pi\)
\(492\) 1.26795 2.19615i 0.0571636 0.0990102i
\(493\) −18.1484 −0.817361
\(494\) 0 0
\(495\) −32.7361 −1.47138
\(496\) −1.55356 + 2.69085i −0.0697571 + 0.120823i
\(497\) −4.31812 + 7.47921i −0.193694 + 0.335488i
\(498\) 17.3055 + 29.9739i 0.775476 + 1.34316i
\(499\) −36.8040 −1.64757 −0.823786 0.566901i \(-0.808142\pi\)
−0.823786 + 0.566901i \(0.808142\pi\)
\(500\) −0.500000 0.866025i −0.0223607 0.0387298i
\(501\) −26.0057 45.0432i −1.16185 2.01238i
\(502\) −5.30752 −0.236886
\(503\) 19.2848 + 33.4022i 0.859865 + 1.48933i 0.872057 + 0.489404i \(0.162785\pi\)
−0.0121928 + 0.999926i \(0.503881\pi\)
\(504\) 5.83225 10.1017i 0.259789 0.449968i
\(505\) −2.41747 + 4.18718i −0.107576 + 0.186327i
\(506\) −6.30426 −0.280258
\(507\) 0 0
\(508\) −16.1244 −0.715403
\(509\) −14.4262 + 24.9870i −0.639431 + 1.10753i 0.346126 + 0.938188i \(0.387497\pi\)
−0.985558 + 0.169340i \(0.945837\pi\)
\(510\) −3.84461 + 6.65906i −0.170242 + 0.294868i
\(511\) −9.68759 16.7794i −0.428554 0.742277i
\(512\) 1.00000 0.0441942
\(513\) −3.39980 5.88863i −0.150105 0.259990i
\(514\) −12.3686 21.4230i −0.545554 0.944927i
\(515\) 5.73205 0.252584
\(516\) 18.3396 + 31.7651i 0.807355 + 1.39838i
\(517\) 11.7959 20.4310i 0.518781 0.898556i
\(518\) 4.48777 7.77304i 0.197181 0.341528i
\(519\) 19.3752 0.850476
\(520\) 0 0
\(521\) −10.6422 −0.466241 −0.233121 0.972448i \(-0.574894\pi\)
−0.233121 + 0.972448i \(0.574894\pi\)
\(522\) 31.8680 55.1970i 1.39482 2.41591i
\(523\) −19.0759 + 33.0404i −0.834130 + 1.44476i 0.0606070 + 0.998162i \(0.480696\pi\)
−0.894737 + 0.446594i \(0.852637\pi\)
\(524\) −1.39005 2.40764i −0.0607246 0.105178i
\(525\) −4.79635 −0.209330
\(526\) −2.56466 4.44211i −0.111824 0.193685i
\(527\) −3.58488 6.20919i −0.156160 0.270477i
\(528\) −13.4608 −0.585808
\(529\) 10.2822 + 17.8093i 0.447053 + 0.774319i
\(530\) −5.31246 + 9.20145i −0.230759 + 0.399686i
\(531\) 14.0363 24.3116i 0.609124 1.05503i
\(532\) −0.575468 −0.0249497
\(533\) 0 0
\(534\) 3.23572 0.140023
\(535\) 6.43774 11.1505i 0.278328 0.482078i
\(536\) 5.20039 9.00734i 0.224623 0.389058i
\(537\) 28.1112 + 48.6900i 1.21309 + 2.10113i
\(538\) 6.81373 0.293761
\(539\) −9.95391 17.2407i −0.428745 0.742609i
\(540\) −8.50367 14.7288i −0.365940 0.633826i
\(541\) 1.46593 0.0630252 0.0315126 0.999503i \(-0.489968\pi\)
0.0315126 + 0.999503i \(0.489968\pi\)
\(542\) −11.0106 19.0709i −0.472946 0.819166i
\(543\) 21.0276 36.4209i 0.902381 1.56297i
\(544\) −1.15376 + 1.99837i −0.0494670 + 0.0856794i
\(545\) 0.214254 0.00917765
\(546\) 0 0
\(547\) −16.2374 −0.694262 −0.347131 0.937817i \(-0.612844\pi\)
−0.347131 + 0.937817i \(0.612844\pi\)
\(548\) 2.73368 4.73487i 0.116777 0.202264i
\(549\) 23.0656 39.9507i 0.984414 1.70505i
\(550\) 2.01978 + 3.49837i 0.0861239 + 0.149171i
\(551\) −3.14441 −0.133957
\(552\) −2.60020 4.50367i −0.110672 0.191689i
\(553\) 0.670362 + 1.16110i 0.0285067 + 0.0493751i
\(554\) 25.4303 1.08043
\(555\) −10.3895 17.9951i −0.441009 0.763850i
\(556\) 0.107258 0.185777i 0.00454877 0.00787869i
\(557\) 16.6623 28.8599i 0.706004 1.22283i −0.260324 0.965521i \(-0.583829\pi\)
0.966328 0.257314i \(-0.0828373\pi\)
\(558\) 25.1797 1.06594
\(559\) 0 0
\(560\) −1.43937 −0.0608246
\(561\) 15.5306 26.8997i 0.655701 1.13571i
\(562\) −12.5477 + 21.7332i −0.529293 + 0.916762i
\(563\) −3.75678 6.50693i −0.158329 0.274234i 0.775937 0.630810i \(-0.217277\pi\)
−0.934266 + 0.356576i \(0.883944\pi\)
\(564\) 19.4608 0.819449
\(565\) 0.0642973 + 0.111366i 0.00270501 + 0.00468521i
\(566\) −0.882986 1.52938i −0.0371147 0.0642845i
\(567\) −46.5797 −1.95616
\(568\) 3.00000 + 5.19615i 0.125877 + 0.218026i
\(569\) −6.45619 + 11.1825i −0.270658 + 0.468793i −0.969030 0.246941i \(-0.920574\pi\)
0.698373 + 0.715734i \(0.253908\pi\)
\(570\) −0.666123 + 1.15376i −0.0279008 + 0.0483257i
\(571\) −3.47470 −0.145412 −0.0727059 0.997353i \(-0.523163\pi\)
−0.0727059 + 0.997353i \(0.523163\pi\)
\(572\) 0 0
\(573\) 4.46762 0.186638
\(574\) −0.547694 + 0.948635i −0.0228603 + 0.0395952i
\(575\) −0.780313 + 1.35154i −0.0325413 + 0.0563632i
\(576\) −4.05193 7.01815i −0.168831 0.292423i
\(577\) −8.80287 −0.366468 −0.183234 0.983069i \(-0.558657\pi\)
−0.183234 + 0.983069i \(0.558657\pi\)
\(578\) 5.83768 + 10.1112i 0.242815 + 0.420569i
\(579\) −27.8970 48.3189i −1.15936 2.00807i
\(580\) −7.86488 −0.326572
\(581\) −7.47514 12.9473i −0.310121 0.537146i
\(582\) −20.5239 + 35.5485i −0.850745 + 1.47353i
\(583\) 21.4601 37.1699i 0.888785 1.53942i
\(584\) −13.4608 −0.557014
\(585\) 0 0
\(586\) −18.4029 −0.760217
\(587\) −17.8960 + 30.9967i −0.738646 + 1.27937i 0.214459 + 0.976733i \(0.431201\pi\)
−0.953105 + 0.302639i \(0.902132\pi\)
\(588\) 8.21099 14.2219i 0.338616 0.586500i
\(589\) −0.621121 1.07581i −0.0255929 0.0443281i
\(590\) −3.46410 −0.142615
\(591\) −1.66069 2.87640i −0.0683117 0.118319i
\(592\) −3.11786 5.40029i −0.128143 0.221951i
\(593\) −3.93555 −0.161613 −0.0808067 0.996730i \(-0.525750\pi\)
−0.0808067 + 0.996730i \(0.525750\pi\)
\(594\) 34.3512 + 59.4980i 1.40945 + 2.44123i
\(595\) 1.66069 2.87640i 0.0680817 0.117921i
\(596\) 8.26469 14.3149i 0.338535 0.586360i
\(597\) −8.71395 −0.356638
\(598\) 0 0
\(599\) −9.50704 −0.388447 −0.194223 0.980957i \(-0.562219\pi\)
−0.194223 + 0.980957i \(0.562219\pi\)
\(600\) −1.66612 + 2.88581i −0.0680192 + 0.117813i
\(601\) −17.4935 + 30.2996i −0.713574 + 1.23595i 0.249933 + 0.968263i \(0.419591\pi\)
−0.963507 + 0.267683i \(0.913742\pi\)
\(602\) −7.92184 13.7210i −0.322870 0.559227i
\(603\) −84.2866 −3.43241
\(604\) −3.35415 5.80956i −0.136478 0.236388i
\(605\) −2.65906 4.60563i −0.108106 0.187245i
\(606\) 16.1112 0.654473
\(607\) 8.08054 + 13.9959i 0.327979 + 0.568076i 0.982111 0.188304i \(-0.0602991\pi\)
−0.654132 + 0.756381i \(0.726966\pi\)
\(608\) −0.199902 + 0.346241i −0.00810710 + 0.0140419i
\(609\) −18.8614 + 32.6688i −0.764301 + 1.32381i
\(610\) −5.69248 −0.230482
\(611\) 0 0
\(612\) 18.6998 0.755896
\(613\) 4.43598 7.68335i 0.179168 0.310327i −0.762428 0.647073i \(-0.775993\pi\)
0.941596 + 0.336746i \(0.109326\pi\)
\(614\) 4.20365 7.28094i 0.169646 0.293835i
\(615\) 1.26795 + 2.19615i 0.0511286 + 0.0885574i
\(616\) 5.81445 0.234271
\(617\) −5.42453 9.39557i −0.218383 0.378251i 0.735930 0.677057i \(-0.236745\pi\)
−0.954314 + 0.298806i \(0.903412\pi\)
\(618\) −9.55030 16.5416i −0.384170 0.665401i
\(619\) 5.82727 0.234218 0.117109 0.993119i \(-0.462637\pi\)
0.117109 + 0.993119i \(0.462637\pi\)
\(620\) −1.55356 2.69085i −0.0623926 0.108067i
\(621\) −13.2711 + 22.9861i −0.532549 + 0.922402i
\(622\) −16.8300 + 29.1505i −0.674823 + 1.16883i
\(623\) −1.39768 −0.0559969
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −13.5004 + 23.3834i −0.539585 + 0.934589i
\(627\) 2.69085 4.66069i 0.107462 0.186130i
\(628\) −2.90842 5.03753i −0.116059 0.201019i
\(629\) 14.3890 0.573729
\(630\) 5.83225 + 10.1017i 0.232362 + 0.402463i
\(631\) 4.71793 + 8.17169i 0.187818 + 0.325310i 0.944522 0.328447i \(-0.106525\pi\)
−0.756705 + 0.653757i \(0.773192\pi\)
\(632\) 0.931464 0.0370516
\(633\) 15.2181 + 26.3584i 0.604863 + 1.04765i
\(634\) −5.12846 + 8.88276i −0.203677 + 0.352779i
\(635\) 8.06218 13.9641i 0.319938 0.554148i
\(636\) 35.4049 1.40389
\(637\) 0 0
\(638\) 31.7707 1.25782
\(639\) 24.3116 42.1089i 0.961752 1.66580i
\(640\) −0.500000 + 0.866025i −0.0197642 + 0.0342327i
\(641\) −20.2877 35.1392i −0.801314 1.38792i −0.918751 0.394837i \(-0.870801\pi\)
0.117437 0.993080i \(-0.462532\pi\)
\(642\) −42.9043 −1.69330
\(643\) −2.93598 5.08527i −0.115784 0.200543i 0.802309 0.596909i \(-0.203605\pi\)
−0.918093 + 0.396365i \(0.870271\pi\)
\(644\) 1.12316 + 1.94537i 0.0442588 + 0.0766585i
\(645\) −36.6792 −1.44424
\(646\) −0.461278 0.798957i −0.0181487 0.0314345i
\(647\) −19.3652 + 33.5416i −0.761326 + 1.31866i 0.180841 + 0.983512i \(0.442118\pi\)
−0.942167 + 0.335143i \(0.891215\pi\)
\(648\) −16.1805 + 28.0255i −0.635631 + 1.10095i
\(649\) 13.9935 0.549292
\(650\) 0 0
\(651\) −14.9029 −0.584089
\(652\) −2.08620 + 3.61341i −0.0817020 + 0.141512i
\(653\) 6.45492 11.1802i 0.252601 0.437517i −0.711641 0.702544i \(-0.752047\pi\)
0.964241 + 0.265027i \(0.0853808\pi\)
\(654\) −0.356974 0.618298i −0.0139588 0.0241774i
\(655\) 2.78010 0.108627
\(656\) 0.380509 + 0.659061i 0.0148564 + 0.0257320i
\(657\) 54.5424 + 94.4703i 2.12790 + 3.68564i
\(658\) −8.40617 −0.327707
\(659\) 3.20654 + 5.55389i 0.124909 + 0.216349i 0.921697 0.387910i \(-0.126803\pi\)
−0.796788 + 0.604259i \(0.793469\pi\)
\(660\) 6.73042 11.6574i 0.261981 0.453765i
\(661\) −3.49470 + 6.05300i −0.135928 + 0.235434i −0.925952 0.377642i \(-0.876735\pi\)
0.790024 + 0.613076i \(0.210068\pi\)
\(662\) 4.52938 0.176039
\(663\) 0 0
\(664\) −10.3867 −0.403080
\(665\) 0.287734 0.498370i 0.0111578 0.0193260i
\(666\) −25.2667 + 43.7633i −0.979066 + 1.69579i
\(667\) 6.13707 + 10.6297i 0.237628 + 0.411584i
\(668\) 15.6085 0.603912
\(669\) −9.68335 16.7721i −0.374380 0.648445i
\(670\) 5.20039 + 9.00734i 0.200909 + 0.347984i
\(671\) 22.9952 0.887719
\(672\) 2.39817 + 4.15376i 0.0925116 + 0.160235i
\(673\) 23.3083 40.3712i 0.898470 1.55620i 0.0690207 0.997615i \(-0.478013\pi\)
0.829450 0.558581i \(-0.188654\pi\)
\(674\) 3.36377 5.82623i 0.129568 0.224418i
\(675\) 17.0073 0.654613
\(676\) 0 0
\(677\) 6.85102 0.263306 0.131653 0.991296i \(-0.457972\pi\)
0.131653 + 0.991296i \(0.457972\pi\)
\(678\) 0.214254 0.371100i 0.00822839 0.0142520i
\(679\) 8.86538 15.3553i 0.340222 0.589282i
\(680\) −1.15376 1.99837i −0.0442446 0.0766340i
\(681\) 38.4649 1.47398
\(682\) 6.27573 + 10.8699i 0.240310 + 0.416229i
\(683\) 12.2614 + 21.2374i 0.469171 + 0.812627i 0.999379 0.0352402i \(-0.0112196\pi\)
−0.530208 + 0.847867i \(0.677886\pi\)
\(684\) 3.23996 0.123883
\(685\) 2.73368 + 4.73487i 0.104449 + 0.180910i
\(686\) −8.58457 + 14.8689i −0.327760 + 0.567698i
\(687\) −21.4521 + 37.1562i −0.818451 + 1.41760i
\(688\) −11.0073 −0.419651
\(689\) 0 0
\(690\) 5.20039 0.197976
\(691\) −5.03484 + 8.72060i −0.191534 + 0.331747i −0.945759 0.324869i \(-0.894680\pi\)
0.754225 + 0.656617i \(0.228013\pi\)
\(692\) −2.90723 + 5.03546i −0.110516 + 0.191420i
\(693\) −23.5598 40.8067i −0.894961 1.55012i
\(694\) 3.14572 0.119410
\(695\) 0.107258 + 0.185777i 0.00406854 + 0.00704692i
\(696\) 13.1039 + 22.6966i 0.496701 + 0.860311i
\(697\) −1.75606 −0.0665156
\(698\) −5.25246 9.09752i −0.198808 0.344346i
\(699\) −17.3525 + 30.0554i −0.656333 + 1.13680i
\(700\) 0.719687 1.24653i 0.0272016 0.0471146i
\(701\) 10.4149 0.393366 0.196683 0.980467i \(-0.436983\pi\)
0.196683 + 0.980467i \(0.436983\pi\)
\(702\) 0 0
\(703\) 2.49307 0.0940279
\(704\) 2.01978 3.49837i 0.0761235 0.131850i
\(705\) −9.73042 + 16.8536i −0.366469 + 0.634743i
\(706\) 16.4988 + 28.5767i 0.620940 + 1.07550i
\(707\) −6.95928 −0.261731
\(708\) 5.77162 + 9.99674i 0.216911 + 0.375700i
\(709\) 0.187896 + 0.325446i 0.00705660 + 0.0122224i 0.869532 0.493876i \(-0.164420\pi\)
−0.862476 + 0.506099i \(0.831087\pi\)
\(710\) −6.00000 −0.225176
\(711\) −3.77423 6.53716i −0.141545 0.245163i
\(712\) −0.485517 + 0.840939i −0.0181955 + 0.0315155i
\(713\) −2.42453 + 4.19941i −0.0907994 + 0.157269i
\(714\) −11.0677 −0.414197
\(715\) 0 0
\(716\) −16.8722 −0.630545
\(717\) −30.6236 + 53.0416i −1.14366 + 1.98087i
\(718\) −12.1244 + 21.0000i −0.452477 + 0.783713i
\(719\) 9.66547 + 16.7411i 0.360461 + 0.624337i 0.988037 0.154218i \(-0.0492860\pi\)
−0.627576 + 0.778556i \(0.715953\pi\)
\(720\) 8.10387 0.302013
\(721\) 4.12528 + 7.14520i 0.153634 + 0.266101i
\(722\) 9.42008 + 16.3161i 0.350579 + 0.607221i
\(723\) 2.06501 0.0767987
\(724\) 6.31034 + 10.9298i 0.234522 + 0.406204i
\(725\) 3.93244 6.81119i 0.146047 0.252961i
\(726\) −8.86065 + 15.3471i −0.328849 + 0.569584i
\(727\) −31.3390 −1.16230 −0.581150 0.813797i \(-0.697397\pi\)
−0.581150 + 0.813797i \(0.697397\pi\)
\(728\) 0 0
\(729\) 92.2317 3.41599
\(730\) 6.73042 11.6574i 0.249104 0.431461i
\(731\) 12.6998 21.9967i 0.469720 0.813579i
\(732\) 9.48438 + 16.4274i 0.350553 + 0.607175i
\(733\) −19.6207 −0.724707 −0.362353 0.932041i \(-0.618027\pi\)
−0.362353 + 0.932041i \(0.618027\pi\)
\(734\) 9.89924 + 17.1460i 0.365387 + 0.632870i
\(735\) 8.21099 + 14.2219i 0.302867 + 0.524581i
\(736\) 1.56063 0.0575254
\(737\) −21.0073 36.3858i −0.773815 1.34029i
\(738\) 3.08359 5.34094i 0.113509 0.196603i
\(739\) −5.98141 + 10.3601i −0.220030 + 0.381103i −0.954817 0.297195i \(-0.903949\pi\)
0.734787 + 0.678298i \(0.237282\pi\)
\(740\) 6.23572 0.229230
\(741\) 0 0
\(742\) −15.2932 −0.561432
\(743\) 9.96162 17.2540i 0.365457 0.632989i −0.623393 0.781909i \(-0.714246\pi\)
0.988849 + 0.148920i \(0.0475795\pi\)
\(744\) −5.17686 + 8.96658i −0.189793 + 0.328731i
\(745\) 8.26469 + 14.3149i 0.302795 + 0.524456i
\(746\) 4.79113 0.175416
\(747\) 42.0860 + 72.8952i 1.53985 + 2.66709i
\(748\) 4.66069 + 8.07255i 0.170412 + 0.295162i
\(749\) 18.5326 0.677168
\(750\) −1.66612 2.88581i −0.0608382 0.105375i
\(751\) −21.4608 + 37.1713i −0.783117 + 1.35640i 0.147000 + 0.989136i \(0.453038\pi\)
−0.930117 + 0.367262i \(0.880295\pi\)
\(752\) −2.92008 + 5.05772i −0.106484 + 0.184436i
\(753\) −17.6860 −0.644512
\(754\) 0 0
\(755\) 6.70830 0.244140
\(756\) 12.2400 21.2002i 0.445163 0.771045i
\(757\) 17.8750 30.9604i 0.649678 1.12528i −0.333522 0.942742i \(-0.608237\pi\)
0.983200 0.182533i \(-0.0584295\pi\)
\(758\) 9.74760 + 16.8833i 0.354049 + 0.613230i
\(759\) −21.0073 −0.762518
\(760\) −0.199902 0.346241i −0.00725121 0.0125595i
\(761\) −15.0822 26.1232i −0.546731 0.946965i −0.998496 0.0548284i \(-0.982539\pi\)
0.451765 0.892137i \(-0.350795\pi\)
\(762\) −53.7303 −1.94644
\(763\) 0.154196 + 0.267076i 0.00558227 + 0.00966878i
\(764\) −0.670362 + 1.16110i −0.0242529 + 0.0420072i
\(765\) −9.34991 + 16.1945i −0.338047 + 0.585514i
\(766\) −12.8614 −0.464700
\(767\) 0 0
\(768\) 3.33225 0.120242
\(769\) 12.1380 21.0236i 0.437708 0.758132i −0.559805 0.828625i \(-0.689124\pi\)
0.997512 + 0.0704928i \(0.0224572\pi\)
\(770\) −2.90723 + 5.03546i −0.104769 + 0.181465i
\(771\) −41.2151 71.3866i −1.48432 2.57093i
\(772\) 16.7436 0.602616
\(773\) −22.2667 38.5671i −0.800879 1.38716i −0.919038 0.394168i \(-0.871033\pi\)
0.118160 0.992995i \(-0.462300\pi\)
\(774\) 44.6010 + 77.2512i 1.60315 + 2.77674i
\(775\) 3.10713 0.111611
\(776\) −6.15919 10.6680i −0.221102 0.382960i
\(777\) 14.9543 25.9017i 0.536484 0.929218i
\(778\) 3.47116 6.01223i 0.124447 0.215549i
\(779\) −0.304258 −0.0109012
\(780\) 0 0
\(781\) 24.2374 0.867283
\(782\) −1.80059 + 3.11871i −0.0643889 + 0.111525i
\(783\) 66.8804 115.840i 2.39011 4.13979i
\(784\) 2.46410 + 4.26795i 0.0880036 + 0.152427i
\(785\) 5.81684 0.207612
\(786\) −4.63199 8.02284i −0.165217 0.286165i
\(787\) 8.71015 + 15.0864i 0.310483 + 0.537773i 0.978467 0.206403i \(-0.0661758\pi\)
−0.667984 + 0.744176i \(0.732842\pi\)
\(788\) 0.996740 0.0355074
\(789\) −8.54606 14.8022i −0.304248 0.526973i
\(790\) −0.465732 + 0.806671i −0.0165700 + 0.0287001i
\(791\) −0.0925479 + 0.160298i −0.00329062 + 0.00569953i
\(792\) −32.7361 −1.16323
\(793\) 0 0
\(794\) −4.33225 −0.153746
\(795\) −17.7024 + 30.6615i −0.627841 + 1.08745i
\(796\) 1.30752 2.26469i 0.0463438 0.0802698i
\(797\) −16.4801 28.5444i −0.583756 1.01110i −0.995029 0.0995834i \(-0.968249\pi\)
0.411273 0.911512i \(-0.365084\pi\)
\(798\) −1.91760 −0.0678823
\(799\) −6.73813 11.6708i −0.238378 0.412883i
\(800\) −0.500000 0.866025i −0.0176777 0.0306186i
\(801\) 7.86912 0.278042
\(802\) −11.8616 20.5448i −0.418847 0.725464i
\(803\) −27.1880 + 47.0910i −0.959444 + 1.66181i
\(804\) 17.3290 30.0147i 0.611146 1.05854i
\(805\) −2.24632 −0.0791725
\(806\) 0 0
\(807\) 22.7050 0.799255
\(808\) −2.41747 + 4.18718i −0.0850463 + 0.147304i
\(809\) −12.6664 + 21.9389i −0.445327 + 0.771329i −0.998075 0.0620195i \(-0.980246\pi\)
0.552748 + 0.833348i \(0.313579\pi\)
\(810\) −16.1805 28.0255i −0.568526 0.984716i
\(811\) 42.4806 1.49170 0.745848 0.666117i \(-0.232045\pi\)
0.745848 + 0.666117i \(0.232045\pi\)
\(812\) −5.66025 9.80385i −0.198636 0.344048i
\(813\) −36.6900 63.5490i −1.28678 2.22876i
\(814\) −25.1896 −0.882896
\(815\) −2.08620 3.61341i −0.0730765 0.126572i
\(816\) −3.84461 + 6.65906i −0.134588 + 0.233114i
\(817\) 2.20039 3.81119i 0.0769820 0.133337i
\(818\) 38.3792 1.34190
\(819\) 0 0
\(820\) −0.761018 −0.0265759
\(821\) −8.87640 + 15.3744i −0.309789 + 0.536569i −0.978316 0.207118i \(-0.933592\pi\)
0.668527 + 0.743687i \(0.266925\pi\)
\(822\) 9.10930 15.7778i 0.317723 0.550313i
\(823\) −16.2840 28.2048i −0.567626 0.983157i −0.996800 0.0799351i \(-0.974529\pi\)
0.429174 0.903222i \(-0.358805\pi\)
\(824\) 5.73205 0.199685
\(825\) 6.73042 + 11.6574i 0.234323 + 0.405860i
\(826\) −2.49307 4.31812i −0.0867449 0.150247i
\(827\) −26.6419 −0.926429 −0.463215 0.886246i \(-0.653304\pi\)
−0.463215 + 0.886246i \(0.653304\pi\)
\(828\) −6.32355 10.9527i −0.219759 0.380633i
\(829\) 8.58281 14.8659i 0.298093 0.516313i −0.677606 0.735425i \(-0.736983\pi\)
0.975700 + 0.219112i \(0.0703160\pi\)
\(830\) 5.19333 8.99511i 0.180263 0.312225i
\(831\) 84.7401 2.93960
\(832\) 0 0
\(833\) −11.3719 −0.394014
\(834\) 0.357411 0.619054i 0.0123761 0.0214361i
\(835\) −7.80426 + 13.5174i −0.270077 + 0.467788i
\(836\) 0.807519 + 1.39866i 0.0279286 + 0.0483738i
\(837\) 52.8440 1.82656
\(838\) 19.2946 + 33.4192i 0.666520 + 1.15445i
\(839\) 22.5138 + 38.9951i 0.777264 + 1.34626i 0.933513 + 0.358543i \(0.116726\pi\)
−0.156249 + 0.987718i \(0.549940\pi\)
\(840\) −4.79635 −0.165490
\(841\) −16.4282 28.4545i −0.566490 0.981189i
\(842\) 20.3100 35.1779i 0.699928 1.21231i
\(843\) −41.8120 + 72.4205i −1.44008 + 2.49430i
\(844\) −9.13381 −0.314399
\(845\) 0 0
\(846\) 47.3279 1.62717
\(847\) 3.82738 6.62922i 0.131510 0.227783i
\(848\) −5.31246 + 9.20145i −0.182431 + 0.315979i
\(849\) −2.94233 5.09626i −0.100980 0.174903i
\(850\) 2.30752 0.0791472
\(851\) −4.86582 8.42784i −0.166798 0.288903i
\(852\) 9.99674 + 17.3149i 0.342483 + 0.593197i
\(853\) −31.0013 −1.06146 −0.530731 0.847540i \(-0.678083\pi\)
−0.530731 + 0.847540i \(0.678083\pi\)
\(854\) −4.09680 7.09587i −0.140190 0.242816i
\(855\) −1.61998 + 2.80589i −0.0554022 + 0.0959594i
\(856\) 6.43774 11.1505i 0.220038 0.381116i
\(857\) 27.3813 0.935326 0.467663 0.883907i \(-0.345096\pi\)
0.467663 + 0.883907i \(0.345096\pi\)
\(858\) 0 0
\(859\) 8.36050 0.285256 0.142628 0.989776i \(-0.454445\pi\)
0.142628 + 0.989776i \(0.454445\pi\)
\(860\) 5.50367 9.53264i 0.187674 0.325060i
\(861\) −1.82505 + 3.16108i −0.0621976 + 0.107729i
\(862\) −5.88581 10.1945i −0.200471 0.347227i
\(863\) 40.2398 1.36978 0.684889 0.728647i \(-0.259850\pi\)
0.684889 + 0.728647i \(0.259850\pi\)
\(864\) −8.50367 14.7288i −0.289301 0.501084i
\(865\) −2.90723 5.03546i −0.0988486 0.171211i
\(866\) −33.0008 −1.12141
\(867\) 19.4526 + 33.6929i 0.660644 + 1.14427i
\(868\) 2.23616 3.87314i 0.0759002 0.131463i
\(869\) 1.88136 3.25860i 0.0638206 0.110541i
\(870\) −26.2077 −0.888525
\(871\) 0 0
\(872\) 0.214254 0.00725557
\(873\) −49.9133 + 86.4523i −1.68931 + 2.92597i
\(874\) −0.311973 + 0.540352i −0.0105526 + 0.0182777i
\(875\) 0.719687 + 1.24653i 0.0243299 + 0.0421405i
\(876\) −44.8548 −1.51550
\(877\) −26.0338 45.0918i −0.879098 1.52264i −0.852333 0.523000i \(-0.824813\pi\)
−0.0267652 0.999642i \(-0.508521\pi\)
\(878\) −0.348718 0.603998i −0.0117687 0.0203839i
\(879\) −61.3230 −2.06837
\(880\) 2.01978 + 3.49837i 0.0680869 + 0.117930i
\(881\) 17.2542 29.8852i 0.581310 1.00686i −0.414015 0.910270i \(-0.635874\pi\)
0.995324 0.0965881i \(-0.0307929\pi\)
\(882\) 19.9688 34.5869i 0.672383 1.16460i
\(883\) 28.2064 0.949222 0.474611 0.880196i \(-0.342589\pi\)
0.474611 + 0.880196i \(0.342589\pi\)
\(884\) 0 0
\(885\) −11.5432 −0.388022
\(886\) −14.3149 + 24.7941i −0.480917 + 0.832973i
\(887\) −1.06098 + 1.83768i −0.0356244 + 0.0617032i −0.883288 0.468831i \(-0.844675\pi\)
0.847664 + 0.530534i \(0.178009\pi\)
\(888\) −10.3895 17.9951i −0.348648 0.603876i
\(889\) 23.2090 0.778404
\(890\) −0.485517 0.840939i −0.0162746 0.0281884i
\(891\) 65.3624 + 113.211i 2.18972 + 3.79271i
\(892\) 5.81191 0.194597
\(893\) −1.16746 2.02210i −0.0390676 0.0676670i
\(894\) 27.5400 47.7006i 0.921075 1.59535i
\(895\) 8.43611 14.6118i 0.281988 0.488418i
\(896\) −1.43937 −0.0480861
\(897\) 0 0
\(898\) −6.78503 −0.226419
\(899\) 12.2186 21.1632i 0.407513 0.705833i
\(900\) −4.05193 + 7.01815i −0.135064 + 0.233938i
\(901\) −12.2586 21.2325i −0.408393 0.707358i
\(902\) 3.07418 0.102359
\(903\) −26.3975 45.7218i −0.878455 1.52153i
\(904\) 0.0642973 + 0.111366i 0.00213850 + 0.00370398i
\(905\) −12.6207 −0.419526
\(906\) −11.1769 19.3589i −0.371326 0.643156i
\(907\) −14.7272 + 25.5082i −0.489007 + 0.846986i −0.999920 0.0126471i \(-0.995974\pi\)
0.510913 + 0.859633i \(0.329308\pi\)
\(908\) −5.77162 + 9.99674i −0.191538 + 0.331753i
\(909\) 39.1817 1.29958
\(910\) 0 0
\(911\) 19.9986 0.662582 0.331291 0.943529i \(-0.392516\pi\)
0.331291 + 0.943529i \(0.392516\pi\)
\(912\) −0.666123 + 1.15376i −0.0220575 + 0.0382048i
\(913\) −20.9788 + 36.3364i −0.694297 + 1.20256i
\(914\) −8.96940 15.5355i −0.296681 0.513867i
\(915\) −18.9688 −0.627088
\(916\) −6.43774 11.1505i −0.212709 0.368423i
\(917\) 2.00080 + 3.46549i 0.0660722 + 0.114440i
\(918\) 39.2448 1.29527
\(919\) 14.8564 + 25.7321i 0.490068 + 0.848822i 0.999935 0.0114312i \(-0.00363874\pi\)
−0.509867 + 0.860253i \(0.670305\pi\)
\(920\) −0.780313 + 1.35154i −0.0257262 + 0.0445590i
\(921\) 14.0076 24.2619i 0.461566 0.799456i
\(922\) 26.8972 0.885813
\(923\) 0 0
\(924\) 19.3752 0.637397
\(925\) −3.11786 + 5.40029i −0.102515 + 0.177561i
\(926\) 13.4201 23.2443i 0.441011 0.763854i
\(927\) −23.2259 40.2284i −0.762838 1.32127i
\(928\) −7.86488 −0.258177
\(929\) −4.61504 7.99348i −0.151414 0.262258i 0.780333 0.625364i \(-0.215049\pi\)
−0.931748 + 0.363106i \(0.881716\pi\)
\(930\) −5.17686 8.96658i −0.169756 0.294026i
\(931\) −1.97032 −0.0645745
\(932\) −5.20745 9.01957i −0.170576 0.295446i
\(933\) −56.0819 + 97.1366i −1.83604 + 3.18011i
\(934\) 4.74363 8.21621i 0.155216 0.268843i
\(935\) −9.32138 −0.304842
\(936\) 0 0
\(937\) −4.58731 −0.149861 −0.0749305 0.997189i \(-0.523873\pi\)
−0.0749305 + 0.997189i \(0.523873\pi\)
\(938\) −7.48531 + 12.9649i −0.244404 + 0.423320i
\(939\) −44.9867 + 77.9192i −1.46809 + 2.54280i
\(940\) −2.92008 5.05772i −0.0952425 0.164965i
\(941\) 9.00734 0.293631 0.146815 0.989164i \(-0.453098\pi\)
0.146815 + 0.989164i \(0.453098\pi\)
\(942\) −9.69157 16.7863i −0.315768 0.546927i
\(943\) 0.593832 + 1.02855i 0.0193378 + 0.0334941i
\(944\) −3.46410 −0.112747
\(945\) 12.2400 + 21.2002i 0.398166 + 0.689644i
\(946\) −22.2325 + 38.5078i −0.722840 + 1.25200i
\(947\) 27.3144 47.3100i 0.887600 1.53737i 0.0448946 0.998992i \(-0.485705\pi\)
0.842705 0.538376i \(-0.180962\pi\)
\(948\) 3.10387 0.100809
\(949\) 0 0
\(950\) 0.399804 0.0129714
\(951\) −17.0893 + 29.5995i −0.554159 + 0.959831i
\(952\) 1.66069 2.87640i 0.0538233 0.0932247i
\(953\) 9.46862 + 16.4001i 0.306719 + 0.531252i 0.977643 0.210274i \(-0.0674356\pi\)
−0.670924 + 0.741526i \(0.734102\pi\)
\(954\) 86.1030 2.78769
\(955\) −0.670362 1.16110i −0.0216924 0.0375724i
\(956\) −9.19007 15.9177i −0.297228 0.514814i
\(957\) 105.868 3.42223
\(958\) 5.60726 + 9.71206i 0.181162 + 0.313782i
\(959\) −3.93479 + 6.81525i −0.127061 + 0.220076i
\(960\) −1.66612 + 2.88581i −0.0537739 + 0.0931391i
\(961\) −21.3458 −0.688573
\(962\) 0 0
\(963\) −104.341 −3.36235
\(964\) −0.309853 + 0.536681i −0.00997970 + 0.0172853i
\(965\) −8.37182 + 14.5004i −0.269498 + 0.466785i
\(966\) 3.74265 + 6.48247i 0.120418 + 0.208570i
\(967\) −19.1583 −0.616089 −0.308044 0.951372i \(-0.599675\pi\)
−0.308044 + 0.951372i \(0.599675\pi\)
\(968\) −2.65906 4.60563i −0.0854654 0.148030i
\(969\) −1.53709 2.66232i −0.0493785 0.0855261i
\(970\) 12.3184 0.395519
\(971\) −11.1876 19.3775i −0.359027 0.621853i 0.628772 0.777590i \(-0.283558\pi\)
−0.987799 + 0.155737i \(0.950225\pi\)
\(972\) −28.4065 + 49.2015i −0.911139 + 1.57814i
\(973\) −0.154385 + 0.267402i −0.00494935 + 0.00857253i
\(974\) −27.7286 −0.888483
\(975\) 0 0
\(976\) −5.69248 −0.182212
\(977\) −2.26299 + 3.91962i −0.0723996 + 0.125400i −0.899952 0.435988i \(-0.856399\pi\)
0.827553 + 0.561388i \(0.189732\pi\)
\(978\) −6.95174 + 12.0408i −0.222292 + 0.385021i
\(979\) 1.96128 + 3.39703i 0.0626827 + 0.108570i
\(980\) −4.92820 −0.157426
\(981\) −0.868145 1.50367i −0.0277177 0.0480085i
\(982\) −13.9377 24.1409i −0.444771 0.770366i
\(983\) 12.1598 0.387839 0.193919 0.981017i \(-0.437880\pi\)
0.193919 + 0.981017i \(0.437880\pi\)
\(984\) 1.26795 + 2.19615i 0.0404207 + 0.0700108i
\(985\) −0.498370 + 0.863202i −0.0158794 + 0.0275039i
\(986\) 9.07418 15.7169i 0.288981 0.500530i
\(987\) −28.0114 −0.891613
\(988\) 0 0
\(989\) −17.1783 −0.546240
\(990\) 16.3681 28.3503i 0.520211 0.901032i
\(991\) 28.1367 48.7341i 0.893790 1.54809i 0.0584955 0.998288i \(-0.481370\pi\)
0.835295 0.549802i \(-0.185297\pi\)
\(992\) −1.55356 2.69085i −0.0493257 0.0854346i
\(993\) 15.0930 0.478962
\(994\) −4.31812 7.47921i −0.136962 0.237226i
\(995\) 1.30752 + 2.26469i 0.0414511 + 0.0717955i
\(996\) −34.6109 −1.09669
\(997\) 2.33056 + 4.03665i 0.0738097 + 0.127842i 0.900568 0.434715i \(-0.143151\pi\)
−0.826758 + 0.562557i \(0.809818\pi\)
\(998\) 18.4020 31.8732i 0.582504 1.00893i
\(999\) −53.0265 + 91.8446i −1.67769 + 2.90584i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.e.s.191.1 8
13.2 odd 12 1690.2.l.j.361.1 8
13.3 even 3 inner 1690.2.e.s.991.1 8
13.4 even 6 1690.2.a.t.1.4 4
13.5 odd 4 130.2.l.b.121.3 yes 8
13.6 odd 12 1690.2.d.k.1351.4 8
13.7 odd 12 1690.2.d.k.1351.8 8
13.8 odd 4 1690.2.l.j.1161.1 8
13.9 even 3 1690.2.a.u.1.4 4
13.10 even 6 1690.2.e.t.991.1 8
13.11 odd 12 130.2.l.b.101.3 8
13.12 even 2 1690.2.e.t.191.1 8
39.5 even 4 1170.2.bs.g.901.1 8
39.11 even 12 1170.2.bs.g.361.1 8
52.11 even 12 1040.2.da.d.881.4 8
52.31 even 4 1040.2.da.d.641.4 8
65.4 even 6 8450.2.a.cm.1.1 4
65.9 even 6 8450.2.a.ci.1.1 4
65.18 even 4 650.2.n.e.199.1 8
65.24 odd 12 650.2.m.c.101.2 8
65.37 even 12 650.2.n.e.49.1 8
65.44 odd 4 650.2.m.c.251.2 8
65.57 even 4 650.2.n.d.199.4 8
65.63 even 12 650.2.n.d.49.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.l.b.101.3 8 13.11 odd 12
130.2.l.b.121.3 yes 8 13.5 odd 4
650.2.m.c.101.2 8 65.24 odd 12
650.2.m.c.251.2 8 65.44 odd 4
650.2.n.d.49.4 8 65.63 even 12
650.2.n.d.199.4 8 65.57 even 4
650.2.n.e.49.1 8 65.37 even 12
650.2.n.e.199.1 8 65.18 even 4
1040.2.da.d.641.4 8 52.31 even 4
1040.2.da.d.881.4 8 52.11 even 12
1170.2.bs.g.361.1 8 39.11 even 12
1170.2.bs.g.901.1 8 39.5 even 4
1690.2.a.t.1.4 4 13.4 even 6
1690.2.a.u.1.4 4 13.9 even 3
1690.2.d.k.1351.4 8 13.6 odd 12
1690.2.d.k.1351.8 8 13.7 odd 12
1690.2.e.s.191.1 8 1.1 even 1 trivial
1690.2.e.s.991.1 8 13.3 even 3 inner
1690.2.e.t.191.1 8 13.12 even 2
1690.2.e.t.991.1 8 13.10 even 6
1690.2.l.j.361.1 8 13.2 odd 12
1690.2.l.j.1161.1 8 13.8 odd 4
8450.2.a.ci.1.1 4 65.9 even 6
8450.2.a.cm.1.1 4 65.4 even 6