Properties

Label 1690.2.e.i.991.1
Level $1690$
Weight $2$
Character 1690.991
Analytic conductor $13.495$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(191,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.191"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,0,-1,-2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 991.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1690.991
Dual form 1690.2.e.i.191.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} -1.00000 q^{5} -1.00000 q^{8} +(1.50000 - 2.59808i) q^{9} +(-0.500000 - 0.866025i) q^{10} +(-0.500000 - 0.866025i) q^{16} +(-1.00000 + 1.73205i) q^{17} +3.00000 q^{18} +(-4.00000 + 6.92820i) q^{19} +(0.500000 - 0.866025i) q^{20} +(2.00000 + 3.46410i) q^{23} +1.00000 q^{25} +(1.00000 + 1.73205i) q^{29} +4.00000 q^{31} +(0.500000 - 0.866025i) q^{32} -2.00000 q^{34} +(1.50000 + 2.59808i) q^{36} +(3.00000 + 5.19615i) q^{37} -8.00000 q^{38} +1.00000 q^{40} +(5.00000 + 8.66025i) q^{41} +(-1.50000 + 2.59808i) q^{45} +(-2.00000 + 3.46410i) q^{46} -8.00000 q^{47} +(3.50000 + 6.06218i) q^{49} +(0.500000 + 0.866025i) q^{50} +6.00000 q^{53} +(-1.00000 + 1.73205i) q^{58} +(4.00000 - 6.92820i) q^{59} +(1.00000 - 1.73205i) q^{61} +(2.00000 + 3.46410i) q^{62} +1.00000 q^{64} +(2.00000 + 3.46410i) q^{67} +(-1.00000 - 1.73205i) q^{68} +(-6.00000 + 10.3923i) q^{71} +(-1.50000 + 2.59808i) q^{72} -10.0000 q^{73} +(-3.00000 + 5.19615i) q^{74} +(-4.00000 - 6.92820i) q^{76} -8.00000 q^{79} +(0.500000 + 0.866025i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(-5.00000 + 8.66025i) q^{82} -12.0000 q^{83} +(1.00000 - 1.73205i) q^{85} +(5.00000 + 8.66025i) q^{89} -3.00000 q^{90} -4.00000 q^{92} +(-4.00000 - 6.92820i) q^{94} +(4.00000 - 6.92820i) q^{95} +(-7.00000 + 12.1244i) q^{97} +(-3.50000 + 6.06218i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - 2 q^{5} - 2 q^{8} + 3 q^{9} - q^{10} - q^{16} - 2 q^{17} + 6 q^{18} - 8 q^{19} + q^{20} + 4 q^{23} + 2 q^{25} + 2 q^{29} + 8 q^{31} + q^{32} - 4 q^{34} + 3 q^{36} + 6 q^{37}+ \cdots - 7 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) −0.500000 0.866025i −0.158114 0.273861i
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.00000 + 1.73205i −0.242536 + 0.420084i −0.961436 0.275029i \(-0.911312\pi\)
0.718900 + 0.695113i \(0.244646\pi\)
\(18\) 3.00000 0.707107
\(19\) −4.00000 + 6.92820i −0.917663 + 1.58944i −0.114708 + 0.993399i \(0.536593\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0.500000 0.866025i 0.111803 0.193649i
\(21\) 0 0
\(22\) 0 0
\(23\) 2.00000 + 3.46410i 0.417029 + 0.722315i 0.995639 0.0932891i \(-0.0297381\pi\)
−0.578610 + 0.815604i \(0.696405\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.00000 + 1.73205i 0.185695 + 0.321634i 0.943811 0.330487i \(-0.107213\pi\)
−0.758115 + 0.652121i \(0.773880\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) −2.00000 −0.342997
\(35\) 0 0
\(36\) 1.50000 + 2.59808i 0.250000 + 0.433013i
\(37\) 3.00000 + 5.19615i 0.493197 + 0.854242i 0.999969 0.00783774i \(-0.00249486\pi\)
−0.506772 + 0.862080i \(0.669162\pi\)
\(38\) −8.00000 −1.29777
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) 5.00000 + 8.66025i 0.780869 + 1.35250i 0.931436 + 0.363905i \(0.118557\pi\)
−0.150567 + 0.988600i \(0.548110\pi\)
\(42\) 0 0
\(43\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(44\) 0 0
\(45\) −1.50000 + 2.59808i −0.223607 + 0.387298i
\(46\) −2.00000 + 3.46410i −0.294884 + 0.510754i
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) 3.50000 + 6.06218i 0.500000 + 0.866025i
\(50\) 0.500000 + 0.866025i 0.0707107 + 0.122474i
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −1.00000 + 1.73205i −0.131306 + 0.227429i
\(59\) 4.00000 6.92820i 0.520756 0.901975i −0.478953 0.877841i \(-0.658984\pi\)
0.999709 0.0241347i \(-0.00768307\pi\)
\(60\) 0 0
\(61\) 1.00000 1.73205i 0.128037 0.221766i −0.794879 0.606768i \(-0.792466\pi\)
0.922916 + 0.385002i \(0.125799\pi\)
\(62\) 2.00000 + 3.46410i 0.254000 + 0.439941i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 2.00000 + 3.46410i 0.244339 + 0.423207i 0.961946 0.273241i \(-0.0880957\pi\)
−0.717607 + 0.696449i \(0.754762\pi\)
\(68\) −1.00000 1.73205i −0.121268 0.210042i
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 + 10.3923i −0.712069 + 1.23334i 0.252010 + 0.967725i \(0.418908\pi\)
−0.964079 + 0.265615i \(0.914425\pi\)
\(72\) −1.50000 + 2.59808i −0.176777 + 0.306186i
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) −3.00000 + 5.19615i −0.348743 + 0.604040i
\(75\) 0 0
\(76\) −4.00000 6.92820i −0.458831 0.794719i
\(77\) 0 0
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0.500000 + 0.866025i 0.0559017 + 0.0968246i
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) −5.00000 + 8.66025i −0.552158 + 0.956365i
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 1.00000 1.73205i 0.108465 0.187867i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.00000 + 8.66025i 0.529999 + 0.917985i 0.999388 + 0.0349934i \(0.0111410\pi\)
−0.469389 + 0.882992i \(0.655526\pi\)
\(90\) −3.00000 −0.316228
\(91\) 0 0
\(92\) −4.00000 −0.417029
\(93\) 0 0
\(94\) −4.00000 6.92820i −0.412568 0.714590i
\(95\) 4.00000 6.92820i 0.410391 0.710819i
\(96\) 0 0
\(97\) −7.00000 + 12.1244i −0.710742 + 1.23104i 0.253837 + 0.967247i \(0.418307\pi\)
−0.964579 + 0.263795i \(0.915026\pi\)
\(98\) −3.50000 + 6.06218i −0.353553 + 0.612372i
\(99\) 0 0
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) −3.00000 5.19615i −0.298511 0.517036i 0.677284 0.735721i \(-0.263157\pi\)
−0.975796 + 0.218685i \(0.929823\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 3.00000 + 5.19615i 0.291386 + 0.504695i
\(107\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.00000 12.1244i 0.658505 1.14056i −0.322498 0.946570i \(-0.604523\pi\)
0.981003 0.193993i \(-0.0621440\pi\)
\(114\) 0 0
\(115\) −2.00000 3.46410i −0.186501 0.323029i
\(116\) −2.00000 −0.185695
\(117\) 0 0
\(118\) 8.00000 0.736460
\(119\) 0 0
\(120\) 0 0
\(121\) 5.50000 9.52628i 0.500000 0.866025i
\(122\) 2.00000 0.181071
\(123\) 0 0
\(124\) −2.00000 + 3.46410i −0.179605 + 0.311086i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 10.0000 + 17.3205i 0.887357 + 1.53695i 0.842989 + 0.537931i \(0.180794\pi\)
0.0443678 + 0.999015i \(0.485873\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −2.00000 + 3.46410i −0.172774 + 0.299253i
\(135\) 0 0
\(136\) 1.00000 1.73205i 0.0857493 0.148522i
\(137\) −3.00000 + 5.19615i −0.256307 + 0.443937i −0.965250 0.261329i \(-0.915839\pi\)
0.708942 + 0.705266i \(0.249173\pi\)
\(138\) 0 0
\(139\) −2.00000 + 3.46410i −0.169638 + 0.293821i −0.938293 0.345843i \(-0.887593\pi\)
0.768655 + 0.639664i \(0.220926\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −12.0000 −1.00702
\(143\) 0 0
\(144\) −3.00000 −0.250000
\(145\) −1.00000 1.73205i −0.0830455 0.143839i
\(146\) −5.00000 8.66025i −0.413803 0.716728i
\(147\) 0 0
\(148\) −6.00000 −0.493197
\(149\) 3.00000 5.19615i 0.245770 0.425685i −0.716578 0.697507i \(-0.754293\pi\)
0.962348 + 0.271821i \(0.0876260\pi\)
\(150\) 0 0
\(151\) 20.0000 1.62758 0.813788 0.581161i \(-0.197401\pi\)
0.813788 + 0.581161i \(0.197401\pi\)
\(152\) 4.00000 6.92820i 0.324443 0.561951i
\(153\) 3.00000 + 5.19615i 0.242536 + 0.420084i
\(154\) 0 0
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) −18.0000 −1.43656 −0.718278 0.695756i \(-0.755069\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(158\) −4.00000 6.92820i −0.318223 0.551178i
\(159\) 0 0
\(160\) −0.500000 + 0.866025i −0.0395285 + 0.0684653i
\(161\) 0 0
\(162\) 4.50000 7.79423i 0.353553 0.612372i
\(163\) 10.0000 17.3205i 0.783260 1.35665i −0.146772 0.989170i \(-0.546888\pi\)
0.930033 0.367477i \(-0.119778\pi\)
\(164\) −10.0000 −0.780869
\(165\) 0 0
\(166\) −6.00000 10.3923i −0.465690 0.806599i
\(167\) 8.00000 + 13.8564i 0.619059 + 1.07224i 0.989658 + 0.143448i \(0.0458190\pi\)
−0.370599 + 0.928793i \(0.620848\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 2.00000 0.153393
\(171\) 12.0000 + 20.7846i 0.917663 + 1.58944i
\(172\) 0 0
\(173\) 9.00000 15.5885i 0.684257 1.18517i −0.289412 0.957205i \(-0.593460\pi\)
0.973670 0.227964i \(-0.0732068\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −5.00000 + 8.66025i −0.374766 + 0.649113i
\(179\) −2.00000 3.46410i −0.149487 0.258919i 0.781551 0.623841i \(-0.214429\pi\)
−0.931038 + 0.364922i \(0.881096\pi\)
\(180\) −1.50000 2.59808i −0.111803 0.193649i
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −2.00000 3.46410i −0.147442 0.255377i
\(185\) −3.00000 5.19615i −0.220564 0.382029i
\(186\) 0 0
\(187\) 0 0
\(188\) 4.00000 6.92820i 0.291730 0.505291i
\(189\) 0 0
\(190\) 8.00000 0.580381
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) 0 0
\(193\) 9.00000 + 15.5885i 0.647834 + 1.12208i 0.983639 + 0.180150i \(0.0576584\pi\)
−0.335805 + 0.941932i \(0.609008\pi\)
\(194\) −14.0000 −1.00514
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) −13.0000 22.5167i −0.926212 1.60425i −0.789601 0.613621i \(-0.789712\pi\)
−0.136611 0.990625i \(-0.543621\pi\)
\(198\) 0 0
\(199\) −12.0000 + 20.7846i −0.850657 + 1.47338i 0.0299585 + 0.999551i \(0.490462\pi\)
−0.880616 + 0.473831i \(0.842871\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 0 0
\(202\) 3.00000 5.19615i 0.211079 0.365600i
\(203\) 0 0
\(204\) 0 0
\(205\) −5.00000 8.66025i −0.349215 0.604858i
\(206\) −2.00000 3.46410i −0.139347 0.241355i
\(207\) 12.0000 0.834058
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −2.00000 3.46410i −0.137686 0.238479i 0.788935 0.614477i \(-0.210633\pi\)
−0.926620 + 0.375999i \(0.877300\pi\)
\(212\) −3.00000 + 5.19615i −0.206041 + 0.356873i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 1.00000 + 1.73205i 0.0677285 + 0.117309i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −4.00000 6.92820i −0.267860 0.463947i 0.700449 0.713702i \(-0.252983\pi\)
−0.968309 + 0.249756i \(0.919650\pi\)
\(224\) 0 0
\(225\) 1.50000 2.59808i 0.100000 0.173205i
\(226\) 14.0000 0.931266
\(227\) 10.0000 17.3205i 0.663723 1.14960i −0.315906 0.948790i \(-0.602309\pi\)
0.979630 0.200812i \(-0.0643581\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 2.00000 3.46410i 0.131876 0.228416i
\(231\) 0 0
\(232\) −1.00000 1.73205i −0.0656532 0.113715i
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 8.00000 0.521862
\(236\) 4.00000 + 6.92820i 0.260378 + 0.450988i
\(237\) 0 0
\(238\) 0 0
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) 0 0
\(241\) 1.00000 1.73205i 0.0644157 0.111571i −0.832019 0.554747i \(-0.812815\pi\)
0.896435 + 0.443176i \(0.146148\pi\)
\(242\) 11.0000 0.707107
\(243\) 0 0
\(244\) 1.00000 + 1.73205i 0.0640184 + 0.110883i
\(245\) −3.50000 6.06218i −0.223607 0.387298i
\(246\) 0 0
\(247\) 0 0
\(248\) −4.00000 −0.254000
\(249\) 0 0
\(250\) −0.500000 0.866025i −0.0316228 0.0547723i
\(251\) 14.0000 24.2487i 0.883672 1.53057i 0.0364441 0.999336i \(-0.488397\pi\)
0.847228 0.531229i \(-0.178270\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −10.0000 + 17.3205i −0.627456 + 1.08679i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −1.00000 1.73205i −0.0623783 0.108042i 0.833150 0.553047i \(-0.186535\pi\)
−0.895528 + 0.445005i \(0.853202\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 2.00000 + 3.46410i 0.123560 + 0.214013i
\(263\) 14.0000 + 24.2487i 0.863277 + 1.49524i 0.868748 + 0.495255i \(0.164925\pi\)
−0.00547092 + 0.999985i \(0.501741\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 0 0
\(267\) 0 0
\(268\) −4.00000 −0.244339
\(269\) 9.00000 15.5885i 0.548740 0.950445i −0.449622 0.893219i \(-0.648441\pi\)
0.998361 0.0572259i \(-0.0182255\pi\)
\(270\) 0 0
\(271\) −14.0000 24.2487i −0.850439 1.47300i −0.880812 0.473466i \(-0.843003\pi\)
0.0303728 0.999539i \(-0.490331\pi\)
\(272\) 2.00000 0.121268
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) 0 0
\(276\) 0 0
\(277\) −11.0000 + 19.0526i −0.660926 + 1.14476i 0.319447 + 0.947604i \(0.396503\pi\)
−0.980373 + 0.197153i \(0.936830\pi\)
\(278\) −4.00000 −0.239904
\(279\) 6.00000 10.3923i 0.359211 0.622171i
\(280\) 0 0
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 0 0
\(283\) −8.00000 13.8564i −0.475551 0.823678i 0.524057 0.851683i \(-0.324418\pi\)
−0.999608 + 0.0280052i \(0.991084\pi\)
\(284\) −6.00000 10.3923i −0.356034 0.616670i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −1.50000 2.59808i −0.0883883 0.153093i
\(289\) 6.50000 + 11.2583i 0.382353 + 0.662255i
\(290\) 1.00000 1.73205i 0.0587220 0.101710i
\(291\) 0 0
\(292\) 5.00000 8.66025i 0.292603 0.506803i
\(293\) 3.00000 5.19615i 0.175262 0.303562i −0.764990 0.644042i \(-0.777256\pi\)
0.940252 + 0.340480i \(0.110589\pi\)
\(294\) 0 0
\(295\) −4.00000 + 6.92820i −0.232889 + 0.403376i
\(296\) −3.00000 5.19615i −0.174371 0.302020i
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 10.0000 + 17.3205i 0.575435 + 0.996683i
\(303\) 0 0
\(304\) 8.00000 0.458831
\(305\) −1.00000 + 1.73205i −0.0572598 + 0.0991769i
\(306\) −3.00000 + 5.19615i −0.171499 + 0.297044i
\(307\) −28.0000 −1.59804 −0.799022 0.601302i \(-0.794649\pi\)
−0.799022 + 0.601302i \(0.794649\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −2.00000 3.46410i −0.113592 0.196748i
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) −9.00000 15.5885i −0.507899 0.879708i
\(315\) 0 0
\(316\) 4.00000 6.92820i 0.225018 0.389742i
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) 0 0
\(323\) −8.00000 13.8564i −0.445132 0.770991i
\(324\) 9.00000 0.500000
\(325\) 0 0
\(326\) 20.0000 1.10770
\(327\) 0 0
\(328\) −5.00000 8.66025i −0.276079 0.478183i
\(329\) 0 0
\(330\) 0 0
\(331\) −4.00000 + 6.92820i −0.219860 + 0.380808i −0.954765 0.297361i \(-0.903893\pi\)
0.734905 + 0.678170i \(0.237227\pi\)
\(332\) 6.00000 10.3923i 0.329293 0.570352i
\(333\) 18.0000 0.986394
\(334\) −8.00000 + 13.8564i −0.437741 + 0.758189i
\(335\) −2.00000 3.46410i −0.109272 0.189264i
\(336\) 0 0
\(337\) 18.0000 0.980522 0.490261 0.871576i \(-0.336901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 1.00000 + 1.73205i 0.0542326 + 0.0939336i
\(341\) 0 0
\(342\) −12.0000 + 20.7846i −0.648886 + 1.12390i
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 18.0000 0.967686
\(347\) −16.0000 + 27.7128i −0.858925 + 1.48770i 0.0140303 + 0.999902i \(0.495534\pi\)
−0.872955 + 0.487800i \(0.837799\pi\)
\(348\) 0 0
\(349\) 7.00000 + 12.1244i 0.374701 + 0.649002i 0.990282 0.139072i \(-0.0444119\pi\)
−0.615581 + 0.788074i \(0.711079\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.0000 25.9808i −0.798369 1.38282i −0.920677 0.390324i \(-0.872363\pi\)
0.122308 0.992492i \(-0.460970\pi\)
\(354\) 0 0
\(355\) 6.00000 10.3923i 0.318447 0.551566i
\(356\) −10.0000 −0.529999
\(357\) 0 0
\(358\) 2.00000 3.46410i 0.105703 0.183083i
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) 1.50000 2.59808i 0.0790569 0.136931i
\(361\) −22.5000 38.9711i −1.18421 2.05111i
\(362\) 11.0000 + 19.0526i 0.578147 + 1.00138i
\(363\) 0 0
\(364\) 0 0
\(365\) 10.0000 0.523424
\(366\) 0 0
\(367\) 6.00000 + 10.3923i 0.313197 + 0.542474i 0.979053 0.203607i \(-0.0652665\pi\)
−0.665855 + 0.746081i \(0.731933\pi\)
\(368\) 2.00000 3.46410i 0.104257 0.180579i
\(369\) 30.0000 1.56174
\(370\) 3.00000 5.19615i 0.155963 0.270135i
\(371\) 0 0
\(372\) 0 0
\(373\) −3.00000 + 5.19615i −0.155334 + 0.269047i −0.933181 0.359408i \(-0.882979\pi\)
0.777847 + 0.628454i \(0.216312\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 8.00000 0.412568
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(380\) 4.00000 + 6.92820i 0.205196 + 0.355409i
\(381\) 0 0
\(382\) 0 0
\(383\) 4.00000 6.92820i 0.204390 0.354015i −0.745548 0.666452i \(-0.767812\pi\)
0.949938 + 0.312437i \(0.101145\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −9.00000 + 15.5885i −0.458088 + 0.793432i
\(387\) 0 0
\(388\) −7.00000 12.1244i −0.355371 0.615521i
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) −3.50000 6.06218i −0.176777 0.306186i
\(393\) 0 0
\(394\) 13.0000 22.5167i 0.654931 1.13437i
\(395\) 8.00000 0.402524
\(396\) 0 0
\(397\) −9.00000 + 15.5885i −0.451697 + 0.782362i −0.998492 0.0549046i \(-0.982515\pi\)
0.546795 + 0.837267i \(0.315848\pi\)
\(398\) −24.0000 −1.20301
\(399\) 0 0
\(400\) −0.500000 0.866025i −0.0250000 0.0433013i
\(401\) −15.0000 25.9808i −0.749064 1.29742i −0.948272 0.317460i \(-0.897170\pi\)
0.199207 0.979957i \(-0.436163\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 6.00000 0.298511
\(405\) 4.50000 + 7.79423i 0.223607 + 0.387298i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 13.0000 22.5167i 0.642809 1.11338i −0.341994 0.939702i \(-0.611102\pi\)
0.984803 0.173675i \(-0.0555643\pi\)
\(410\) 5.00000 8.66025i 0.246932 0.427699i
\(411\) 0 0
\(412\) 2.00000 3.46410i 0.0985329 0.170664i
\(413\) 0 0
\(414\) 6.00000 + 10.3923i 0.294884 + 0.510754i
\(415\) 12.0000 0.589057
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 18.0000 + 31.1769i 0.879358 + 1.52309i 0.852047 + 0.523465i \(0.175361\pi\)
0.0273103 + 0.999627i \(0.491306\pi\)
\(420\) 0 0
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) 2.00000 3.46410i 0.0973585 0.168630i
\(423\) −12.0000 + 20.7846i −0.583460 + 1.01058i
\(424\) −6.00000 −0.291386
\(425\) −1.00000 + 1.73205i −0.0485071 + 0.0840168i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.00000 + 10.3923i 0.289010 + 0.500580i 0.973574 0.228373i \(-0.0733406\pi\)
−0.684564 + 0.728953i \(0.740007\pi\)
\(432\) 0 0
\(433\) −17.0000 + 29.4449i −0.816968 + 1.41503i 0.0909384 + 0.995857i \(0.471013\pi\)
−0.907906 + 0.419173i \(0.862320\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.00000 + 1.73205i −0.0478913 + 0.0829502i
\(437\) −32.0000 −1.53077
\(438\) 0 0
\(439\) 12.0000 + 20.7846i 0.572729 + 0.991995i 0.996284 + 0.0861252i \(0.0274485\pi\)
−0.423556 + 0.905870i \(0.639218\pi\)
\(440\) 0 0
\(441\) 21.0000 1.00000
\(442\) 0 0
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) 0 0
\(445\) −5.00000 8.66025i −0.237023 0.410535i
\(446\) 4.00000 6.92820i 0.189405 0.328060i
\(447\) 0 0
\(448\) 0 0
\(449\) 9.00000 15.5885i 0.424736 0.735665i −0.571660 0.820491i \(-0.693700\pi\)
0.996396 + 0.0848262i \(0.0270335\pi\)
\(450\) 3.00000 0.141421
\(451\) 0 0
\(452\) 7.00000 + 12.1244i 0.329252 + 0.570282i
\(453\) 0 0
\(454\) 20.0000 0.938647
\(455\) 0 0
\(456\) 0 0
\(457\) −19.0000 32.9090i −0.888783 1.53942i −0.841316 0.540544i \(-0.818219\pi\)
−0.0474665 0.998873i \(-0.515115\pi\)
\(458\) 5.00000 + 8.66025i 0.233635 + 0.404667i
\(459\) 0 0
\(460\) 4.00000 0.186501
\(461\) 7.00000 12.1244i 0.326023 0.564688i −0.655696 0.755025i \(-0.727625\pi\)
0.981719 + 0.190337i \(0.0609581\pi\)
\(462\) 0 0
\(463\) 16.0000 0.743583 0.371792 0.928316i \(-0.378744\pi\)
0.371792 + 0.928316i \(0.378744\pi\)
\(464\) 1.00000 1.73205i 0.0464238 0.0804084i
\(465\) 0 0
\(466\) −3.00000 5.19615i −0.138972 0.240707i
\(467\) −16.0000 −0.740392 −0.370196 0.928954i \(-0.620709\pi\)
−0.370196 + 0.928954i \(0.620709\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 4.00000 + 6.92820i 0.184506 + 0.319574i
\(471\) 0 0
\(472\) −4.00000 + 6.92820i −0.184115 + 0.318896i
\(473\) 0 0
\(474\) 0 0
\(475\) −4.00000 + 6.92820i −0.183533 + 0.317888i
\(476\) 0 0
\(477\) 9.00000 15.5885i 0.412082 0.713746i
\(478\) −10.0000 17.3205i −0.457389 0.792222i
\(479\) −2.00000 3.46410i −0.0913823 0.158279i 0.816711 0.577047i \(-0.195795\pi\)
−0.908093 + 0.418769i \(0.862462\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 2.00000 0.0910975
\(483\) 0 0
\(484\) 5.50000 + 9.52628i 0.250000 + 0.433013i
\(485\) 7.00000 12.1244i 0.317854 0.550539i
\(486\) 0 0
\(487\) −4.00000 + 6.92820i −0.181257 + 0.313947i −0.942309 0.334744i \(-0.891350\pi\)
0.761052 + 0.648691i \(0.224683\pi\)
\(488\) −1.00000 + 1.73205i −0.0452679 + 0.0784063i
\(489\) 0 0
\(490\) 3.50000 6.06218i 0.158114 0.273861i
\(491\) −10.0000 17.3205i −0.451294 0.781664i 0.547173 0.837020i \(-0.315704\pi\)
−0.998467 + 0.0553560i \(0.982371\pi\)
\(492\) 0 0
\(493\) −4.00000 −0.180151
\(494\) 0 0
\(495\) 0 0
\(496\) −2.00000 3.46410i −0.0898027 0.155543i
\(497\) 0 0
\(498\) 0 0
\(499\) −8.00000 −0.358129 −0.179065 0.983837i \(-0.557307\pi\)
−0.179065 + 0.983837i \(0.557307\pi\)
\(500\) 0.500000 0.866025i 0.0223607 0.0387298i
\(501\) 0 0
\(502\) 28.0000 1.24970
\(503\) −10.0000 + 17.3205i −0.445878 + 0.772283i −0.998113 0.0614052i \(-0.980442\pi\)
0.552235 + 0.833689i \(0.313775\pi\)
\(504\) 0 0
\(505\) 3.00000 + 5.19615i 0.133498 + 0.231226i
\(506\) 0 0
\(507\) 0 0
\(508\) −20.0000 −0.887357
\(509\) −9.00000 15.5885i −0.398918 0.690946i 0.594675 0.803966i \(-0.297281\pi\)
−0.993593 + 0.113020i \(0.963948\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 1.00000 1.73205i 0.0441081 0.0763975i
\(515\) 4.00000 0.176261
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 26.0000 1.13908 0.569540 0.821963i \(-0.307121\pi\)
0.569540 + 0.821963i \(0.307121\pi\)
\(522\) 3.00000 + 5.19615i 0.131306 + 0.227429i
\(523\) 4.00000 + 6.92820i 0.174908 + 0.302949i 0.940129 0.340818i \(-0.110704\pi\)
−0.765222 + 0.643767i \(0.777371\pi\)
\(524\) −2.00000 + 3.46410i −0.0873704 + 0.151330i
\(525\) 0 0
\(526\) −14.0000 + 24.2487i −0.610429 + 1.05729i
\(527\) −4.00000 + 6.92820i −0.174243 + 0.301797i
\(528\) 0 0
\(529\) 3.50000 6.06218i 0.152174 0.263573i
\(530\) −3.00000 5.19615i −0.130312 0.225706i
\(531\) −12.0000 20.7846i −0.520756 0.901975i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −2.00000 3.46410i −0.0863868 0.149626i
\(537\) 0 0
\(538\) 18.0000 0.776035
\(539\) 0 0
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 14.0000 24.2487i 0.601351 1.04157i
\(543\) 0 0
\(544\) 1.00000 + 1.73205i 0.0428746 + 0.0742611i
\(545\) −2.00000 −0.0856706
\(546\) 0 0
\(547\) −40.0000 −1.71028 −0.855138 0.518400i \(-0.826528\pi\)
−0.855138 + 0.518400i \(0.826528\pi\)
\(548\) −3.00000 5.19615i −0.128154 0.221969i
\(549\) −3.00000 5.19615i −0.128037 0.221766i
\(550\) 0 0
\(551\) −16.0000 −0.681623
\(552\) 0 0
\(553\) 0 0
\(554\) −22.0000 −0.934690
\(555\) 0 0
\(556\) −2.00000 3.46410i −0.0848189 0.146911i
\(557\) 7.00000 + 12.1244i 0.296600 + 0.513725i 0.975356 0.220638i \(-0.0708140\pi\)
−0.678756 + 0.734364i \(0.737481\pi\)
\(558\) 12.0000 0.508001
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 11.0000 + 19.0526i 0.464007 + 0.803684i
\(563\) −12.0000 + 20.7846i −0.505740 + 0.875967i 0.494238 + 0.869326i \(0.335447\pi\)
−0.999978 + 0.00664037i \(0.997886\pi\)
\(564\) 0 0
\(565\) −7.00000 + 12.1244i −0.294492 + 0.510075i
\(566\) 8.00000 13.8564i 0.336265 0.582428i
\(567\) 0 0
\(568\) 6.00000 10.3923i 0.251754 0.436051i
\(569\) −5.00000 8.66025i −0.209611 0.363057i 0.741981 0.670421i \(-0.233886\pi\)
−0.951592 + 0.307364i \(0.900553\pi\)
\(570\) 0 0
\(571\) −28.0000 −1.17176 −0.585882 0.810397i \(-0.699252\pi\)
−0.585882 + 0.810397i \(0.699252\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.00000 + 3.46410i 0.0834058 + 0.144463i
\(576\) 1.50000 2.59808i 0.0625000 0.108253i
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) −6.50000 + 11.2583i −0.270364 + 0.468285i
\(579\) 0 0
\(580\) 2.00000 0.0830455
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 10.0000 0.413803
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) −10.0000 17.3205i −0.412744 0.714894i 0.582445 0.812870i \(-0.302096\pi\)
−0.995189 + 0.0979766i \(0.968763\pi\)
\(588\) 0 0
\(589\) −16.0000 + 27.7128i −0.659269 + 1.14189i
\(590\) −8.00000 −0.329355
\(591\) 0 0
\(592\) 3.00000 5.19615i 0.123299 0.213561i
\(593\) −2.00000 −0.0821302 −0.0410651 0.999156i \(-0.513075\pi\)
−0.0410651 + 0.999156i \(0.513075\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3.00000 + 5.19615i 0.122885 + 0.212843i
\(597\) 0 0
\(598\) 0 0
\(599\) 32.0000 1.30748 0.653742 0.756717i \(-0.273198\pi\)
0.653742 + 0.756717i \(0.273198\pi\)
\(600\) 0 0
\(601\) −13.0000 22.5167i −0.530281 0.918474i −0.999376 0.0353259i \(-0.988753\pi\)
0.469095 0.883148i \(-0.344580\pi\)
\(602\) 0 0
\(603\) 12.0000 0.488678
\(604\) −10.0000 + 17.3205i −0.406894 + 0.704761i
\(605\) −5.50000 + 9.52628i −0.223607 + 0.387298i
\(606\) 0 0
\(607\) −18.0000 + 31.1769i −0.730597 + 1.26543i 0.226031 + 0.974120i \(0.427425\pi\)
−0.956628 + 0.291312i \(0.905908\pi\)
\(608\) 4.00000 + 6.92820i 0.162221 + 0.280976i
\(609\) 0 0
\(610\) −2.00000 −0.0809776
\(611\) 0 0
\(612\) −6.00000 −0.242536
\(613\) 19.0000 + 32.9090i 0.767403 + 1.32918i 0.938967 + 0.344008i \(0.111785\pi\)
−0.171564 + 0.985173i \(0.554882\pi\)
\(614\) −14.0000 24.2487i −0.564994 0.978598i
\(615\) 0 0
\(616\) 0 0
\(617\) 13.0000 22.5167i 0.523360 0.906487i −0.476270 0.879299i \(-0.658012\pi\)
0.999630 0.0271876i \(-0.00865514\pi\)
\(618\) 0 0
\(619\) 24.0000 0.964641 0.482321 0.875995i \(-0.339794\pi\)
0.482321 + 0.875995i \(0.339794\pi\)
\(620\) 2.00000 3.46410i 0.0803219 0.139122i
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −3.00000 5.19615i −0.119904 0.207680i
\(627\) 0 0
\(628\) 9.00000 15.5885i 0.359139 0.622047i
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) 6.00000 10.3923i 0.238856 0.413711i −0.721530 0.692383i \(-0.756561\pi\)
0.960386 + 0.278672i \(0.0898942\pi\)
\(632\) 8.00000 0.318223
\(633\) 0 0
\(634\) 1.00000 + 1.73205i 0.0397151 + 0.0687885i
\(635\) −10.0000 17.3205i −0.396838 0.687343i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 18.0000 + 31.1769i 0.712069 + 1.23334i
\(640\) −0.500000 0.866025i −0.0197642 0.0342327i
\(641\) 15.0000 25.9808i 0.592464 1.02618i −0.401435 0.915888i \(-0.631488\pi\)
0.993899 0.110291i \(-0.0351782\pi\)
\(642\) 0 0
\(643\) 14.0000 24.2487i 0.552106 0.956276i −0.446016 0.895025i \(-0.647158\pi\)
0.998122 0.0612510i \(-0.0195090\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 8.00000 13.8564i 0.314756 0.545173i
\(647\) 14.0000 + 24.2487i 0.550397 + 0.953315i 0.998246 + 0.0592060i \(0.0188569\pi\)
−0.447849 + 0.894109i \(0.647810\pi\)
\(648\) 4.50000 + 7.79423i 0.176777 + 0.306186i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 10.0000 + 17.3205i 0.391630 + 0.678323i
\(653\) −23.0000 39.8372i −0.900060 1.55895i −0.827415 0.561591i \(-0.810189\pi\)
−0.0726446 0.997358i \(-0.523144\pi\)
\(654\) 0 0
\(655\) −4.00000 −0.156293
\(656\) 5.00000 8.66025i 0.195217 0.338126i
\(657\) −15.0000 + 25.9808i −0.585206 + 1.01361i
\(658\) 0 0
\(659\) 18.0000 31.1769i 0.701180 1.21448i −0.266872 0.963732i \(-0.585990\pi\)
0.968052 0.250748i \(-0.0806766\pi\)
\(660\) 0 0
\(661\) 11.0000 + 19.0526i 0.427850 + 0.741059i 0.996682 0.0813955i \(-0.0259377\pi\)
−0.568831 + 0.822454i \(0.692604\pi\)
\(662\) −8.00000 −0.310929
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) 9.00000 + 15.5885i 0.348743 + 0.604040i
\(667\) −4.00000 + 6.92820i −0.154881 + 0.268261i
\(668\) −16.0000 −0.619059
\(669\) 0 0
\(670\) 2.00000 3.46410i 0.0772667 0.133830i
\(671\) 0 0
\(672\) 0 0
\(673\) 7.00000 + 12.1244i 0.269830 + 0.467360i 0.968818 0.247774i \(-0.0796991\pi\)
−0.698988 + 0.715134i \(0.746366\pi\)
\(674\) 9.00000 + 15.5885i 0.346667 + 0.600445i
\(675\) 0 0
\(676\) 0 0
\(677\) 22.0000 0.845529 0.422764 0.906240i \(-0.361060\pi\)
0.422764 + 0.906240i \(0.361060\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1.00000 + 1.73205i −0.0383482 + 0.0664211i
\(681\) 0 0
\(682\) 0 0
\(683\) 14.0000 24.2487i 0.535695 0.927851i −0.463434 0.886131i \(-0.653383\pi\)
0.999129 0.0417198i \(-0.0132837\pi\)
\(684\) −24.0000 −0.917663
\(685\) 3.00000 5.19615i 0.114624 0.198535i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 16.0000 + 27.7128i 0.608669 + 1.05425i 0.991460 + 0.130410i \(0.0416295\pi\)
−0.382791 + 0.923835i \(0.625037\pi\)
\(692\) 9.00000 + 15.5885i 0.342129 + 0.592584i
\(693\) 0 0
\(694\) −32.0000 −1.21470
\(695\) 2.00000 3.46410i 0.0758643 0.131401i
\(696\) 0 0
\(697\) −20.0000 −0.757554
\(698\) −7.00000 + 12.1244i −0.264954 + 0.458914i
\(699\) 0 0
\(700\) 0 0
\(701\) −34.0000 −1.28416 −0.642081 0.766637i \(-0.721929\pi\)
−0.642081 + 0.766637i \(0.721929\pi\)
\(702\) 0 0
\(703\) −48.0000 −1.81035
\(704\) 0 0
\(705\) 0 0
\(706\) 15.0000 25.9808i 0.564532 0.977799i
\(707\) 0 0
\(708\) 0 0
\(709\) −5.00000 + 8.66025i −0.187779 + 0.325243i −0.944509 0.328484i \(-0.893462\pi\)
0.756730 + 0.653727i \(0.226796\pi\)
\(710\) 12.0000 0.450352
\(711\) −12.0000 + 20.7846i −0.450035 + 0.779484i
\(712\) −5.00000 8.66025i −0.187383 0.324557i
\(713\) 8.00000 + 13.8564i 0.299602 + 0.518927i
\(714\) 0 0
\(715\) 0 0
\(716\) 4.00000 0.149487
\(717\) 0 0
\(718\) −2.00000 3.46410i −0.0746393 0.129279i
\(719\) −8.00000 + 13.8564i −0.298350 + 0.516757i −0.975759 0.218850i \(-0.929769\pi\)
0.677409 + 0.735607i \(0.263103\pi\)
\(720\) 3.00000 0.111803
\(721\) 0 0
\(722\) 22.5000 38.9711i 0.837363 1.45036i
\(723\) 0 0
\(724\) −11.0000 + 19.0526i −0.408812 + 0.708083i
\(725\) 1.00000 + 1.73205i 0.0371391 + 0.0643268i
\(726\) 0 0
\(727\) −28.0000 −1.03846 −0.519231 0.854634i \(-0.673782\pi\)
−0.519231 + 0.854634i \(0.673782\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 5.00000 + 8.66025i 0.185058 + 0.320530i
\(731\) 0 0
\(732\) 0 0
\(733\) 34.0000 1.25582 0.627909 0.778287i \(-0.283911\pi\)
0.627909 + 0.778287i \(0.283911\pi\)
\(734\) −6.00000 + 10.3923i −0.221464 + 0.383587i
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) 0 0
\(738\) 15.0000 + 25.9808i 0.552158 + 0.956365i
\(739\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(740\) 6.00000 0.220564
\(741\) 0 0
\(742\) 0 0
\(743\) 8.00000 + 13.8564i 0.293492 + 0.508342i 0.974633 0.223810i \(-0.0718494\pi\)
−0.681141 + 0.732152i \(0.738516\pi\)
\(744\) 0 0
\(745\) −3.00000 + 5.19615i −0.109911 + 0.190372i
\(746\) −6.00000 −0.219676
\(747\) −18.0000 + 31.1769i −0.658586 + 1.14070i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 20.0000 + 34.6410i 0.729810 + 1.26407i 0.956963 + 0.290209i \(0.0937250\pi\)
−0.227153 + 0.973859i \(0.572942\pi\)
\(752\) 4.00000 + 6.92820i 0.145865 + 0.252646i
\(753\) 0 0
\(754\) 0 0
\(755\) −20.0000 −0.727875
\(756\) 0 0
\(757\) −11.0000 19.0526i −0.399802 0.692477i 0.593899 0.804539i \(-0.297588\pi\)
−0.993701 + 0.112062i \(0.964254\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −4.00000 + 6.92820i −0.145095 + 0.251312i
\(761\) −3.00000 + 5.19615i −0.108750 + 0.188360i −0.915264 0.402854i \(-0.868018\pi\)
0.806514 + 0.591215i \(0.201351\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −3.00000 5.19615i −0.108465 0.187867i
\(766\) 8.00000 0.289052
\(767\) 0 0
\(768\) 0 0
\(769\) −7.00000 12.1244i −0.252426 0.437215i 0.711767 0.702416i \(-0.247895\pi\)
−0.964193 + 0.265200i \(0.914562\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −18.0000 −0.647834
\(773\) −13.0000 + 22.5167i −0.467578 + 0.809868i −0.999314 0.0370420i \(-0.988206\pi\)
0.531736 + 0.846910i \(0.321540\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) 7.00000 12.1244i 0.251285 0.435239i
\(777\) 0 0
\(778\) 3.00000 + 5.19615i 0.107555 + 0.186291i
\(779\) −80.0000 −2.86630
\(780\) 0 0
\(781\) 0 0
\(782\) −4.00000 6.92820i −0.143040 0.247752i
\(783\) 0 0
\(784\) 3.50000 6.06218i 0.125000 0.216506i
\(785\) 18.0000 0.642448
\(786\) 0 0
\(787\) −2.00000 + 3.46410i −0.0712923 + 0.123482i −0.899468 0.436987i \(-0.856046\pi\)
0.828176 + 0.560469i \(0.189379\pi\)
\(788\) 26.0000 0.926212
\(789\) 0 0
\(790\) 4.00000 + 6.92820i 0.142314 + 0.246494i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −18.0000 −0.638796
\(795\) 0 0
\(796\) −12.0000 20.7846i −0.425329 0.736691i
\(797\) 17.0000 29.4449i 0.602171 1.04299i −0.390321 0.920679i \(-0.627636\pi\)
0.992492 0.122312i \(-0.0390308\pi\)
\(798\) 0 0
\(799\) 8.00000 13.8564i 0.283020 0.490204i
\(800\) 0.500000 0.866025i 0.0176777 0.0306186i
\(801\) 30.0000 1.06000
\(802\) 15.0000 25.9808i 0.529668 0.917413i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 3.00000 + 5.19615i 0.105540 + 0.182800i
\(809\) −13.0000 22.5167i −0.457056 0.791644i 0.541748 0.840541i \(-0.317763\pi\)
−0.998804 + 0.0488972i \(0.984429\pi\)
\(810\) −4.50000 + 7.79423i −0.158114 + 0.273861i
\(811\) −24.0000 −0.842754 −0.421377 0.906886i \(-0.638453\pi\)
−0.421377 + 0.906886i \(0.638453\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −10.0000 + 17.3205i −0.350285 + 0.606711i
\(816\) 0 0
\(817\) 0 0
\(818\) 26.0000 0.909069
\(819\) 0 0
\(820\) 10.0000 0.349215
\(821\) −21.0000 36.3731i −0.732905 1.26943i −0.955636 0.294549i \(-0.904831\pi\)
0.222731 0.974880i \(-0.428503\pi\)
\(822\) 0 0
\(823\) 2.00000 3.46410i 0.0697156 0.120751i −0.829060 0.559159i \(-0.811124\pi\)
0.898776 + 0.438408i \(0.144457\pi\)
\(824\) 4.00000 0.139347
\(825\) 0 0
\(826\) 0 0
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) −6.00000 + 10.3923i −0.208514 + 0.361158i
\(829\) 17.0000 + 29.4449i 0.590434 + 1.02266i 0.994174 + 0.107788i \(0.0343769\pi\)
−0.403739 + 0.914874i \(0.632290\pi\)
\(830\) 6.00000 + 10.3923i 0.208263 + 0.360722i
\(831\) 0 0
\(832\) 0 0
\(833\) −14.0000 −0.485071
\(834\) 0 0
\(835\) −8.00000 13.8564i −0.276851 0.479521i
\(836\) 0 0
\(837\) 0 0
\(838\) −18.0000 + 31.1769i −0.621800 + 1.07699i
\(839\) 2.00000 3.46410i 0.0690477 0.119594i −0.829435 0.558604i \(-0.811337\pi\)
0.898482 + 0.439010i \(0.144671\pi\)
\(840\) 0 0
\(841\) 12.5000 21.6506i 0.431034 0.746574i
\(842\) 13.0000 + 22.5167i 0.448010 + 0.775975i
\(843\) 0 0
\(844\) 4.00000 0.137686
\(845\) 0 0
\(846\) −24.0000 −0.825137
\(847\) 0 0
\(848\) −3.00000 5.19615i −0.103020 0.178437i
\(849\) 0 0
\(850\) −2.00000 −0.0685994
\(851\) −12.0000 + 20.7846i −0.411355 + 0.712487i
\(852\) 0 0
\(853\) −22.0000 −0.753266 −0.376633 0.926363i \(-0.622918\pi\)
−0.376633 + 0.926363i \(0.622918\pi\)
\(854\) 0 0
\(855\) −12.0000 20.7846i −0.410391 0.710819i
\(856\) 0 0
\(857\) −6.00000 −0.204956 −0.102478 0.994735i \(-0.532677\pi\)
−0.102478 + 0.994735i \(0.532677\pi\)
\(858\) 0 0
\(859\) −28.0000 −0.955348 −0.477674 0.878537i \(-0.658520\pi\)
−0.477674 + 0.878537i \(0.658520\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −6.00000 + 10.3923i −0.204361 + 0.353963i
\(863\) −40.0000 −1.36162 −0.680808 0.732462i \(-0.738371\pi\)
−0.680808 + 0.732462i \(0.738371\pi\)
\(864\) 0 0
\(865\) −9.00000 + 15.5885i −0.306009 + 0.530023i
\(866\) −34.0000 −1.15537
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −2.00000 −0.0677285
\(873\) 21.0000 + 36.3731i 0.710742 + 1.23104i
\(874\) −16.0000 27.7128i −0.541208 0.937400i
\(875\) 0 0
\(876\) 0 0
\(877\) 7.00000 12.1244i 0.236373 0.409410i −0.723298 0.690536i \(-0.757375\pi\)
0.959671 + 0.281126i \(0.0907079\pi\)
\(878\) −12.0000 + 20.7846i −0.404980 + 0.701447i
\(879\) 0 0
\(880\) 0 0
\(881\) −1.00000 1.73205i −0.0336909 0.0583543i 0.848688 0.528893i \(-0.177393\pi\)
−0.882379 + 0.470539i \(0.844059\pi\)
\(882\) 10.5000 + 18.1865i 0.353553 + 0.612372i
\(883\) −8.00000 −0.269221 −0.134611 0.990899i \(-0.542978\pi\)
−0.134611 + 0.990899i \(0.542978\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 12.0000 + 20.7846i 0.403148 + 0.698273i
\(887\) −22.0000 38.1051i −0.738688 1.27944i −0.953086 0.302698i \(-0.902113\pi\)
0.214399 0.976746i \(-0.431221\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 5.00000 8.66025i 0.167600 0.290292i
\(891\) 0 0
\(892\) 8.00000 0.267860
\(893\) 32.0000 55.4256i 1.07084 1.85475i
\(894\) 0 0
\(895\) 2.00000 + 3.46410i 0.0668526 + 0.115792i
\(896\) 0 0
\(897\) 0 0
\(898\) 18.0000 0.600668
\(899\) 4.00000 + 6.92820i 0.133407 + 0.231069i
\(900\) 1.50000 + 2.59808i 0.0500000 + 0.0866025i
\(901\) −6.00000 + 10.3923i −0.199889 + 0.346218i
\(902\) 0 0
\(903\) 0 0
\(904\) −7.00000 + 12.1244i −0.232817 + 0.403250i
\(905\) −22.0000 −0.731305
\(906\) 0 0
\(907\) −4.00000 6.92820i −0.132818 0.230047i 0.791944 0.610594i \(-0.209069\pi\)
−0.924762 + 0.380547i \(0.875736\pi\)
\(908\) 10.0000 + 17.3205i 0.331862 + 0.574801i
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 19.0000 32.9090i 0.628464 1.08853i
\(915\) 0 0
\(916\) −5.00000 + 8.66025i −0.165205 + 0.286143i
\(917\) 0 0
\(918\) 0 0
\(919\) −16.0000 + 27.7128i −0.527791 + 0.914161i 0.471684 + 0.881768i \(0.343646\pi\)
−0.999475 + 0.0323936i \(0.989687\pi\)
\(920\) 2.00000 + 3.46410i 0.0659380 + 0.114208i
\(921\) 0 0
\(922\) 14.0000 0.461065
\(923\) 0 0
\(924\) 0 0
\(925\) 3.00000 + 5.19615i 0.0986394 + 0.170848i
\(926\) 8.00000 + 13.8564i 0.262896 + 0.455350i
\(927\) −6.00000 + 10.3923i −0.197066 + 0.341328i
\(928\) 2.00000 0.0656532
\(929\) −7.00000 + 12.1244i −0.229663 + 0.397787i −0.957708 0.287742i \(-0.907096\pi\)
0.728046 + 0.685529i \(0.240429\pi\)
\(930\) 0 0
\(931\) −56.0000 −1.83533
\(932\) 3.00000 5.19615i 0.0982683 0.170206i
\(933\) 0 0
\(934\) −8.00000 13.8564i −0.261768 0.453395i
\(935\) 0 0
\(936\) 0 0
\(937\) 26.0000 0.849383 0.424691 0.905338i \(-0.360383\pi\)
0.424691 + 0.905338i \(0.360383\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −4.00000 + 6.92820i −0.130466 + 0.225973i
\(941\) −30.0000 −0.977972 −0.488986 0.872292i \(-0.662633\pi\)
−0.488986 + 0.872292i \(0.662633\pi\)
\(942\) 0 0
\(943\) −20.0000 + 34.6410i −0.651290 + 1.12807i
\(944\) −8.00000 −0.260378
\(945\) 0 0
\(946\) 0 0
\(947\) −2.00000 3.46410i −0.0649913 0.112568i 0.831699 0.555227i \(-0.187369\pi\)
−0.896690 + 0.442659i \(0.854035\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −8.00000 −0.259554
\(951\) 0 0
\(952\) 0 0
\(953\) −13.0000 + 22.5167i −0.421111 + 0.729386i −0.996048 0.0888114i \(-0.971693\pi\)
0.574937 + 0.818198i \(0.305026\pi\)
\(954\) 18.0000 0.582772
\(955\) 0 0
\(956\) 10.0000 17.3205i 0.323423 0.560185i
\(957\) 0 0
\(958\) 2.00000 3.46410i 0.0646171 0.111920i
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) 1.00000 + 1.73205i 0.0322078 + 0.0557856i
\(965\) −9.00000 15.5885i −0.289720 0.501810i
\(966\) 0 0
\(967\) −24.0000 −0.771788 −0.385894 0.922543i \(-0.626107\pi\)
−0.385894 + 0.922543i \(0.626107\pi\)
\(968\) −5.50000 + 9.52628i −0.176777 + 0.306186i
\(969\) 0 0
\(970\) 14.0000 0.449513
\(971\) 2.00000 3.46410i 0.0641831 0.111168i −0.832148 0.554553i \(-0.812889\pi\)
0.896331 + 0.443385i \(0.146223\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −8.00000 −0.256337
\(975\) 0 0
\(976\) −2.00000 −0.0640184
\(977\) 9.00000 + 15.5885i 0.287936 + 0.498719i 0.973317 0.229465i \(-0.0736978\pi\)
−0.685381 + 0.728184i \(0.740364\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 7.00000 0.223607
\(981\) 3.00000 5.19615i 0.0957826 0.165900i
\(982\) 10.0000 17.3205i 0.319113 0.552720i
\(983\) 24.0000 0.765481 0.382741 0.923856i \(-0.374980\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(984\) 0 0
\(985\) 13.0000 + 22.5167i 0.414214 + 0.717440i
\(986\) −2.00000 3.46410i −0.0636930 0.110319i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −16.0000 27.7128i −0.508257 0.880327i −0.999954 0.00956046i \(-0.996957\pi\)
0.491698 0.870766i \(-0.336377\pi\)
\(992\) 2.00000 3.46410i 0.0635001 0.109985i
\(993\) 0 0
\(994\) 0 0
\(995\) 12.0000 20.7846i 0.380426 0.658916i
\(996\) 0 0
\(997\) −11.0000 + 19.0526i −0.348373 + 0.603401i −0.985961 0.166978i \(-0.946599\pi\)
0.637587 + 0.770378i \(0.279933\pi\)
\(998\) −4.00000 6.92820i −0.126618 0.219308i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.e.i.991.1 2
13.2 odd 12 1690.2.d.d.1351.2 2
13.3 even 3 1690.2.a.b.1.1 1
13.4 even 6 1690.2.e.c.191.1 2
13.5 odd 4 1690.2.l.f.361.2 4
13.6 odd 12 1690.2.l.f.1161.1 4
13.7 odd 12 1690.2.l.f.1161.2 4
13.8 odd 4 1690.2.l.f.361.1 4
13.9 even 3 inner 1690.2.e.i.191.1 2
13.10 even 6 130.2.a.b.1.1 1
13.11 odd 12 1690.2.d.d.1351.1 2
13.12 even 2 1690.2.e.c.991.1 2
39.23 odd 6 1170.2.a.b.1.1 1
52.23 odd 6 1040.2.a.e.1.1 1
65.23 odd 12 650.2.b.e.599.1 2
65.29 even 6 8450.2.a.r.1.1 1
65.49 even 6 650.2.a.d.1.1 1
65.62 odd 12 650.2.b.e.599.2 2
91.62 odd 6 6370.2.a.r.1.1 1
104.75 odd 6 4160.2.a.h.1.1 1
104.101 even 6 4160.2.a.i.1.1 1
156.23 even 6 9360.2.a.l.1.1 1
195.23 even 12 5850.2.e.q.5149.2 2
195.62 even 12 5850.2.e.q.5149.1 2
195.179 odd 6 5850.2.a.bq.1.1 1
260.179 odd 6 5200.2.a.r.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.a.b.1.1 1 13.10 even 6
650.2.a.d.1.1 1 65.49 even 6
650.2.b.e.599.1 2 65.23 odd 12
650.2.b.e.599.2 2 65.62 odd 12
1040.2.a.e.1.1 1 52.23 odd 6
1170.2.a.b.1.1 1 39.23 odd 6
1690.2.a.b.1.1 1 13.3 even 3
1690.2.d.d.1351.1 2 13.11 odd 12
1690.2.d.d.1351.2 2 13.2 odd 12
1690.2.e.c.191.1 2 13.4 even 6
1690.2.e.c.991.1 2 13.12 even 2
1690.2.e.i.191.1 2 13.9 even 3 inner
1690.2.e.i.991.1 2 1.1 even 1 trivial
1690.2.l.f.361.1 4 13.8 odd 4
1690.2.l.f.361.2 4 13.5 odd 4
1690.2.l.f.1161.1 4 13.6 odd 12
1690.2.l.f.1161.2 4 13.7 odd 12
4160.2.a.h.1.1 1 104.75 odd 6
4160.2.a.i.1.1 1 104.101 even 6
5200.2.a.r.1.1 1 260.179 odd 6
5850.2.a.bq.1.1 1 195.179 odd 6
5850.2.e.q.5149.1 2 195.62 even 12
5850.2.e.q.5149.2 2 195.23 even 12
6370.2.a.r.1.1 1 91.62 odd 6
8450.2.a.r.1.1 1 65.29 even 6
9360.2.a.l.1.1 1 156.23 even 6