# Properties

 Label 1690.2.e.e Level $1690$ Weight $2$ Character orbit 1690.e Analytic conductor $13.495$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1690 = 2 \cdot 5 \cdot 13^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1690.e (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$13.4947179416$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 130) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (\zeta_{6} - 1) q^{2} + ( - 2 \zeta_{6} + 2) q^{3} - \zeta_{6} q^{4} + q^{5} + 2 \zeta_{6} q^{6} - \zeta_{6} q^{7} + q^{8} - \zeta_{6} q^{9} +O(q^{10})$$ q + (z - 1) * q^2 + (-2*z + 2) * q^3 - z * q^4 + q^5 + 2*z * q^6 - z * q^7 + q^8 - z * q^9 $$q + (\zeta_{6} - 1) q^{2} + ( - 2 \zeta_{6} + 2) q^{3} - \zeta_{6} q^{4} + q^{5} + 2 \zeta_{6} q^{6} - \zeta_{6} q^{7} + q^{8} - \zeta_{6} q^{9} + (\zeta_{6} - 1) q^{10} + ( - 3 \zeta_{6} + 3) q^{11} - 2 q^{12} + q^{14} + ( - 2 \zeta_{6} + 2) q^{15} + (\zeta_{6} - 1) q^{16} + 6 \zeta_{6} q^{17} + q^{18} + 5 \zeta_{6} q^{19} - \zeta_{6} q^{20} - 2 q^{21} + 3 \zeta_{6} q^{22} + ( - 2 \zeta_{6} + 2) q^{24} + q^{25} + 4 q^{27} + (\zeta_{6} - 1) q^{28} + 2 \zeta_{6} q^{30} + 4 q^{31} - \zeta_{6} q^{32} - 6 \zeta_{6} q^{33} - 6 q^{34} - \zeta_{6} q^{35} + (\zeta_{6} - 1) q^{36} + ( - 11 \zeta_{6} + 11) q^{37} - 5 q^{38} + q^{40} + ( - 6 \zeta_{6} + 6) q^{41} + ( - 2 \zeta_{6} + 2) q^{42} - 2 \zeta_{6} q^{43} - 3 q^{44} - \zeta_{6} q^{45} + 3 q^{47} + 2 \zeta_{6} q^{48} + ( - 6 \zeta_{6} + 6) q^{49} + (\zeta_{6} - 1) q^{50} + 12 q^{51} - 9 q^{53} + (4 \zeta_{6} - 4) q^{54} + ( - 3 \zeta_{6} + 3) q^{55} - \zeta_{6} q^{56} + 10 q^{57} - 2 q^{60} - 8 \zeta_{6} q^{61} + (4 \zeta_{6} - 4) q^{62} + (\zeta_{6} - 1) q^{63} + q^{64} + 6 q^{66} + (16 \zeta_{6} - 16) q^{67} + ( - 6 \zeta_{6} + 6) q^{68} + q^{70} + 6 \zeta_{6} q^{71} - \zeta_{6} q^{72} - 14 q^{73} + 11 \zeta_{6} q^{74} + ( - 2 \zeta_{6} + 2) q^{75} + ( - 5 \zeta_{6} + 5) q^{76} - 3 q^{77} - 16 q^{79} + (\zeta_{6} - 1) q^{80} + ( - 11 \zeta_{6} + 11) q^{81} + 6 \zeta_{6} q^{82} + 6 q^{83} + 2 \zeta_{6} q^{84} + 6 \zeta_{6} q^{85} + 2 q^{86} + ( - 3 \zeta_{6} + 3) q^{88} + ( - 9 \zeta_{6} + 9) q^{89} + q^{90} + ( - 8 \zeta_{6} + 8) q^{93} + (3 \zeta_{6} - 3) q^{94} + 5 \zeta_{6} q^{95} - 2 q^{96} - 10 \zeta_{6} q^{97} + 6 \zeta_{6} q^{98} - 3 q^{99} +O(q^{100})$$ q + (z - 1) * q^2 + (-2*z + 2) * q^3 - z * q^4 + q^5 + 2*z * q^6 - z * q^7 + q^8 - z * q^9 + (z - 1) * q^10 + (-3*z + 3) * q^11 - 2 * q^12 + q^14 + (-2*z + 2) * q^15 + (z - 1) * q^16 + 6*z * q^17 + q^18 + 5*z * q^19 - z * q^20 - 2 * q^21 + 3*z * q^22 + (-2*z + 2) * q^24 + q^25 + 4 * q^27 + (z - 1) * q^28 + 2*z * q^30 + 4 * q^31 - z * q^32 - 6*z * q^33 - 6 * q^34 - z * q^35 + (z - 1) * q^36 + (-11*z + 11) * q^37 - 5 * q^38 + q^40 + (-6*z + 6) * q^41 + (-2*z + 2) * q^42 - 2*z * q^43 - 3 * q^44 - z * q^45 + 3 * q^47 + 2*z * q^48 + (-6*z + 6) * q^49 + (z - 1) * q^50 + 12 * q^51 - 9 * q^53 + (4*z - 4) * q^54 + (-3*z + 3) * q^55 - z * q^56 + 10 * q^57 - 2 * q^60 - 8*z * q^61 + (4*z - 4) * q^62 + (z - 1) * q^63 + q^64 + 6 * q^66 + (16*z - 16) * q^67 + (-6*z + 6) * q^68 + q^70 + 6*z * q^71 - z * q^72 - 14 * q^73 + 11*z * q^74 + (-2*z + 2) * q^75 + (-5*z + 5) * q^76 - 3 * q^77 - 16 * q^79 + (z - 1) * q^80 + (-11*z + 11) * q^81 + 6*z * q^82 + 6 * q^83 + 2*z * q^84 + 6*z * q^85 + 2 * q^86 + (-3*z + 3) * q^88 + (-9*z + 9) * q^89 + q^90 + (-8*z + 8) * q^93 + (3*z - 3) * q^94 + 5*z * q^95 - 2 * q^96 - 10*z * q^97 + 6*z * q^98 - 3 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - q^{2} + 2 q^{3} - q^{4} + 2 q^{5} + 2 q^{6} - q^{7} + 2 q^{8} - q^{9}+O(q^{10})$$ 2 * q - q^2 + 2 * q^3 - q^4 + 2 * q^5 + 2 * q^6 - q^7 + 2 * q^8 - q^9 $$2 q - q^{2} + 2 q^{3} - q^{4} + 2 q^{5} + 2 q^{6} - q^{7} + 2 q^{8} - q^{9} - q^{10} + 3 q^{11} - 4 q^{12} + 2 q^{14} + 2 q^{15} - q^{16} + 6 q^{17} + 2 q^{18} + 5 q^{19} - q^{20} - 4 q^{21} + 3 q^{22} + 2 q^{24} + 2 q^{25} + 8 q^{27} - q^{28} + 2 q^{30} + 8 q^{31} - q^{32} - 6 q^{33} - 12 q^{34} - q^{35} - q^{36} + 11 q^{37} - 10 q^{38} + 2 q^{40} + 6 q^{41} + 2 q^{42} - 2 q^{43} - 6 q^{44} - q^{45} + 6 q^{47} + 2 q^{48} + 6 q^{49} - q^{50} + 24 q^{51} - 18 q^{53} - 4 q^{54} + 3 q^{55} - q^{56} + 20 q^{57} - 4 q^{60} - 8 q^{61} - 4 q^{62} - q^{63} + 2 q^{64} + 12 q^{66} - 16 q^{67} + 6 q^{68} + 2 q^{70} + 6 q^{71} - q^{72} - 28 q^{73} + 11 q^{74} + 2 q^{75} + 5 q^{76} - 6 q^{77} - 32 q^{79} - q^{80} + 11 q^{81} + 6 q^{82} + 12 q^{83} + 2 q^{84} + 6 q^{85} + 4 q^{86} + 3 q^{88} + 9 q^{89} + 2 q^{90} + 8 q^{93} - 3 q^{94} + 5 q^{95} - 4 q^{96} - 10 q^{97} + 6 q^{98} - 6 q^{99}+O(q^{100})$$ 2 * q - q^2 + 2 * q^3 - q^4 + 2 * q^5 + 2 * q^6 - q^7 + 2 * q^8 - q^9 - q^10 + 3 * q^11 - 4 * q^12 + 2 * q^14 + 2 * q^15 - q^16 + 6 * q^17 + 2 * q^18 + 5 * q^19 - q^20 - 4 * q^21 + 3 * q^22 + 2 * q^24 + 2 * q^25 + 8 * q^27 - q^28 + 2 * q^30 + 8 * q^31 - q^32 - 6 * q^33 - 12 * q^34 - q^35 - q^36 + 11 * q^37 - 10 * q^38 + 2 * q^40 + 6 * q^41 + 2 * q^42 - 2 * q^43 - 6 * q^44 - q^45 + 6 * q^47 + 2 * q^48 + 6 * q^49 - q^50 + 24 * q^51 - 18 * q^53 - 4 * q^54 + 3 * q^55 - q^56 + 20 * q^57 - 4 * q^60 - 8 * q^61 - 4 * q^62 - q^63 + 2 * q^64 + 12 * q^66 - 16 * q^67 + 6 * q^68 + 2 * q^70 + 6 * q^71 - q^72 - 28 * q^73 + 11 * q^74 + 2 * q^75 + 5 * q^76 - 6 * q^77 - 32 * q^79 - q^80 + 11 * q^81 + 6 * q^82 + 12 * q^83 + 2 * q^84 + 6 * q^85 + 4 * q^86 + 3 * q^88 + 9 * q^89 + 2 * q^90 + 8 * q^93 - 3 * q^94 + 5 * q^95 - 4 * q^96 - 10 * q^97 + 6 * q^98 - 6 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times$$.

 $$n$$ $$171$$ $$677$$ $$\chi(n)$$ $$-\zeta_{6}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
191.1
 0.5 + 0.866025i 0.5 − 0.866025i
−0.500000 + 0.866025i 1.00000 1.73205i −0.500000 0.866025i 1.00000 1.00000 + 1.73205i −0.500000 0.866025i 1.00000 −0.500000 0.866025i −0.500000 + 0.866025i
991.1 −0.500000 0.866025i 1.00000 + 1.73205i −0.500000 + 0.866025i 1.00000 1.00000 1.73205i −0.500000 + 0.866025i 1.00000 −0.500000 + 0.866025i −0.500000 0.866025i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1690.2.e.e 2
13.b even 2 1 130.2.e.b 2
13.c even 3 1 1690.2.a.g 1
13.c even 3 1 inner 1690.2.e.e 2
13.d odd 4 2 1690.2.l.i 4
13.e even 6 1 130.2.e.b 2
13.e even 6 1 1690.2.a.a 1
13.f odd 12 2 1690.2.d.a 2
13.f odd 12 2 1690.2.l.i 4
39.d odd 2 1 1170.2.i.f 2
39.h odd 6 1 1170.2.i.f 2
52.b odd 2 1 1040.2.q.c 2
52.i odd 6 1 1040.2.q.c 2
65.d even 2 1 650.2.e.a 2
65.h odd 4 2 650.2.o.b 4
65.l even 6 1 650.2.e.a 2
65.l even 6 1 8450.2.a.w 1
65.n even 6 1 8450.2.a.k 1
65.r odd 12 2 650.2.o.b 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.e.b 2 13.b even 2 1
130.2.e.b 2 13.e even 6 1
650.2.e.a 2 65.d even 2 1
650.2.e.a 2 65.l even 6 1
650.2.o.b 4 65.h odd 4 2
650.2.o.b 4 65.r odd 12 2
1040.2.q.c 2 52.b odd 2 1
1040.2.q.c 2 52.i odd 6 1
1170.2.i.f 2 39.d odd 2 1
1170.2.i.f 2 39.h odd 6 1
1690.2.a.a 1 13.e even 6 1
1690.2.a.g 1 13.c even 3 1
1690.2.d.a 2 13.f odd 12 2
1690.2.e.e 2 1.a even 1 1 trivial
1690.2.e.e 2 13.c even 3 1 inner
1690.2.l.i 4 13.d odd 4 2
1690.2.l.i 4 13.f odd 12 2
8450.2.a.k 1 65.n even 6 1
8450.2.a.w 1 65.l even 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1690, [\chi])$$:

 $$T_{3}^{2} - 2T_{3} + 4$$ T3^2 - 2*T3 + 4 $$T_{7}^{2} + T_{7} + 1$$ T7^2 + T7 + 1 $$T_{11}^{2} - 3T_{11} + 9$$ T11^2 - 3*T11 + 9 $$T_{19}^{2} - 5T_{19} + 25$$ T19^2 - 5*T19 + 25 $$T_{31} - 4$$ T31 - 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} + T + 1$$
$3$ $$T^{2} - 2T + 4$$
$5$ $$(T - 1)^{2}$$
$7$ $$T^{2} + T + 1$$
$11$ $$T^{2} - 3T + 9$$
$13$ $$T^{2}$$
$17$ $$T^{2} - 6T + 36$$
$19$ $$T^{2} - 5T + 25$$
$23$ $$T^{2}$$
$29$ $$T^{2}$$
$31$ $$(T - 4)^{2}$$
$37$ $$T^{2} - 11T + 121$$
$41$ $$T^{2} - 6T + 36$$
$43$ $$T^{2} + 2T + 4$$
$47$ $$(T - 3)^{2}$$
$53$ $$(T + 9)^{2}$$
$59$ $$T^{2}$$
$61$ $$T^{2} + 8T + 64$$
$67$ $$T^{2} + 16T + 256$$
$71$ $$T^{2} - 6T + 36$$
$73$ $$(T + 14)^{2}$$
$79$ $$(T + 16)^{2}$$
$83$ $$(T - 6)^{2}$$
$89$ $$T^{2} - 9T + 81$$
$97$ $$T^{2} + 10T + 100$$