Properties

Label 1690.2.e.e
Level $1690$
Weight $2$
Character orbit 1690.e
Analytic conductor $13.495$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 1) q^{2} + ( - 2 \zeta_{6} + 2) q^{3} - \zeta_{6} q^{4} + q^{5} + 2 \zeta_{6} q^{6} - \zeta_{6} q^{7} + q^{8} - \zeta_{6} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{6} - 1) q^{2} + ( - 2 \zeta_{6} + 2) q^{3} - \zeta_{6} q^{4} + q^{5} + 2 \zeta_{6} q^{6} - \zeta_{6} q^{7} + q^{8} - \zeta_{6} q^{9} + (\zeta_{6} - 1) q^{10} + ( - 3 \zeta_{6} + 3) q^{11} - 2 q^{12} + q^{14} + ( - 2 \zeta_{6} + 2) q^{15} + (\zeta_{6} - 1) q^{16} + 6 \zeta_{6} q^{17} + q^{18} + 5 \zeta_{6} q^{19} - \zeta_{6} q^{20} - 2 q^{21} + 3 \zeta_{6} q^{22} + ( - 2 \zeta_{6} + 2) q^{24} + q^{25} + 4 q^{27} + (\zeta_{6} - 1) q^{28} + 2 \zeta_{6} q^{30} + 4 q^{31} - \zeta_{6} q^{32} - 6 \zeta_{6} q^{33} - 6 q^{34} - \zeta_{6} q^{35} + (\zeta_{6} - 1) q^{36} + ( - 11 \zeta_{6} + 11) q^{37} - 5 q^{38} + q^{40} + ( - 6 \zeta_{6} + 6) q^{41} + ( - 2 \zeta_{6} + 2) q^{42} - 2 \zeta_{6} q^{43} - 3 q^{44} - \zeta_{6} q^{45} + 3 q^{47} + 2 \zeta_{6} q^{48} + ( - 6 \zeta_{6} + 6) q^{49} + (\zeta_{6} - 1) q^{50} + 12 q^{51} - 9 q^{53} + (4 \zeta_{6} - 4) q^{54} + ( - 3 \zeta_{6} + 3) q^{55} - \zeta_{6} q^{56} + 10 q^{57} - 2 q^{60} - 8 \zeta_{6} q^{61} + (4 \zeta_{6} - 4) q^{62} + (\zeta_{6} - 1) q^{63} + q^{64} + 6 q^{66} + (16 \zeta_{6} - 16) q^{67} + ( - 6 \zeta_{6} + 6) q^{68} + q^{70} + 6 \zeta_{6} q^{71} - \zeta_{6} q^{72} - 14 q^{73} + 11 \zeta_{6} q^{74} + ( - 2 \zeta_{6} + 2) q^{75} + ( - 5 \zeta_{6} + 5) q^{76} - 3 q^{77} - 16 q^{79} + (\zeta_{6} - 1) q^{80} + ( - 11 \zeta_{6} + 11) q^{81} + 6 \zeta_{6} q^{82} + 6 q^{83} + 2 \zeta_{6} q^{84} + 6 \zeta_{6} q^{85} + 2 q^{86} + ( - 3 \zeta_{6} + 3) q^{88} + ( - 9 \zeta_{6} + 9) q^{89} + q^{90} + ( - 8 \zeta_{6} + 8) q^{93} + (3 \zeta_{6} - 3) q^{94} + 5 \zeta_{6} q^{95} - 2 q^{96} - 10 \zeta_{6} q^{97} + 6 \zeta_{6} q^{98} - 3 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 2 q^{3} - q^{4} + 2 q^{5} + 2 q^{6} - q^{7} + 2 q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} + 2 q^{3} - q^{4} + 2 q^{5} + 2 q^{6} - q^{7} + 2 q^{8} - q^{9} - q^{10} + 3 q^{11} - 4 q^{12} + 2 q^{14} + 2 q^{15} - q^{16} + 6 q^{17} + 2 q^{18} + 5 q^{19} - q^{20} - 4 q^{21} + 3 q^{22} + 2 q^{24} + 2 q^{25} + 8 q^{27} - q^{28} + 2 q^{30} + 8 q^{31} - q^{32} - 6 q^{33} - 12 q^{34} - q^{35} - q^{36} + 11 q^{37} - 10 q^{38} + 2 q^{40} + 6 q^{41} + 2 q^{42} - 2 q^{43} - 6 q^{44} - q^{45} + 6 q^{47} + 2 q^{48} + 6 q^{49} - q^{50} + 24 q^{51} - 18 q^{53} - 4 q^{54} + 3 q^{55} - q^{56} + 20 q^{57} - 4 q^{60} - 8 q^{61} - 4 q^{62} - q^{63} + 2 q^{64} + 12 q^{66} - 16 q^{67} + 6 q^{68} + 2 q^{70} + 6 q^{71} - q^{72} - 28 q^{73} + 11 q^{74} + 2 q^{75} + 5 q^{76} - 6 q^{77} - 32 q^{79} - q^{80} + 11 q^{81} + 6 q^{82} + 12 q^{83} + 2 q^{84} + 6 q^{85} + 4 q^{86} + 3 q^{88} + 9 q^{89} + 2 q^{90} + 8 q^{93} - 3 q^{94} + 5 q^{95} - 4 q^{96} - 10 q^{97} + 6 q^{98} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
191.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 + 0.866025i 1.00000 1.73205i −0.500000 0.866025i 1.00000 1.00000 + 1.73205i −0.500000 0.866025i 1.00000 −0.500000 0.866025i −0.500000 + 0.866025i
991.1 −0.500000 0.866025i 1.00000 + 1.73205i −0.500000 + 0.866025i 1.00000 1.00000 1.73205i −0.500000 + 0.866025i 1.00000 −0.500000 + 0.866025i −0.500000 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1690.2.e.e 2
13.b even 2 1 130.2.e.b 2
13.c even 3 1 1690.2.a.g 1
13.c even 3 1 inner 1690.2.e.e 2
13.d odd 4 2 1690.2.l.i 4
13.e even 6 1 130.2.e.b 2
13.e even 6 1 1690.2.a.a 1
13.f odd 12 2 1690.2.d.a 2
13.f odd 12 2 1690.2.l.i 4
39.d odd 2 1 1170.2.i.f 2
39.h odd 6 1 1170.2.i.f 2
52.b odd 2 1 1040.2.q.c 2
52.i odd 6 1 1040.2.q.c 2
65.d even 2 1 650.2.e.a 2
65.h odd 4 2 650.2.o.b 4
65.l even 6 1 650.2.e.a 2
65.l even 6 1 8450.2.a.w 1
65.n even 6 1 8450.2.a.k 1
65.r odd 12 2 650.2.o.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.e.b 2 13.b even 2 1
130.2.e.b 2 13.e even 6 1
650.2.e.a 2 65.d even 2 1
650.2.e.a 2 65.l even 6 1
650.2.o.b 4 65.h odd 4 2
650.2.o.b 4 65.r odd 12 2
1040.2.q.c 2 52.b odd 2 1
1040.2.q.c 2 52.i odd 6 1
1170.2.i.f 2 39.d odd 2 1
1170.2.i.f 2 39.h odd 6 1
1690.2.a.a 1 13.e even 6 1
1690.2.a.g 1 13.c even 3 1
1690.2.d.a 2 13.f odd 12 2
1690.2.e.e 2 1.a even 1 1 trivial
1690.2.e.e 2 13.c even 3 1 inner
1690.2.l.i 4 13.d odd 4 2
1690.2.l.i 4 13.f odd 12 2
8450.2.a.k 1 65.n even 6 1
8450.2.a.w 1 65.l even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1690, [\chi])\):

\( T_{3}^{2} - 2T_{3} + 4 \) Copy content Toggle raw display
\( T_{7}^{2} + T_{7} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} - 3T_{11} + 9 \) Copy content Toggle raw display
\( T_{19}^{2} - 5T_{19} + 25 \) Copy content Toggle raw display
\( T_{31} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$19$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T - 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 11T + 121 \) Copy content Toggle raw display
$41$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$43$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$47$ \( (T - 3)^{2} \) Copy content Toggle raw display
$53$ \( (T + 9)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$67$ \( T^{2} + 16T + 256 \) Copy content Toggle raw display
$71$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$73$ \( (T + 14)^{2} \) Copy content Toggle raw display
$79$ \( (T + 16)^{2} \) Copy content Toggle raw display
$83$ \( (T - 6)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$97$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
show more
show less