Properties

Label 1690.2.e.e
Level $1690$
Weight $2$
Character orbit 1690.e
Analytic conductor $13.495$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(191,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.191"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,2,-1,2,2,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 1) q^{2} + ( - 2 \zeta_{6} + 2) q^{3} - \zeta_{6} q^{4} + q^{5} + 2 \zeta_{6} q^{6} - \zeta_{6} q^{7} + q^{8} - \zeta_{6} q^{9} + (\zeta_{6} - 1) q^{10} + ( - 3 \zeta_{6} + 3) q^{11} + \cdots - 3 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 2 q^{3} - q^{4} + 2 q^{5} + 2 q^{6} - q^{7} + 2 q^{8} - q^{9} - q^{10} + 3 q^{11} - 4 q^{12} + 2 q^{14} + 2 q^{15} - q^{16} + 6 q^{17} + 2 q^{18} + 5 q^{19} - q^{20} - 4 q^{21} + 3 q^{22}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
191.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 + 0.866025i 1.00000 1.73205i −0.500000 0.866025i 1.00000 1.00000 + 1.73205i −0.500000 0.866025i 1.00000 −0.500000 0.866025i −0.500000 + 0.866025i
991.1 −0.500000 0.866025i 1.00000 + 1.73205i −0.500000 + 0.866025i 1.00000 1.00000 1.73205i −0.500000 + 0.866025i 1.00000 −0.500000 + 0.866025i −0.500000 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1690.2.e.e 2
13.b even 2 1 130.2.e.b 2
13.c even 3 1 1690.2.a.g 1
13.c even 3 1 inner 1690.2.e.e 2
13.d odd 4 2 1690.2.l.i 4
13.e even 6 1 130.2.e.b 2
13.e even 6 1 1690.2.a.a 1
13.f odd 12 2 1690.2.d.a 2
13.f odd 12 2 1690.2.l.i 4
39.d odd 2 1 1170.2.i.f 2
39.h odd 6 1 1170.2.i.f 2
52.b odd 2 1 1040.2.q.c 2
52.i odd 6 1 1040.2.q.c 2
65.d even 2 1 650.2.e.a 2
65.h odd 4 2 650.2.o.b 4
65.l even 6 1 650.2.e.a 2
65.l even 6 1 8450.2.a.w 1
65.n even 6 1 8450.2.a.k 1
65.r odd 12 2 650.2.o.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.e.b 2 13.b even 2 1
130.2.e.b 2 13.e even 6 1
650.2.e.a 2 65.d even 2 1
650.2.e.a 2 65.l even 6 1
650.2.o.b 4 65.h odd 4 2
650.2.o.b 4 65.r odd 12 2
1040.2.q.c 2 52.b odd 2 1
1040.2.q.c 2 52.i odd 6 1
1170.2.i.f 2 39.d odd 2 1
1170.2.i.f 2 39.h odd 6 1
1690.2.a.a 1 13.e even 6 1
1690.2.a.g 1 13.c even 3 1
1690.2.d.a 2 13.f odd 12 2
1690.2.e.e 2 1.a even 1 1 trivial
1690.2.e.e 2 13.c even 3 1 inner
1690.2.l.i 4 13.d odd 4 2
1690.2.l.i 4 13.f odd 12 2
8450.2.a.k 1 65.n even 6 1
8450.2.a.w 1 65.l even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1690, [\chi])\):

\( T_{3}^{2} - 2T_{3} + 4 \) Copy content Toggle raw display
\( T_{7}^{2} + T_{7} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} - 3T_{11} + 9 \) Copy content Toggle raw display
\( T_{19}^{2} - 5T_{19} + 25 \) Copy content Toggle raw display
\( T_{31} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$19$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T - 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 11T + 121 \) Copy content Toggle raw display
$41$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$43$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$47$ \( (T - 3)^{2} \) Copy content Toggle raw display
$53$ \( (T + 9)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$67$ \( T^{2} + 16T + 256 \) Copy content Toggle raw display
$71$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$73$ \( (T + 14)^{2} \) Copy content Toggle raw display
$79$ \( (T + 16)^{2} \) Copy content Toggle raw display
$83$ \( (T - 6)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$97$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
show more
show less