Properties

Label 1690.2.d.k
Level $1690$
Weight $2$
Character orbit 1690.d
Analytic conductor $13.495$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(1351,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.1351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,4,-8,0,0,0,0,8,-8,0,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.22581504.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{5} q^{2} + \beta_{2} q^{3} - q^{4} - \beta_{5} q^{5} + \beta_{3} q^{6} - \beta_{7} q^{7} + \beta_{5} q^{8} + (2 \beta_{2} + \beta_1) q^{9} - q^{10} + ( - \beta_{7} - \beta_{6} + \cdots + \beta_{3}) q^{11}+ \cdots + ( - 2 \beta_{7} + 3 \beta_{6} + \cdots + 5 \beta_{3}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 8 q^{4} + 8 q^{9} - 8 q^{10} - 4 q^{12} + 8 q^{16} - 12 q^{17} - 12 q^{22} - 24 q^{23} - 8 q^{25} + 40 q^{27} - 4 q^{30} - 8 q^{36} - 12 q^{38} + 8 q^{40} + 12 q^{42} - 8 q^{43} + 4 q^{48}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{7} + 2\nu^{6} + \nu^{5} - 4\nu^{4} + \nu^{3} + 6\nu^{2} - 10\nu + 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 3\nu^{7} - 8\nu^{6} + 3\nu^{5} + 10\nu^{4} - 13\nu^{3} - 8\nu^{2} + 32\nu - 24 ) / 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -5\nu^{7} + 12\nu^{6} - 5\nu^{5} - 18\nu^{4} + 19\nu^{3} + 28\nu^{2} - 64\nu + 40 ) / 8 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -3\nu^{7} + 9\nu^{6} - 5\nu^{5} - 13\nu^{4} + 21\nu^{3} + 13\nu^{2} - 54\nu + 40 ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -4\nu^{7} + 11\nu^{6} - 6\nu^{5} - 17\nu^{4} + 24\nu^{3} + 15\nu^{2} - 62\nu + 48 ) / 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 3\nu^{7} - 7\nu^{6} + 3\nu^{5} + 11\nu^{4} - 15\nu^{3} - 11\nu^{2} + 40\nu - 30 ) / 2 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 5\nu^{7} - 15\nu^{6} + 11\nu^{5} + 19\nu^{4} - 35\nu^{3} - 11\nu^{2} + 90\nu - 80 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} + \beta_{5} - 2\beta_{2} - \beta _1 + 3 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{7} - \beta_{5} + 2\beta_{4} + 2\beta_{3} - \beta _1 + 3 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{7} - \beta_{6} - \beta_{5} + 2\beta_{4} - \beta_{3} - \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -\beta_{7} - 2\beta_{6} - 11\beta_{5} + 6\beta_{4} + 2\beta_{3} - 4\beta_{2} - \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( \beta_{7} - 2\beta_{6} - 7\beta_{5} + 8\beta_{4} - 6\beta_{3} - 4\beta_{2} + 3\beta _1 + 9 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 3\beta_{6} - 2\beta_{5} + 4\beta_{4} - 8\beta_{2} + \beta _1 + 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 3\beta_{7} + 16\beta_{6} + 11\beta_{5} + 16\beta_{4} - 4\beta_{3} - 2\beta_{2} + 5\beta _1 + 17 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1351.1
0.665665 + 1.24775i
1.40994 0.109843i
1.20036 0.747754i
−1.27597 + 0.609843i
0.665665 1.24775i
1.40994 + 0.109843i
1.20036 + 0.747754i
−1.27597 0.609843i
1.00000i −1.82684 −1.00000 1.00000i 1.82684i 3.99102i 1.00000i 0.337339 −1.00000
1351.2 1.00000i −0.600196 −1.00000 1.00000i 0.600196i 1.43937i 1.00000i −2.63977 −1.00000
1351.3 1.00000i 1.09479 −1.00000 1.00000i 1.09479i 3.99102i 1.00000i −1.80144 −1.00000
1351.4 1.00000i 3.33225 −1.00000 1.00000i 3.33225i 1.43937i 1.00000i 8.10387 −1.00000
1351.5 1.00000i −1.82684 −1.00000 1.00000i 1.82684i 3.99102i 1.00000i 0.337339 −1.00000
1351.6 1.00000i −0.600196 −1.00000 1.00000i 0.600196i 1.43937i 1.00000i −2.63977 −1.00000
1351.7 1.00000i 1.09479 −1.00000 1.00000i 1.09479i 3.99102i 1.00000i −1.80144 −1.00000
1351.8 1.00000i 3.33225 −1.00000 1.00000i 3.33225i 1.43937i 1.00000i 8.10387 −1.00000
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1351.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1690.2.d.k 8
13.b even 2 1 inner 1690.2.d.k 8
13.c even 3 1 130.2.l.b 8
13.c even 3 1 1690.2.l.j 8
13.d odd 4 1 1690.2.a.t 4
13.d odd 4 1 1690.2.a.u 4
13.e even 6 1 130.2.l.b 8
13.e even 6 1 1690.2.l.j 8
13.f odd 12 2 1690.2.e.s 8
13.f odd 12 2 1690.2.e.t 8
39.h odd 6 1 1170.2.bs.g 8
39.i odd 6 1 1170.2.bs.g 8
52.i odd 6 1 1040.2.da.d 8
52.j odd 6 1 1040.2.da.d 8
65.g odd 4 1 8450.2.a.ci 4
65.g odd 4 1 8450.2.a.cm 4
65.l even 6 1 650.2.m.c 8
65.n even 6 1 650.2.m.c 8
65.q odd 12 1 650.2.n.d 8
65.q odd 12 1 650.2.n.e 8
65.r odd 12 1 650.2.n.d 8
65.r odd 12 1 650.2.n.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.l.b 8 13.c even 3 1
130.2.l.b 8 13.e even 6 1
650.2.m.c 8 65.l even 6 1
650.2.m.c 8 65.n even 6 1
650.2.n.d 8 65.q odd 12 1
650.2.n.d 8 65.r odd 12 1
650.2.n.e 8 65.q odd 12 1
650.2.n.e 8 65.r odd 12 1
1040.2.da.d 8 52.i odd 6 1
1040.2.da.d 8 52.j odd 6 1
1170.2.bs.g 8 39.h odd 6 1
1170.2.bs.g 8 39.i odd 6 1
1690.2.a.t 4 13.d odd 4 1
1690.2.a.u 4 13.d odd 4 1
1690.2.d.k 8 1.a even 1 1 trivial
1690.2.d.k 8 13.b even 2 1 inner
1690.2.e.s 8 13.f odd 12 2
1690.2.e.t 8 13.f odd 12 2
1690.2.l.j 8 13.c even 3 1
1690.2.l.j 8 13.e even 6 1
8450.2.a.ci 4 65.g odd 4 1
8450.2.a.cm 4 65.g odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1690, [\chi])\):

\( T_{3}^{4} - 2T_{3}^{3} - 6T_{3}^{2} + 4T_{3} + 4 \) Copy content Toggle raw display
\( T_{7}^{4} + 18T_{7}^{2} + 33 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$3$ \( (T^{4} - 2 T^{3} - 6 T^{2} + \cdots + 4)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$7$ \( (T^{4} + 18 T^{2} + 33)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + 48 T^{6} + \cdots + 81 \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( (T^{4} + 6 T^{3} + \cdots - 108)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} + 24 T^{6} + \cdots + 9 \) Copy content Toggle raw display
$23$ \( (T^{4} + 12 T^{3} + \cdots - 48)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} - 96 T^{2} + 2112)^{2} \) Copy content Toggle raw display
$31$ \( T^{8} + 144 T^{6} + \cdots + 144 \) Copy content Toggle raw display
$37$ \( T^{8} + 120 T^{6} + \cdots + 9801 \) Copy content Toggle raw display
$41$ \( T^{8} + 120 T^{6} + \cdots + 20736 \) Copy content Toggle raw display
$43$ \( (T^{4} + 4 T^{3} + \cdots - 368)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + 228 T^{6} + \cdots + 408321 \) Copy content Toggle raw display
$53$ \( (T^{4} - 30 T^{3} + \cdots - 579)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 12)^{4} \) Copy content Toggle raw display
$61$ \( (T^{4} + 26 T^{3} + \cdots + 628)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + 384 T^{6} + \cdots + 9437184 \) Copy content Toggle raw display
$71$ \( (T^{2} + 36)^{4} \) Copy content Toggle raw display
$73$ \( T^{8} + 264 T^{6} + \cdots + 1296 \) Copy content Toggle raw display
$79$ \( (T^{4} - 10 T^{3} + \cdots - 188)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + 480 T^{6} + \cdots + 4511376 \) Copy content Toggle raw display
$89$ \( T^{8} + 156 T^{6} + \cdots + 42849 \) Copy content Toggle raw display
$97$ \( T^{8} + 648 T^{6} + \cdots + 18558864 \) Copy content Toggle raw display
show more
show less