Properties

Label 1690.2.a.v
Level $1690$
Weight $2$
Character orbit 1690.a
Self dual yes
Analytic conductor $13.495$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(1,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-6,-2,6,-6,2,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.4947179416\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.20439713.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 15x^{4} + 22x^{3} + 70x^{2} - 56x - 91 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - \beta_1 q^{3} + q^{4} - q^{5} + \beta_1 q^{6} + ( - \beta_{5} - \beta_{4} + \beta_{2}) q^{7} - q^{8} + (\beta_{3} + \beta_1 + 2) q^{9} + q^{10} + (\beta_{5} - \beta_{4} - \beta_{3} + \cdots - 2) q^{11}+ \cdots + (\beta_{5} - 2 \beta_{4} - 5 \beta_{3} + \cdots - 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 6 q^{5} + 2 q^{6} - 3 q^{7} - 6 q^{8} + 16 q^{9} + 6 q^{10} - 15 q^{11} - 2 q^{12} + 3 q^{14} + 2 q^{15} + 6 q^{16} - 3 q^{17} - 16 q^{18} - q^{19} - 6 q^{20} + 2 q^{21}+ \cdots - 55 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 15x^{4} + 22x^{3} + 70x^{2} - 56x - 91 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - \nu^{2} - 6\nu + 1 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - \nu - 5 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} - \nu^{3} - 10\nu^{2} + 5\nu + 20 ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} - \nu^{4} - 11\nu^{3} + 6\nu^{2} + 26\nu - 5 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta _1 + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 4\beta_{2} + 7\beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4\beta_{4} + 11\beta_{3} + 4\beta_{2} + 12\beta _1 + 34 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 4\beta_{5} + 4\beta_{4} + 16\beta_{3} + 48\beta_{2} + 57\beta _1 + 53 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.23543
2.79223
1.77061
−0.988450
−2.23727
−2.57254
−1.00000 −3.23543 1.00000 −1.00000 3.23543 −4.13802 −1.00000 7.46801 1.00000
1.2 −1.00000 −2.79223 1.00000 −1.00000 2.79223 4.83875 −1.00000 4.79655 1.00000
1.3 −1.00000 −1.77061 1.00000 −1.00000 1.77061 −3.83691 −1.00000 0.135043 1.00000
1.4 −1.00000 0.988450 1.00000 −1.00000 −0.988450 3.47315 −1.00000 −2.02297 1.00000
1.5 −1.00000 2.23727 1.00000 −1.00000 −2.23727 −1.43294 −1.00000 2.00539 1.00000
1.6 −1.00000 2.57254 1.00000 −1.00000 −2.57254 −1.90403 −1.00000 3.61798 1.00000
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1690.2.a.v 6
5.b even 2 1 8450.2.a.cq 6
13.b even 2 1 1690.2.a.w yes 6
13.c even 3 2 1690.2.e.v 12
13.d odd 4 2 1690.2.d.l 12
13.e even 6 2 1690.2.e.u 12
13.f odd 12 4 1690.2.l.n 24
65.d even 2 1 8450.2.a.cp 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1690.2.a.v 6 1.a even 1 1 trivial
1690.2.a.w yes 6 13.b even 2 1
1690.2.d.l 12 13.d odd 4 2
1690.2.e.u 12 13.e even 6 2
1690.2.e.v 12 13.c even 3 2
1690.2.l.n 24 13.f odd 12 4
8450.2.a.cp 6 65.d even 2 1
8450.2.a.cq 6 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1690))\):

\( T_{3}^{6} + 2T_{3}^{5} - 15T_{3}^{4} - 22T_{3}^{3} + 70T_{3}^{2} + 56T_{3} - 91 \) Copy content Toggle raw display
\( T_{7}^{6} + 3T_{7}^{5} - 32T_{7}^{4} - 111T_{7}^{3} + 182T_{7}^{2} + 896T_{7} + 728 \) Copy content Toggle raw display
\( T_{11}^{6} + 15T_{11}^{5} + 54T_{11}^{4} - 183T_{11}^{3} - 1540T_{11}^{2} - 2772T_{11} - 728 \) Copy content Toggle raw display
\( T_{31}^{6} - 104T_{31}^{4} + 2000T_{31}^{2} + 896T_{31} - 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 2 T^{5} + \cdots - 91 \) Copy content Toggle raw display
$5$ \( (T + 1)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 3 T^{5} + \cdots + 728 \) Copy content Toggle raw display
$11$ \( T^{6} + 15 T^{5} + \cdots - 728 \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + 3 T^{5} + \cdots - 2008 \) Copy content Toggle raw display
$19$ \( T^{6} + T^{5} + \cdots - 3016 \) Copy content Toggle raw display
$23$ \( T^{6} + 3 T^{5} + \cdots + 1352 \) Copy content Toggle raw display
$29$ \( T^{6} - 7 T^{5} + \cdots + 7384 \) Copy content Toggle raw display
$31$ \( T^{6} - 104 T^{4} + \cdots - 64 \) Copy content Toggle raw display
$37$ \( T^{6} + 6 T^{5} + \cdots + 14848 \) Copy content Toggle raw display
$41$ \( T^{6} + 2 T^{5} + \cdots - 91 \) Copy content Toggle raw display
$43$ \( T^{6} + 22 T^{5} + \cdots - 14903 \) Copy content Toggle raw display
$47$ \( T^{6} + 7 T^{5} + \cdots + 36392 \) Copy content Toggle raw display
$53$ \( T^{6} + 16 T^{5} + \cdots - 832 \) Copy content Toggle raw display
$59$ \( T^{6} + 15 T^{5} + \cdots + 18824 \) Copy content Toggle raw display
$61$ \( T^{6} - 33 T^{5} + \cdots + 6728 \) Copy content Toggle raw display
$67$ \( T^{6} - 8 T^{5} + \cdots - 11411 \) Copy content Toggle raw display
$71$ \( (T^{3} + 20 T^{2} + 68 T + 8)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + 21 T^{5} + \cdots - 8 \) Copy content Toggle raw display
$79$ \( T^{6} - 20 T^{5} + \cdots - 77888 \) Copy content Toggle raw display
$83$ \( T^{6} + 22 T^{5} + \cdots - 186641 \) Copy content Toggle raw display
$89$ \( T^{6} + 20 T^{5} + \cdots + 3571 \) Copy content Toggle raw display
$97$ \( T^{6} - 7 T^{5} + \cdots + 312424 \) Copy content Toggle raw display
show more
show less