Properties

Label 1690.2.a.p
Level $1690$
Weight $2$
Character orbit 1690.a
Self dual yes
Analytic conductor $13.495$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(1,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,-1,3,3,1,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - \beta_1 q^{3} + q^{4} + q^{5} + \beta_1 q^{6} - 2 \beta_1 q^{7} - q^{8} + (\beta_{2} - 1) q^{9} - q^{10} + (\beta_{2} - \beta_1 + 5) q^{11} - \beta_1 q^{12} + 2 \beta_1 q^{14} - \beta_1 q^{15}+ \cdots + (2 \beta_{2} + 2 \beta_1 - 5) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - q^{3} + 3 q^{4} + 3 q^{5} + q^{6} - 2 q^{7} - 3 q^{8} - 4 q^{9} - 3 q^{10} + 13 q^{11} - q^{12} + 2 q^{14} - q^{15} + 3 q^{16} - q^{17} + 4 q^{18} + 3 q^{19} + 3 q^{20} + 10 q^{21}+ \cdots - 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{14} + \zeta_{14}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
0.445042
−1.24698
−1.00000 −1.80194 1.00000 1.00000 1.80194 −3.60388 −1.00000 0.246980 −1.00000
1.2 −1.00000 −0.445042 1.00000 1.00000 0.445042 −0.890084 −1.00000 −2.80194 −1.00000
1.3 −1.00000 1.24698 1.00000 1.00000 −1.24698 2.49396 −1.00000 −1.44504 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1690.2.a.p 3
5.b even 2 1 8450.2.a.cg 3
13.b even 2 1 1690.2.a.r yes 3
13.c even 3 2 1690.2.e.r 6
13.d odd 4 2 1690.2.d.i 6
13.e even 6 2 1690.2.e.p 6
13.f odd 12 4 1690.2.l.m 12
65.d even 2 1 8450.2.a.bv 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1690.2.a.p 3 1.a even 1 1 trivial
1690.2.a.r yes 3 13.b even 2 1
1690.2.d.i 6 13.d odd 4 2
1690.2.e.p 6 13.e even 6 2
1690.2.e.r 6 13.c even 3 2
1690.2.l.m 12 13.f odd 12 4
8450.2.a.bv 3 65.d even 2 1
8450.2.a.cg 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1690))\):

\( T_{3}^{3} + T_{3}^{2} - 2T_{3} - 1 \) Copy content Toggle raw display
\( T_{7}^{3} + 2T_{7}^{2} - 8T_{7} - 8 \) Copy content Toggle raw display
\( T_{11}^{3} - 13T_{11}^{2} + 54T_{11} - 71 \) Copy content Toggle raw display
\( T_{31}^{3} - 4T_{31}^{2} - 60T_{31} + 232 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + T^{2} - 2T - 1 \) Copy content Toggle raw display
$5$ \( (T - 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 2 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$11$ \( T^{3} - 13 T^{2} + \cdots - 71 \) Copy content Toggle raw display
$13$ \( T^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + T^{2} + \cdots - 29 \) Copy content Toggle raw display
$19$ \( T^{3} - 3 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$23$ \( T^{3} + 10 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$29$ \( T^{3} + 8 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$31$ \( T^{3} - 4 T^{2} + \cdots + 232 \) Copy content Toggle raw display
$37$ \( T^{3} - 6 T^{2} + \cdots + 216 \) Copy content Toggle raw display
$41$ \( T^{3} - 19 T^{2} + \cdots - 113 \) Copy content Toggle raw display
$43$ \( T^{3} - 5 T^{2} + \cdots + 839 \) Copy content Toggle raw display
$47$ \( T^{3} - 8 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$53$ \( T^{3} + 8 T^{2} + \cdots - 568 \) Copy content Toggle raw display
$59$ \( T^{3} - 5 T^{2} + \cdots + 839 \) Copy content Toggle raw display
$61$ \( T^{3} + 8 T^{2} + \cdots - 568 \) Copy content Toggle raw display
$67$ \( T^{3} - T^{2} + \cdots - 559 \) Copy content Toggle raw display
$71$ \( T^{3} - 12 T^{2} + \cdots + 328 \) Copy content Toggle raw display
$73$ \( T^{3} - 5 T^{2} + \cdots + 643 \) Copy content Toggle raw display
$79$ \( T^{3} - 2 T^{2} + \cdots - 104 \) Copy content Toggle raw display
$83$ \( T^{3} + 7 T^{2} + \cdots + 203 \) Copy content Toggle raw display
$89$ \( T^{3} - 21 T^{2} + \cdots + 49 \) Copy content Toggle raw display
$97$ \( T^{3} - 21 T^{2} + \cdots - 287 \) Copy content Toggle raw display
show more
show less