Properties

Label 169.8.b.f.168.38
Level $169$
Weight $8$
Character 169.168
Analytic conductor $52.793$
Analytic rank $0$
Dimension $42$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,8,Mod(168,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.168"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 169.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.7930693068\)
Analytic rank: \(0\)
Dimension: \(42\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 168.38
Character \(\chi\) \(=\) 169.168
Dual form 169.8.b.f.168.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+19.6237i q^{2} -72.4635 q^{3} -257.091 q^{4} -413.760i q^{5} -1422.00i q^{6} +1005.88i q^{7} -2533.24i q^{8} +3063.96 q^{9} +8119.51 q^{10} +3482.63i q^{11} +18629.7 q^{12} -19739.1 q^{14} +29982.5i q^{15} +16804.1 q^{16} -6157.31 q^{17} +60126.4i q^{18} +41406.0i q^{19} +106374. i q^{20} -72889.6i q^{21} -68342.2 q^{22} +63119.9 q^{23} +183568. i q^{24} -93072.0 q^{25} -63547.8 q^{27} -258602. i q^{28} +75193.0 q^{29} -588368. q^{30} +133868. i q^{31} +5503.36i q^{32} -252364. i q^{33} -120829. i q^{34} +416192. q^{35} -787717. q^{36} +171939. i q^{37} -812541. q^{38} -1.04815e6 q^{40} +747517. i q^{41} +1.43037e6 q^{42} +187227. q^{43} -895352. i q^{44} -1.26774e6i q^{45} +1.23865e6i q^{46} -226649. i q^{47} -1.21768e6 q^{48} -188251. q^{49} -1.82642e6i q^{50} +446180. q^{51} -1.34632e6 q^{53} -1.24705e6i q^{54} +1.44097e6 q^{55} +2.54814e6 q^{56} -3.00043e6i q^{57} +1.47557e6i q^{58} -2.50878e6i q^{59} -7.70822e6i q^{60} -509752. q^{61} -2.62699e6 q^{62} +3.08198e6i q^{63} +2.04292e6 q^{64} +4.95232e6 q^{66} +4.07091e6i q^{67} +1.58299e6 q^{68} -4.57389e6 q^{69} +8.16725e6i q^{70} +256015. i q^{71} -7.76177e6i q^{72} +5.38093e6i q^{73} -3.37408e6 q^{74} +6.74433e6 q^{75} -1.06451e7i q^{76} -3.50311e6 q^{77} +5.18777e6 q^{79} -6.95285e6i q^{80} -2.09599e6 q^{81} -1.46691e7 q^{82} -5.32418e6i q^{83} +1.87392e7i q^{84} +2.54765e6i q^{85} +3.67410e6i q^{86} -5.44875e6 q^{87} +8.82235e6 q^{88} -8.69805e6i q^{89} +2.48779e7 q^{90} -1.62276e7 q^{92} -9.70053e6i q^{93} +4.44770e6 q^{94} +1.71321e7 q^{95} -398793. i q^{96} -3.76799e6i q^{97} -3.69419e6i q^{98} +1.06706e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 42 q - 52 q^{3} - 2818 q^{4} + 30930 q^{9} + 10334 q^{10} - 43590 q^{12} - 358 q^{14} + 226410 q^{16} - 90032 q^{17} - 548348 q^{22} + 256210 q^{23} - 733074 q^{25} - 213286 q^{27} - 124658 q^{29} - 19522 q^{30}+ \cdots - 35320062 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 19.6237i 1.73451i 0.497865 + 0.867255i \(0.334118\pi\)
−0.497865 + 0.867255i \(0.665882\pi\)
\(3\) −72.4635 −1.54951 −0.774756 0.632260i \(-0.782127\pi\)
−0.774756 + 0.632260i \(0.782127\pi\)
\(4\) −257.091 −2.00852
\(5\) − 413.760i − 1.48031i −0.672436 0.740156i \(-0.734752\pi\)
0.672436 0.740156i \(-0.265248\pi\)
\(6\) − 1422.00i − 2.68764i
\(7\) 1005.88i 1.10842i 0.832378 + 0.554208i \(0.186979\pi\)
−0.832378 + 0.554208i \(0.813021\pi\)
\(8\) − 2533.24i − 1.74929i
\(9\) 3063.96 1.40099
\(10\) 8119.51 2.56761
\(11\) 3482.63i 0.788920i 0.918913 + 0.394460i \(0.129068\pi\)
−0.918913 + 0.394460i \(0.870932\pi\)
\(12\) 18629.7 3.11223
\(13\) 0 0
\(14\) −19739.1 −1.92256
\(15\) 29982.5i 2.29376i
\(16\) 16804.1 1.02564
\(17\) −6157.31 −0.303962 −0.151981 0.988383i \(-0.548565\pi\)
−0.151981 + 0.988383i \(0.548565\pi\)
\(18\) 60126.4i 2.43003i
\(19\) 41406.0i 1.38492i 0.721454 + 0.692462i \(0.243474\pi\)
−0.721454 + 0.692462i \(0.756526\pi\)
\(20\) 106374.i 2.97324i
\(21\) − 72889.6i − 1.71751i
\(22\) −68342.2 −1.36839
\(23\) 63119.9 1.08173 0.540865 0.841109i \(-0.318097\pi\)
0.540865 + 0.841109i \(0.318097\pi\)
\(24\) 183568.i 2.71055i
\(25\) −93072.0 −1.19132
\(26\) 0 0
\(27\) −63547.8 −0.621337
\(28\) − 258602.i − 2.22628i
\(29\) 75193.0 0.572512 0.286256 0.958153i \(-0.407589\pi\)
0.286256 + 0.958153i \(0.407589\pi\)
\(30\) −588368. −3.97855
\(31\) 133868.i 0.807068i 0.914965 + 0.403534i \(0.132218\pi\)
−0.914965 + 0.403534i \(0.867782\pi\)
\(32\) 5503.36i 0.0296895i
\(33\) − 252364.i − 1.22244i
\(34\) − 120829.i − 0.527225i
\(35\) 416192. 1.64080
\(36\) −787717. −2.81392
\(37\) 171939.i 0.558043i 0.960285 + 0.279022i \(0.0900101\pi\)
−0.960285 + 0.279022i \(0.909990\pi\)
\(38\) −812541. −2.40216
\(39\) 0 0
\(40\) −1.04815e6 −2.58950
\(41\) 747517.i 1.69386i 0.531705 + 0.846930i \(0.321552\pi\)
−0.531705 + 0.846930i \(0.678448\pi\)
\(42\) 1.43037e6 2.97903
\(43\) 187227. 0.359112 0.179556 0.983748i \(-0.442534\pi\)
0.179556 + 0.983748i \(0.442534\pi\)
\(44\) − 895352.i − 1.58456i
\(45\) − 1.26774e6i − 2.07390i
\(46\) 1.23865e6i 1.87627i
\(47\) − 226649.i − 0.318428i −0.987244 0.159214i \(-0.949104\pi\)
0.987244 0.159214i \(-0.0508960\pi\)
\(48\) −1.21768e6 −1.58924
\(49\) −188251. −0.228587
\(50\) − 1.82642e6i − 2.06636i
\(51\) 446180. 0.470993
\(52\) 0 0
\(53\) −1.34632e6 −1.24218 −0.621088 0.783740i \(-0.713309\pi\)
−0.621088 + 0.783740i \(0.713309\pi\)
\(54\) − 1.24705e6i − 1.07772i
\(55\) 1.44097e6 1.16785
\(56\) 2.54814e6 1.93894
\(57\) − 3.00043e6i − 2.14596i
\(58\) 1.47557e6i 0.993027i
\(59\) − 2.50878e6i − 1.59031i −0.606409 0.795153i \(-0.707390\pi\)
0.606409 0.795153i \(-0.292610\pi\)
\(60\) − 7.70822e6i − 4.60707i
\(61\) −509752. −0.287544 −0.143772 0.989611i \(-0.545923\pi\)
−0.143772 + 0.989611i \(0.545923\pi\)
\(62\) −2.62699e6 −1.39987
\(63\) 3.08198e6i 1.55288i
\(64\) 2.04292e6 0.974142
\(65\) 0 0
\(66\) 4.95232e6 2.12034
\(67\) 4.07091e6i 1.65360i 0.562498 + 0.826799i \(0.309840\pi\)
−0.562498 + 0.826799i \(0.690160\pi\)
\(68\) 1.58299e6 0.610515
\(69\) −4.57389e6 −1.67616
\(70\) 8.16725e6i 2.84599i
\(71\) 256015.i 0.0848910i 0.999099 + 0.0424455i \(0.0135149\pi\)
−0.999099 + 0.0424455i \(0.986485\pi\)
\(72\) − 7.76177e6i − 2.45074i
\(73\) 5.38093e6i 1.61893i 0.587171 + 0.809463i \(0.300242\pi\)
−0.587171 + 0.809463i \(0.699758\pi\)
\(74\) −3.37408e6 −0.967931
\(75\) 6.74433e6 1.84597
\(76\) − 1.06451e7i − 2.78165i
\(77\) −3.50311e6 −0.874452
\(78\) 0 0
\(79\) 5.18777e6 1.18382 0.591911 0.806004i \(-0.298374\pi\)
0.591911 + 0.806004i \(0.298374\pi\)
\(80\) − 6.95285e6i − 1.51827i
\(81\) −2.09599e6 −0.438219
\(82\) −1.46691e7 −2.93801
\(83\) − 5.32418e6i − 1.02207i −0.859561 0.511034i \(-0.829263\pi\)
0.859561 0.511034i \(-0.170737\pi\)
\(84\) 1.87392e7i 3.44965i
\(85\) 2.54765e6i 0.449959i
\(86\) 3.67410e6i 0.622883i
\(87\) −5.44875e6 −0.887114
\(88\) 8.82235e6 1.38005
\(89\) − 8.69805e6i − 1.30785i −0.756561 0.653923i \(-0.773122\pi\)
0.756561 0.653923i \(-0.226878\pi\)
\(90\) 2.48779e7 3.59720
\(91\) 0 0
\(92\) −1.62276e7 −2.17268
\(93\) − 9.70053e6i − 1.25056i
\(94\) 4.44770e6 0.552317
\(95\) 1.71321e7 2.05012
\(96\) − 398793.i − 0.0460043i
\(97\) − 3.76799e6i − 0.419187i −0.977789 0.209594i \(-0.932786\pi\)
0.977789 0.209594i \(-0.0672141\pi\)
\(98\) − 3.69419e6i − 0.396486i
\(99\) 1.06706e7i 1.10527i
\(100\) 2.39280e7 2.39280
\(101\) −1.07132e7 −1.03465 −0.517325 0.855789i \(-0.673072\pi\)
−0.517325 + 0.855789i \(0.673072\pi\)
\(102\) 8.75572e6i 0.816942i
\(103\) 8.08002e6 0.728588 0.364294 0.931284i \(-0.381310\pi\)
0.364294 + 0.931284i \(0.381310\pi\)
\(104\) 0 0
\(105\) −3.01588e7 −2.54244
\(106\) − 2.64199e7i − 2.15457i
\(107\) −2.35427e6 −0.185786 −0.0928931 0.995676i \(-0.529611\pi\)
−0.0928931 + 0.995676i \(0.529611\pi\)
\(108\) 1.63376e7 1.24797
\(109\) − 289028.i − 0.0213770i −0.999943 0.0106885i \(-0.996598\pi\)
0.999943 0.0106885i \(-0.00340232\pi\)
\(110\) 2.82772e7i 2.02564i
\(111\) − 1.24593e7i − 0.864695i
\(112\) 1.69029e7i 1.13684i
\(113\) 4.19514e6 0.273509 0.136755 0.990605i \(-0.456333\pi\)
0.136755 + 0.990605i \(0.456333\pi\)
\(114\) 5.88796e7 3.72218
\(115\) − 2.61165e7i − 1.60130i
\(116\) −1.93314e7 −1.14990
\(117\) 0 0
\(118\) 4.92317e7 2.75840
\(119\) − 6.19351e6i − 0.336917i
\(120\) 7.59529e7 4.01246
\(121\) 7.35846e6 0.377605
\(122\) − 1.00032e7i − 0.498748i
\(123\) − 5.41677e7i − 2.62466i
\(124\) − 3.44162e7i − 1.62101i
\(125\) 6.18447e6i 0.283216i
\(126\) −6.04799e7 −2.69348
\(127\) −3.35328e7 −1.45264 −0.726318 0.687358i \(-0.758770\pi\)
−0.726318 + 0.687358i \(0.758770\pi\)
\(128\) 4.07942e7i 1.71935i
\(129\) −1.35672e7 −0.556449
\(130\) 0 0
\(131\) −2.99754e7 −1.16497 −0.582487 0.812840i \(-0.697920\pi\)
−0.582487 + 0.812840i \(0.697920\pi\)
\(132\) 6.48804e7i 2.45530i
\(133\) −4.16495e7 −1.53507
\(134\) −7.98865e7 −2.86818
\(135\) 2.62935e7i 0.919773i
\(136\) 1.55980e7i 0.531719i
\(137\) − 1.77421e7i − 0.589501i −0.955574 0.294750i \(-0.904764\pi\)
0.955574 0.294750i \(-0.0952365\pi\)
\(138\) − 8.97569e7i − 2.90731i
\(139\) −2.24539e7 −0.709152 −0.354576 0.935027i \(-0.615375\pi\)
−0.354576 + 0.935027i \(0.615375\pi\)
\(140\) −1.06999e8 −3.29559
\(141\) 1.64238e7i 0.493409i
\(142\) −5.02398e6 −0.147244
\(143\) 0 0
\(144\) 5.14871e7 1.43691
\(145\) − 3.11118e7i − 0.847495i
\(146\) −1.05594e8 −2.80804
\(147\) 1.36413e7 0.354198
\(148\) − 4.42039e7i − 1.12084i
\(149\) 1.63242e7i 0.404278i 0.979357 + 0.202139i \(0.0647893\pi\)
−0.979357 + 0.202139i \(0.935211\pi\)
\(150\) 1.32349e8i 3.20185i
\(151\) − 3.54101e7i − 0.836965i −0.908225 0.418483i \(-0.862562\pi\)
0.908225 0.418483i \(-0.137438\pi\)
\(152\) 1.04892e8 2.42264
\(153\) −1.88658e7 −0.425848
\(154\) − 6.87440e7i − 1.51674i
\(155\) 5.53891e7 1.19471
\(156\) 0 0
\(157\) −1.64297e7 −0.338830 −0.169415 0.985545i \(-0.554188\pi\)
−0.169415 + 0.985545i \(0.554188\pi\)
\(158\) 1.01803e8i 2.05335i
\(159\) 9.75593e7 1.92477
\(160\) 2.27707e6 0.0439497
\(161\) 6.34911e7i 1.19901i
\(162\) − 4.11311e7i − 0.760095i
\(163\) 7.24842e7i 1.31095i 0.755216 + 0.655475i \(0.227532\pi\)
−0.755216 + 0.655475i \(0.772468\pi\)
\(164\) − 1.92180e8i − 3.40215i
\(165\) −1.04418e8 −1.80959
\(166\) 1.04480e8 1.77279
\(167\) − 9.79620e7i − 1.62761i −0.581139 0.813804i \(-0.697393\pi\)
0.581139 0.813804i \(-0.302607\pi\)
\(168\) −1.84647e8 −3.00442
\(169\) 0 0
\(170\) −4.99943e7 −0.780458
\(171\) 1.26867e8i 1.94026i
\(172\) −4.81345e7 −0.721284
\(173\) −5.57283e6 −0.0818303 −0.0409151 0.999163i \(-0.513027\pi\)
−0.0409151 + 0.999163i \(0.513027\pi\)
\(174\) − 1.06925e8i − 1.53871i
\(175\) − 9.36193e7i − 1.32048i
\(176\) 5.85224e7i 0.809147i
\(177\) 1.81795e8i 2.46420i
\(178\) 1.70688e8 2.26847
\(179\) −7.61885e7 −0.992896 −0.496448 0.868067i \(-0.665363\pi\)
−0.496448 + 0.868067i \(0.665363\pi\)
\(180\) 3.25925e8i 4.16547i
\(181\) −5.13200e7 −0.643297 −0.321648 0.946859i \(-0.604237\pi\)
−0.321648 + 0.946859i \(0.604237\pi\)
\(182\) 0 0
\(183\) 3.69384e7 0.445553
\(184\) − 1.59898e8i − 1.89226i
\(185\) 7.11413e7 0.826078
\(186\) 1.90361e8 2.16911
\(187\) − 2.14436e7i − 0.239802i
\(188\) 5.82694e7i 0.639570i
\(189\) − 6.39215e7i − 0.688701i
\(190\) 3.36197e8i 3.55595i
\(191\) 1.19362e7 0.123951 0.0619753 0.998078i \(-0.480260\pi\)
0.0619753 + 0.998078i \(0.480260\pi\)
\(192\) −1.48038e8 −1.50945
\(193\) 1.37269e8i 1.37443i 0.726453 + 0.687216i \(0.241167\pi\)
−0.726453 + 0.687216i \(0.758833\pi\)
\(194\) 7.39419e7 0.727084
\(195\) 0 0
\(196\) 4.83976e7 0.459122
\(197\) 9.34188e7i 0.870567i 0.900293 + 0.435284i \(0.143352\pi\)
−0.900293 + 0.435284i \(0.856648\pi\)
\(198\) −2.09398e8 −1.91710
\(199\) −1.28639e8 −1.15714 −0.578571 0.815632i \(-0.696389\pi\)
−0.578571 + 0.815632i \(0.696389\pi\)
\(200\) 2.35774e8i 2.08397i
\(201\) − 2.94993e8i − 2.56227i
\(202\) − 2.10232e8i − 1.79461i
\(203\) 7.56351e7i 0.634581i
\(204\) −1.14709e8 −0.946001
\(205\) 3.09292e8 2.50744
\(206\) 1.58560e8i 1.26374i
\(207\) 1.93397e8 1.51549
\(208\) 0 0
\(209\) −1.44202e8 −1.09259
\(210\) − 5.91828e8i − 4.40989i
\(211\) −1.53936e8 −1.12811 −0.564054 0.825738i \(-0.690759\pi\)
−0.564054 + 0.825738i \(0.690759\pi\)
\(212\) 3.46127e8 2.49494
\(213\) − 1.85518e7i − 0.131540i
\(214\) − 4.61996e7i − 0.322248i
\(215\) − 7.74672e7i − 0.531598i
\(216\) 1.60982e8i 1.08690i
\(217\) −1.34655e8 −0.894568
\(218\) 5.67181e6 0.0370786
\(219\) − 3.89921e8i − 2.50855i
\(220\) −3.70461e8 −2.34565
\(221\) 0 0
\(222\) 2.44498e8 1.49982
\(223\) 1.30054e8i 0.785336i 0.919680 + 0.392668i \(0.128448\pi\)
−0.919680 + 0.392668i \(0.871552\pi\)
\(224\) −5.53572e6 −0.0329083
\(225\) −2.85169e8 −1.66903
\(226\) 8.23244e7i 0.474405i
\(227\) 3.46925e8i 1.96855i 0.176657 + 0.984273i \(0.443472\pi\)
−0.176657 + 0.984273i \(0.556528\pi\)
\(228\) 7.71382e8i 4.31020i
\(229\) − 8.27429e7i − 0.455309i −0.973742 0.227655i \(-0.926894\pi\)
0.973742 0.227655i \(-0.0731057\pi\)
\(230\) 5.12503e8 2.77747
\(231\) 2.53848e8 1.35497
\(232\) − 1.90482e8i − 1.00149i
\(233\) 1.51866e7 0.0786530 0.0393265 0.999226i \(-0.487479\pi\)
0.0393265 + 0.999226i \(0.487479\pi\)
\(234\) 0 0
\(235\) −9.37783e7 −0.471373
\(236\) 6.44985e8i 3.19417i
\(237\) −3.75924e8 −1.83435
\(238\) 1.21540e8 0.584385
\(239\) 1.61515e8i 0.765280i 0.923898 + 0.382640i \(0.124985\pi\)
−0.923898 + 0.382640i \(0.875015\pi\)
\(240\) 5.03828e8i 2.35257i
\(241\) − 1.29574e8i − 0.596292i −0.954520 0.298146i \(-0.903632\pi\)
0.954520 0.298146i \(-0.0963682\pi\)
\(242\) 1.44400e8i 0.654960i
\(243\) 2.90862e8 1.30036
\(244\) 1.31053e8 0.577538
\(245\) 7.78907e7i 0.338380i
\(246\) 1.06297e9 4.55249
\(247\) 0 0
\(248\) 3.39120e8 1.41180
\(249\) 3.85809e8i 1.58371i
\(250\) −1.21362e8 −0.491241
\(251\) 1.44103e8 0.575196 0.287598 0.957751i \(-0.407143\pi\)
0.287598 + 0.957751i \(0.407143\pi\)
\(252\) − 7.92348e8i − 3.11899i
\(253\) 2.19823e8i 0.853399i
\(254\) − 6.58039e8i − 2.51961i
\(255\) − 1.84611e8i − 0.697217i
\(256\) −5.39041e8 −2.00808
\(257\) −2.48876e8 −0.914572 −0.457286 0.889320i \(-0.651178\pi\)
−0.457286 + 0.889320i \(0.651178\pi\)
\(258\) − 2.66238e8i − 0.965165i
\(259\) −1.72950e8 −0.618544
\(260\) 0 0
\(261\) 2.30388e8 0.802082
\(262\) − 5.88230e8i − 2.02066i
\(263\) 1.91513e8 0.649163 0.324582 0.945858i \(-0.394777\pi\)
0.324582 + 0.945858i \(0.394777\pi\)
\(264\) −6.39299e8 −2.13841
\(265\) 5.57054e8i 1.83881i
\(266\) − 8.17318e8i − 2.66260i
\(267\) 6.30291e8i 2.02652i
\(268\) − 1.04659e9i − 3.32129i
\(269\) −2.90813e8 −0.910922 −0.455461 0.890256i \(-0.650526\pi\)
−0.455461 + 0.890256i \(0.650526\pi\)
\(270\) −5.15977e8 −1.59535
\(271\) 6.34456e7i 0.193646i 0.995302 + 0.0968232i \(0.0308681\pi\)
−0.995302 + 0.0968232i \(0.969132\pi\)
\(272\) −1.03468e8 −0.311756
\(273\) 0 0
\(274\) 3.48167e8 1.02249
\(275\) − 3.24135e8i − 0.939858i
\(276\) 1.17591e9 3.36660
\(277\) −2.25716e8 −0.638090 −0.319045 0.947739i \(-0.603362\pi\)
−0.319045 + 0.947739i \(0.603362\pi\)
\(278\) − 4.40629e8i − 1.23003i
\(279\) 4.10166e8i 1.13069i
\(280\) − 1.05432e9i − 2.87024i
\(281\) − 6.67278e6i − 0.0179405i −0.999960 0.00897025i \(-0.997145\pi\)
0.999960 0.00897025i \(-0.00285536\pi\)
\(282\) −3.22296e8 −0.855822
\(283\) −1.62048e8 −0.425002 −0.212501 0.977161i \(-0.568161\pi\)
−0.212501 + 0.977161i \(0.568161\pi\)
\(284\) − 6.58192e7i − 0.170505i
\(285\) −1.24146e9 −3.17669
\(286\) 0 0
\(287\) −7.51912e8 −1.87750
\(288\) 1.68621e7i 0.0415947i
\(289\) −3.72426e8 −0.907607
\(290\) 6.10530e8 1.46999
\(291\) 2.73042e8i 0.649536i
\(292\) − 1.38339e9i − 3.25165i
\(293\) − 3.53069e8i − 0.820017i −0.912082 0.410009i \(-0.865526\pi\)
0.912082 0.410009i \(-0.134474\pi\)
\(294\) 2.67694e8i 0.614360i
\(295\) −1.03803e9 −2.35415
\(296\) 4.35563e8 0.976180
\(297\) − 2.21314e8i − 0.490186i
\(298\) −3.20342e8 −0.701224
\(299\) 0 0
\(300\) −1.73390e9 −3.70767
\(301\) 1.88328e8i 0.398046i
\(302\) 6.94878e8 1.45172
\(303\) 7.76314e8 1.60320
\(304\) 6.95790e8i 1.42043i
\(305\) 2.10915e8i 0.425655i
\(306\) − 3.70217e8i − 0.738637i
\(307\) − 6.79916e7i − 0.134113i −0.997749 0.0670565i \(-0.978639\pi\)
0.997749 0.0670565i \(-0.0213608\pi\)
\(308\) 9.00617e8 1.75636
\(309\) −5.85507e8 −1.12896
\(310\) 1.08694e9i 2.07224i
\(311\) 6.98524e8 1.31680 0.658401 0.752668i \(-0.271233\pi\)
0.658401 + 0.752668i \(0.271233\pi\)
\(312\) 0 0
\(313\) 8.41764e8 1.55162 0.775810 0.630967i \(-0.217342\pi\)
0.775810 + 0.630967i \(0.217342\pi\)
\(314\) − 3.22412e8i − 0.587703i
\(315\) 1.27520e9 2.29874
\(316\) −1.33373e9 −2.37773
\(317\) − 9.91402e8i − 1.74800i −0.485922 0.874002i \(-0.661516\pi\)
0.485922 0.874002i \(-0.338484\pi\)
\(318\) 1.91448e9i 3.33853i
\(319\) 2.61869e8i 0.451666i
\(320\) − 8.45280e8i − 1.44203i
\(321\) 1.70599e8 0.287878
\(322\) −1.24593e9 −2.07969
\(323\) − 2.54950e8i − 0.420965i
\(324\) 5.38859e8 0.880172
\(325\) 0 0
\(326\) −1.42241e9 −2.27386
\(327\) 2.09440e7i 0.0331240i
\(328\) 1.89364e9 2.96305
\(329\) 2.27982e8 0.352951
\(330\) − 2.04907e9i − 3.13876i
\(331\) − 1.46324e8i − 0.221777i −0.993833 0.110889i \(-0.964630\pi\)
0.993833 0.110889i \(-0.0353697\pi\)
\(332\) 1.36880e9i 2.05284i
\(333\) 5.26814e8i 0.781812i
\(334\) 1.92238e9 2.82310
\(335\) 1.68438e9 2.44784
\(336\) − 1.22484e9i − 1.76154i
\(337\) −5.22422e8 −0.743561 −0.371780 0.928321i \(-0.621253\pi\)
−0.371780 + 0.928321i \(0.621253\pi\)
\(338\) 0 0
\(339\) −3.03995e8 −0.423806
\(340\) − 6.54976e8i − 0.903752i
\(341\) −4.66212e8 −0.636712
\(342\) −2.48960e9 −3.36541
\(343\) 6.39027e8i 0.855047i
\(344\) − 4.74293e8i − 0.628191i
\(345\) 1.89249e9i 2.48123i
\(346\) − 1.09360e8i − 0.141935i
\(347\) 6.74172e7 0.0866199 0.0433100 0.999062i \(-0.486210\pi\)
0.0433100 + 0.999062i \(0.486210\pi\)
\(348\) 1.40082e9 1.78179
\(349\) 7.24565e8i 0.912406i 0.889876 + 0.456203i \(0.150791\pi\)
−0.889876 + 0.456203i \(0.849209\pi\)
\(350\) 1.83716e9 2.29039
\(351\) 0 0
\(352\) −1.91662e7 −0.0234227
\(353\) − 4.32002e8i − 0.522726i −0.965241 0.261363i \(-0.915828\pi\)
0.965241 0.261363i \(-0.0841720\pi\)
\(354\) −3.56750e9 −4.27418
\(355\) 1.05929e8 0.125665
\(356\) 2.23619e9i 2.62684i
\(357\) 4.48804e8i 0.522057i
\(358\) − 1.49510e9i − 1.72219i
\(359\) − 1.10242e9i − 1.25752i −0.777598 0.628761i \(-0.783562\pi\)
0.777598 0.628761i \(-0.216438\pi\)
\(360\) −3.21151e9 −3.62785
\(361\) −8.20588e8 −0.918015
\(362\) − 1.00709e9i − 1.11580i
\(363\) −5.33220e8 −0.585104
\(364\) 0 0
\(365\) 2.22641e9 2.39652
\(366\) 7.24869e8i 0.772816i
\(367\) 1.31669e9 1.39044 0.695222 0.718796i \(-0.255306\pi\)
0.695222 + 0.718796i \(0.255306\pi\)
\(368\) 1.06067e9 1.10947
\(369\) 2.29036e9i 2.37308i
\(370\) 1.39606e9i 1.43284i
\(371\) − 1.35424e9i − 1.37685i
\(372\) 2.49392e9i 2.51178i
\(373\) 1.44085e9 1.43760 0.718799 0.695218i \(-0.244692\pi\)
0.718799 + 0.695218i \(0.244692\pi\)
\(374\) 4.20804e8 0.415939
\(375\) − 4.48149e8i − 0.438847i
\(376\) −5.74158e8 −0.557024
\(377\) 0 0
\(378\) 1.25438e9 1.19456
\(379\) 1.01968e8i 0.0962111i 0.998842 + 0.0481056i \(0.0153184\pi\)
−0.998842 + 0.0481056i \(0.984682\pi\)
\(380\) −4.40452e9 −4.11771
\(381\) 2.42991e9 2.25088
\(382\) 2.34232e8i 0.214993i
\(383\) 1.94208e9i 1.76633i 0.469065 + 0.883164i \(0.344591\pi\)
−0.469065 + 0.883164i \(0.655409\pi\)
\(384\) − 2.95609e9i − 2.66415i
\(385\) 1.44944e9i 1.29446i
\(386\) −2.69374e9 −2.38397
\(387\) 5.73658e8 0.503112
\(388\) 9.68715e8i 0.841947i
\(389\) −1.75657e9 −1.51301 −0.756506 0.653987i \(-0.773095\pi\)
−0.756506 + 0.653987i \(0.773095\pi\)
\(390\) 0 0
\(391\) −3.88649e8 −0.328805
\(392\) 4.76886e8i 0.399865i
\(393\) 2.17213e9 1.80514
\(394\) −1.83322e9 −1.51001
\(395\) − 2.14649e9i − 1.75242i
\(396\) − 2.74333e9i − 2.21996i
\(397\) − 2.22292e9i − 1.78302i −0.452998 0.891511i \(-0.649646\pi\)
0.452998 0.891511i \(-0.350354\pi\)
\(398\) − 2.52437e9i − 2.00707i
\(399\) 3.01807e9 2.37861
\(400\) −1.56399e9 −1.22187
\(401\) − 1.61957e9i − 1.25428i −0.778908 0.627139i \(-0.784226\pi\)
0.778908 0.627139i \(-0.215774\pi\)
\(402\) 5.78885e9 4.44428
\(403\) 0 0
\(404\) 2.75426e9 2.07812
\(405\) 8.67235e8i 0.648700i
\(406\) −1.48424e9 −1.10069
\(407\) −5.98799e8 −0.440251
\(408\) − 1.13028e9i − 0.823905i
\(409\) − 2.57824e9i − 1.86334i −0.363307 0.931670i \(-0.618352\pi\)
0.363307 0.931670i \(-0.381648\pi\)
\(410\) 6.06947e9i 4.34918i
\(411\) 1.28566e9i 0.913438i
\(412\) −2.07730e9 −1.46339
\(413\) 2.52353e9 1.76272
\(414\) 3.79517e9i 2.62864i
\(415\) −2.20293e9 −1.51298
\(416\) 0 0
\(417\) 1.62709e9 1.09884
\(418\) − 2.82978e9i − 1.89512i
\(419\) 1.55385e9 1.03196 0.515978 0.856602i \(-0.327429\pi\)
0.515978 + 0.856602i \(0.327429\pi\)
\(420\) 7.75354e9 5.10655
\(421\) − 1.34533e9i − 0.878699i −0.898316 0.439350i \(-0.855209\pi\)
0.898316 0.439350i \(-0.144791\pi\)
\(422\) − 3.02079e9i − 1.95671i
\(423\) − 6.94445e8i − 0.446115i
\(424\) 3.41056e9i 2.17293i
\(425\) 5.73073e8 0.362117
\(426\) 3.64055e8 0.228157
\(427\) − 5.12749e8i − 0.318718i
\(428\) 6.05262e8 0.373156
\(429\) 0 0
\(430\) 1.52019e9 0.922061
\(431\) 1.60812e9i 0.967495i 0.875208 + 0.483747i \(0.160725\pi\)
−0.875208 + 0.483747i \(0.839275\pi\)
\(432\) −1.06786e9 −0.637268
\(433\) 1.89392e9 1.12112 0.560562 0.828113i \(-0.310585\pi\)
0.560562 + 0.828113i \(0.310585\pi\)
\(434\) − 2.64243e9i − 1.55164i
\(435\) 2.25447e9i 1.31320i
\(436\) 7.43065e7i 0.0429362i
\(437\) 2.61355e9i 1.49812i
\(438\) 7.65171e9 4.35110
\(439\) −1.08620e9 −0.612749 −0.306375 0.951911i \(-0.599116\pi\)
−0.306375 + 0.951911i \(0.599116\pi\)
\(440\) − 3.65033e9i − 2.04290i
\(441\) −5.76794e8 −0.320248
\(442\) 0 0
\(443\) −2.67935e9 −1.46425 −0.732127 0.681168i \(-0.761472\pi\)
−0.732127 + 0.681168i \(0.761472\pi\)
\(444\) 3.20317e9i 1.73676i
\(445\) −3.59890e9 −1.93602
\(446\) −2.55214e9 −1.36217
\(447\) − 1.18291e9i − 0.626434i
\(448\) 2.05494e9i 1.07976i
\(449\) 2.77150e9i 1.44495i 0.691398 + 0.722474i \(0.256995\pi\)
−0.691398 + 0.722474i \(0.743005\pi\)
\(450\) − 5.59608e9i − 2.89495i
\(451\) −2.60332e9 −1.33632
\(452\) −1.07853e9 −0.549350
\(453\) 2.56594e9i 1.29689i
\(454\) −6.80797e9 −3.41446
\(455\) 0 0
\(456\) −7.60081e9 −3.75390
\(457\) 1.88973e9i 0.926177i 0.886312 + 0.463088i \(0.153259\pi\)
−0.886312 + 0.463088i \(0.846741\pi\)
\(458\) 1.62372e9 0.789738
\(459\) 3.91284e8 0.188863
\(460\) 6.71431e9i 3.21624i
\(461\) 7.18617e8i 0.341621i 0.985304 + 0.170810i \(0.0546386\pi\)
−0.985304 + 0.170810i \(0.945361\pi\)
\(462\) 4.98144e9i 2.35022i
\(463\) 3.35895e8i 0.157279i 0.996903 + 0.0786393i \(0.0250575\pi\)
−0.996903 + 0.0786393i \(0.974942\pi\)
\(464\) 1.26355e9 0.587190
\(465\) −4.01369e9 −1.85122
\(466\) 2.98018e8i 0.136424i
\(467\) −1.62006e8 −0.0736076 −0.0368038 0.999323i \(-0.511718\pi\)
−0.0368038 + 0.999323i \(0.511718\pi\)
\(468\) 0 0
\(469\) −4.09485e9 −1.83287
\(470\) − 1.84028e9i − 0.817601i
\(471\) 1.19056e9 0.525021
\(472\) −6.35536e9 −2.78191
\(473\) 6.52044e8i 0.283311i
\(474\) − 7.37704e9i − 3.18169i
\(475\) − 3.85374e9i − 1.64989i
\(476\) 1.59230e9i 0.676705i
\(477\) −4.12508e9 −1.74028
\(478\) −3.16953e9 −1.32738
\(479\) − 1.87256e9i − 0.778505i −0.921131 0.389253i \(-0.872733\pi\)
0.921131 0.389253i \(-0.127267\pi\)
\(480\) −1.65004e8 −0.0681007
\(481\) 0 0
\(482\) 2.54273e9 1.03427
\(483\) − 4.60079e9i − 1.85788i
\(484\) −1.89179e9 −0.758428
\(485\) −1.55904e9 −0.620528
\(486\) 5.70779e9i 2.25549i
\(487\) 2.79396e9i 1.09615i 0.836431 + 0.548073i \(0.184638\pi\)
−0.836431 + 0.548073i \(0.815362\pi\)
\(488\) 1.29133e9i 0.502998i
\(489\) − 5.25246e9i − 2.03133i
\(490\) −1.52851e9 −0.586923
\(491\) 1.87416e8 0.0714532 0.0357266 0.999362i \(-0.488625\pi\)
0.0357266 + 0.999362i \(0.488625\pi\)
\(492\) 1.39260e10i 5.27168i
\(493\) −4.62986e8 −0.174022
\(494\) 0 0
\(495\) 4.41508e9 1.63614
\(496\) 2.24952e9i 0.827761i
\(497\) −2.57521e8 −0.0940946
\(498\) −7.57101e9 −2.74695
\(499\) − 3.05663e9i − 1.10126i −0.834749 0.550631i \(-0.814387\pi\)
0.834749 0.550631i \(-0.185613\pi\)
\(500\) − 1.58997e9i − 0.568845i
\(501\) 7.09867e9i 2.52200i
\(502\) 2.82784e9i 0.997682i
\(503\) −1.10435e9 −0.386916 −0.193458 0.981109i \(-0.561970\pi\)
−0.193458 + 0.981109i \(0.561970\pi\)
\(504\) 7.80740e9 2.71644
\(505\) 4.43268e9i 1.53160i
\(506\) −4.31376e9 −1.48023
\(507\) 0 0
\(508\) 8.62098e9 2.91765
\(509\) − 2.84435e8i − 0.0956029i −0.998857 0.0478014i \(-0.984779\pi\)
0.998857 0.0478014i \(-0.0152215\pi\)
\(510\) 3.62276e9 1.20933
\(511\) −5.41257e9 −1.79444
\(512\) − 5.35633e9i − 1.76369i
\(513\) − 2.63126e9i − 0.860505i
\(514\) − 4.88388e9i − 1.58633i
\(515\) − 3.34318e9i − 1.07854i
\(516\) 3.48799e9 1.11764
\(517\) 7.89335e8 0.251214
\(518\) − 3.39392e9i − 1.07287i
\(519\) 4.03827e8 0.126797
\(520\) 0 0
\(521\) −6.21830e8 −0.192637 −0.0963184 0.995351i \(-0.530707\pi\)
−0.0963184 + 0.995351i \(0.530707\pi\)
\(522\) 4.52108e9i 1.39122i
\(523\) −1.32430e9 −0.404790 −0.202395 0.979304i \(-0.564873\pi\)
−0.202395 + 0.979304i \(0.564873\pi\)
\(524\) 7.70641e9 2.33988
\(525\) 6.78398e9i 2.04610i
\(526\) 3.75821e9i 1.12598i
\(527\) − 8.24266e8i − 0.245318i
\(528\) − 4.24074e9i − 1.25378i
\(529\) 5.79302e8 0.170141
\(530\) −1.09315e10 −3.18943
\(531\) − 7.68681e9i − 2.22800i
\(532\) 1.07077e10 3.08323
\(533\) 0 0
\(534\) −1.23687e10 −3.51503
\(535\) 9.74103e8i 0.275022i
\(536\) 1.03126e10 2.89262
\(537\) 5.52089e9 1.53850
\(538\) − 5.70684e9i − 1.58000i
\(539\) − 6.55609e8i − 0.180337i
\(540\) − 6.75982e9i − 1.84738i
\(541\) 2.63957e9i 0.716708i 0.933586 + 0.358354i \(0.116662\pi\)
−0.933586 + 0.358354i \(0.883338\pi\)
\(542\) −1.24504e9 −0.335881
\(543\) 3.71883e9 0.996797
\(544\) − 3.38859e7i − 0.00902449i
\(545\) −1.19588e8 −0.0316447
\(546\) 0 0
\(547\) −3.91983e9 −1.02403 −0.512013 0.858977i \(-0.671100\pi\)
−0.512013 + 0.858977i \(0.671100\pi\)
\(548\) 4.56134e9i 1.18402i
\(549\) −1.56186e9 −0.402846
\(550\) 6.36075e9 1.63019
\(551\) 3.11344e9i 0.792885i
\(552\) 1.15868e10i 2.93208i
\(553\) 5.21828e9i 1.31217i
\(554\) − 4.42938e9i − 1.10677i
\(555\) −5.15515e9 −1.28002
\(556\) 5.77269e9 1.42435
\(557\) 4.28372e9i 1.05034i 0.850999 + 0.525168i \(0.175997\pi\)
−0.850999 + 0.525168i \(0.824003\pi\)
\(558\) −8.04899e9 −1.96120
\(559\) 0 0
\(560\) 6.99373e9 1.68287
\(561\) 1.55388e9i 0.371576i
\(562\) 1.30945e8 0.0311180
\(563\) 7.15933e9 1.69080 0.845402 0.534131i \(-0.179361\pi\)
0.845402 + 0.534131i \(0.179361\pi\)
\(564\) − 4.22241e9i − 0.991022i
\(565\) − 1.73578e9i − 0.404879i
\(566\) − 3.17999e9i − 0.737171i
\(567\) − 2.10831e9i − 0.485729i
\(568\) 6.48549e8 0.148499
\(569\) 5.31555e9 1.20964 0.604818 0.796364i \(-0.293246\pi\)
0.604818 + 0.796364i \(0.293246\pi\)
\(570\) − 2.43620e10i − 5.50999i
\(571\) 1.41625e9 0.318356 0.159178 0.987250i \(-0.449116\pi\)
0.159178 + 0.987250i \(0.449116\pi\)
\(572\) 0 0
\(573\) −8.64938e8 −0.192063
\(574\) − 1.47553e10i − 3.25654i
\(575\) −5.87470e9 −1.28869
\(576\) 6.25945e9 1.36476
\(577\) − 3.09413e9i − 0.670538i −0.942123 0.335269i \(-0.891173\pi\)
0.942123 0.335269i \(-0.108827\pi\)
\(578\) − 7.30839e9i − 1.57425i
\(579\) − 9.94703e9i − 2.12970i
\(580\) 7.99856e9i 1.70221i
\(581\) 5.35549e9 1.13288
\(582\) −5.35809e9 −1.12663
\(583\) − 4.68874e9i − 0.979978i
\(584\) 1.36312e10 2.83197
\(585\) 0 0
\(586\) 6.92853e9 1.42233
\(587\) − 5.10437e8i − 0.104162i −0.998643 0.0520809i \(-0.983415\pi\)
0.998643 0.0520809i \(-0.0165854\pi\)
\(588\) −3.50706e9 −0.711415
\(589\) −5.54293e9 −1.11773
\(590\) − 2.03701e10i − 4.08329i
\(591\) − 6.76945e9i − 1.34895i
\(592\) 2.88927e9i 0.572351i
\(593\) 6.99937e9i 1.37838i 0.724583 + 0.689188i \(0.242032\pi\)
−0.724583 + 0.689188i \(0.757968\pi\)
\(594\) 4.34300e9 0.850231
\(595\) −2.56263e9 −0.498742
\(596\) − 4.19680e9i − 0.812002i
\(597\) 9.32162e9 1.79300
\(598\) 0 0
\(599\) 1.10847e9 0.210733 0.105366 0.994433i \(-0.466398\pi\)
0.105366 + 0.994433i \(0.466398\pi\)
\(600\) − 1.70850e10i − 3.22914i
\(601\) −3.46969e9 −0.651973 −0.325987 0.945374i \(-0.605696\pi\)
−0.325987 + 0.945374i \(0.605696\pi\)
\(602\) −3.69570e9 −0.690414
\(603\) 1.24731e10i 2.31667i
\(604\) 9.10361e9i 1.68106i
\(605\) − 3.04463e9i − 0.558973i
\(606\) 1.52342e10i 2.78077i
\(607\) −8.78548e9 −1.59443 −0.797215 0.603696i \(-0.793694\pi\)
−0.797215 + 0.603696i \(0.793694\pi\)
\(608\) −2.27872e8 −0.0411177
\(609\) − 5.48079e9i − 0.983291i
\(610\) −4.13893e9 −0.738302
\(611\) 0 0
\(612\) 4.85022e9 0.855325
\(613\) 1.72321e9i 0.302152i 0.988522 + 0.151076i \(0.0482739\pi\)
−0.988522 + 0.151076i \(0.951726\pi\)
\(614\) 1.33425e9 0.232620
\(615\) −2.24124e10 −3.88531
\(616\) 8.87423e9i 1.52967i
\(617\) 3.95049e9i 0.677101i 0.940948 + 0.338550i \(0.109937\pi\)
−0.940948 + 0.338550i \(0.890063\pi\)
\(618\) − 1.14898e10i − 1.95818i
\(619\) − 3.95281e9i − 0.669866i −0.942242 0.334933i \(-0.891286\pi\)
0.942242 0.334933i \(-0.108714\pi\)
\(620\) −1.42400e10 −2.39961
\(621\) −4.01114e9 −0.672120
\(622\) 1.37077e10i 2.28400i
\(623\) 8.74919e9 1.44964
\(624\) 0 0
\(625\) −4.71237e9 −0.772074
\(626\) 1.65186e10i 2.69130i
\(627\) 1.04494e10 1.69299
\(628\) 4.22393e9 0.680547
\(629\) − 1.05868e9i − 0.169624i
\(630\) 2.50241e10i 3.98719i
\(631\) − 6.84671e9i − 1.08487i −0.840097 0.542437i \(-0.817502\pi\)
0.840097 0.542437i \(-0.182498\pi\)
\(632\) − 1.31419e10i − 2.07085i
\(633\) 1.11547e10 1.74802
\(634\) 1.94550e10 3.03193
\(635\) 1.38745e10i 2.15035i
\(636\) −2.50816e10 −3.86594
\(637\) 0 0
\(638\) −5.13885e9 −0.783419
\(639\) 7.84421e8i 0.118931i
\(640\) 1.68790e10 2.54517
\(641\) −3.12250e9 −0.468273 −0.234136 0.972204i \(-0.575226\pi\)
−0.234136 + 0.972204i \(0.575226\pi\)
\(642\) 3.34779e9i 0.499327i
\(643\) − 8.57775e9i − 1.27243i −0.771511 0.636216i \(-0.780499\pi\)
0.771511 0.636216i \(-0.219501\pi\)
\(644\) − 1.63230e10i − 2.40823i
\(645\) 5.61354e9i 0.823717i
\(646\) 5.00307e9 0.730167
\(647\) −8.70898e9 −1.26416 −0.632080 0.774903i \(-0.717799\pi\)
−0.632080 + 0.774903i \(0.717799\pi\)
\(648\) 5.30965e9i 0.766572i
\(649\) 8.73716e9 1.25462
\(650\) 0 0
\(651\) 9.75757e9 1.38614
\(652\) − 1.86350e10i − 2.63307i
\(653\) −9.71192e9 −1.36493 −0.682463 0.730920i \(-0.739091\pi\)
−0.682463 + 0.730920i \(0.739091\pi\)
\(654\) −4.10999e8 −0.0574538
\(655\) 1.24026e10i 1.72452i
\(656\) 1.25613e10i 1.73729i
\(657\) 1.64870e10i 2.26810i
\(658\) 4.47385e9i 0.612197i
\(659\) 3.34780e9 0.455680 0.227840 0.973699i \(-0.426834\pi\)
0.227840 + 0.973699i \(0.426834\pi\)
\(660\) 2.68449e10 3.63461
\(661\) − 8.98798e9i − 1.21048i −0.796044 0.605239i \(-0.793078\pi\)
0.796044 0.605239i \(-0.206922\pi\)
\(662\) 2.87142e9 0.384675
\(663\) 0 0
\(664\) −1.34874e10 −1.78789
\(665\) 1.72329e10i 2.27239i
\(666\) −1.03381e10 −1.35606
\(667\) 4.74618e9 0.619303
\(668\) 2.51851e10i 3.26909i
\(669\) − 9.42414e9i − 1.21689i
\(670\) 3.30538e10i 4.24580i
\(671\) − 1.77528e9i − 0.226849i
\(672\) 4.01138e8 0.0509919
\(673\) 1.90573e9 0.240995 0.120498 0.992714i \(-0.461551\pi\)
0.120498 + 0.992714i \(0.461551\pi\)
\(674\) − 1.02519e10i − 1.28971i
\(675\) 5.91452e9 0.740213
\(676\) 0 0
\(677\) 1.10831e10 1.37278 0.686388 0.727236i \(-0.259195\pi\)
0.686388 + 0.727236i \(0.259195\pi\)
\(678\) − 5.96552e9i − 0.735096i
\(679\) 3.79014e9 0.464634
\(680\) 6.45381e9 0.787109
\(681\) − 2.51394e10i − 3.05029i
\(682\) − 9.14882e9i − 1.10438i
\(683\) 5.53250e9i 0.664429i 0.943204 + 0.332215i \(0.107796\pi\)
−0.943204 + 0.332215i \(0.892204\pi\)
\(684\) − 3.26162e10i − 3.89706i
\(685\) −7.34098e9 −0.872644
\(686\) −1.25401e10 −1.48309
\(687\) 5.99584e9i 0.705507i
\(688\) 3.14618e9 0.368319
\(689\) 0 0
\(690\) −3.71378e10 −4.30372
\(691\) − 9.96854e9i − 1.14937i −0.818376 0.574683i \(-0.805125\pi\)
0.818376 0.574683i \(-0.194875\pi\)
\(692\) 1.43272e9 0.164358
\(693\) −1.07334e10 −1.22510
\(694\) 1.32298e9i 0.150243i
\(695\) 9.29051e9i 1.04977i
\(696\) 1.38030e10i 1.55182i
\(697\) − 4.60269e9i − 0.514869i
\(698\) −1.42187e10 −1.58258
\(699\) −1.10048e9 −0.121874
\(700\) 2.40687e10i 2.65221i
\(701\) −1.56464e9 −0.171554 −0.0857769 0.996314i \(-0.527337\pi\)
−0.0857769 + 0.996314i \(0.527337\pi\)
\(702\) 0 0
\(703\) −7.11930e9 −0.772847
\(704\) 7.11475e9i 0.768520i
\(705\) 6.79550e9 0.730398
\(706\) 8.47749e9 0.906673
\(707\) − 1.07762e10i − 1.14682i
\(708\) − 4.67379e10i − 4.94940i
\(709\) − 4.49879e9i − 0.474061i −0.971502 0.237031i \(-0.923826\pi\)
0.971502 0.237031i \(-0.0761741\pi\)
\(710\) 2.07872e9i 0.217967i
\(711\) 1.58951e10 1.65852
\(712\) −2.20343e10 −2.28780
\(713\) 8.44973e9i 0.873030i
\(714\) −8.80721e9 −0.905512
\(715\) 0 0
\(716\) 1.95874e10 1.99425
\(717\) − 1.17039e10i − 1.18581i
\(718\) 2.16336e10 2.18118
\(719\) 1.28814e9 0.129245 0.0646223 0.997910i \(-0.479416\pi\)
0.0646223 + 0.997910i \(0.479416\pi\)
\(720\) − 2.13033e10i − 2.12707i
\(721\) 8.12753e9i 0.807579i
\(722\) − 1.61030e10i − 1.59231i
\(723\) 9.38940e9i 0.923962i
\(724\) 1.31939e10 1.29208
\(725\) −6.99836e9 −0.682046
\(726\) − 1.04638e10i − 1.01487i
\(727\) −1.64110e9 −0.158403 −0.0792017 0.996859i \(-0.525237\pi\)
−0.0792017 + 0.996859i \(0.525237\pi\)
\(728\) 0 0
\(729\) −1.64929e10 −1.57671
\(730\) 4.36905e10i 4.15678i
\(731\) −1.15282e9 −0.109157
\(732\) −9.49653e9 −0.894903
\(733\) − 6.09340e9i − 0.571473i −0.958308 0.285737i \(-0.907762\pi\)
0.958308 0.285737i \(-0.0922382\pi\)
\(734\) 2.58384e10i 2.41174i
\(735\) − 5.64424e9i − 0.524324i
\(736\) 3.47372e8i 0.0321161i
\(737\) −1.41775e10 −1.30456
\(738\) −4.49455e10 −4.11613
\(739\) − 1.10220e10i − 1.00462i −0.864687 0.502311i \(-0.832483\pi\)
0.864687 0.502311i \(-0.167517\pi\)
\(740\) −1.82898e10 −1.65919
\(741\) 0 0
\(742\) 2.65752e10 2.38816
\(743\) − 1.44250e9i − 0.129020i −0.997917 0.0645098i \(-0.979452\pi\)
0.997917 0.0645098i \(-0.0205484\pi\)
\(744\) −2.45738e10 −2.18760
\(745\) 6.75430e9 0.598457
\(746\) 2.82748e10i 2.49353i
\(747\) − 1.63131e10i − 1.43190i
\(748\) 5.51296e9i 0.481648i
\(749\) − 2.36812e9i − 0.205929i
\(750\) 8.79435e9 0.761183
\(751\) 4.23430e9 0.364789 0.182395 0.983225i \(-0.441615\pi\)
0.182395 + 0.983225i \(0.441615\pi\)
\(752\) − 3.80863e9i − 0.326593i
\(753\) −1.04422e10 −0.891273
\(754\) 0 0
\(755\) −1.46513e10 −1.23897
\(756\) 1.64336e10i 1.38327i
\(757\) −4.85119e9 −0.406456 −0.203228 0.979131i \(-0.565143\pi\)
−0.203228 + 0.979131i \(0.565143\pi\)
\(758\) −2.00099e9 −0.166879
\(759\) − 1.59292e10i − 1.32235i
\(760\) − 4.33999e10i − 3.58625i
\(761\) − 1.68175e10i − 1.38329i −0.722236 0.691647i \(-0.756885\pi\)
0.722236 0.691647i \(-0.243115\pi\)
\(762\) 4.76838e10i 3.90417i
\(763\) 2.90727e8 0.0236946
\(764\) −3.06868e9 −0.248958
\(765\) 7.80589e9i 0.630387i
\(766\) −3.81108e10 −3.06371
\(767\) 0 0
\(768\) 3.90608e10 3.11155
\(769\) 1.62454e9i 0.128821i 0.997923 + 0.0644107i \(0.0205168\pi\)
−0.997923 + 0.0644107i \(0.979483\pi\)
\(770\) −2.84435e10 −2.24525
\(771\) 1.80345e10 1.41714
\(772\) − 3.52907e10i − 2.76058i
\(773\) − 2.06113e10i − 1.60501i −0.596648 0.802503i \(-0.703501\pi\)
0.596648 0.802503i \(-0.296499\pi\)
\(774\) 1.12573e10i 0.872652i
\(775\) − 1.24593e10i − 0.961478i
\(776\) −9.54523e9 −0.733281
\(777\) 1.25325e10 0.958442
\(778\) − 3.44705e10i − 2.62433i
\(779\) −3.09517e10 −2.34587
\(780\) 0 0
\(781\) −8.91607e8 −0.0669722
\(782\) − 7.62674e9i − 0.570316i
\(783\) −4.77835e9 −0.355723
\(784\) −3.16339e9 −0.234448
\(785\) 6.79795e9i 0.501573i
\(786\) 4.26252e10i 3.13103i
\(787\) 7.97469e9i 0.583179i 0.956543 + 0.291590i \(0.0941842\pi\)
−0.956543 + 0.291590i \(0.905816\pi\)
\(788\) − 2.40171e10i − 1.74855i
\(789\) −1.38777e10 −1.00589
\(790\) 4.21222e10 3.03960
\(791\) 4.21981e9i 0.303162i
\(792\) 2.70314e10 1.93344
\(793\) 0 0
\(794\) 4.36220e10 3.09267
\(795\) − 4.03661e10i − 2.84926i
\(796\) 3.30719e10 2.32414
\(797\) 2.05018e10 1.43446 0.717228 0.696839i \(-0.245411\pi\)
0.717228 + 0.696839i \(0.245411\pi\)
\(798\) 5.92258e10i 4.12573i
\(799\) 1.39555e9i 0.0967902i
\(800\) − 5.12209e8i − 0.0353698i
\(801\) − 2.66505e10i − 1.83228i
\(802\) 3.17819e10 2.17556
\(803\) −1.87398e10 −1.27720
\(804\) 7.58399e10i 5.14638i
\(805\) 2.62700e10 1.77491
\(806\) 0 0
\(807\) 2.10734e10 1.41149
\(808\) 2.71391e10i 1.80990i
\(809\) −1.78384e10 −1.18450 −0.592252 0.805753i \(-0.701761\pi\)
−0.592252 + 0.805753i \(0.701761\pi\)
\(810\) −1.70184e10 −1.12518
\(811\) 1.20810e10i 0.795297i 0.917538 + 0.397649i \(0.130174\pi\)
−0.917538 + 0.397649i \(0.869826\pi\)
\(812\) − 1.94451e10i − 1.27457i
\(813\) − 4.59750e9i − 0.300057i
\(814\) − 1.17507e10i − 0.763620i
\(815\) 2.99910e10 1.94062
\(816\) 7.49765e9 0.483069
\(817\) 7.75235e9i 0.497343i
\(818\) 5.05947e10 3.23198
\(819\) 0 0
\(820\) −7.95162e10 −5.03625
\(821\) − 2.10707e10i − 1.32886i −0.747352 0.664428i \(-0.768675\pi\)
0.747352 0.664428i \(-0.231325\pi\)
\(822\) −2.52294e10 −1.58437
\(823\) −4.97330e9 −0.310989 −0.155494 0.987837i \(-0.549697\pi\)
−0.155494 + 0.987837i \(0.549697\pi\)
\(824\) − 2.04687e10i − 1.27451i
\(825\) 2.34880e10i 1.45632i
\(826\) 4.95211e10i 3.05746i
\(827\) − 4.23151e9i − 0.260151i −0.991504 0.130076i \(-0.958478\pi\)
0.991504 0.130076i \(-0.0415220\pi\)
\(828\) −4.97206e10 −3.04390
\(829\) −1.94458e10 −1.18546 −0.592729 0.805402i \(-0.701949\pi\)
−0.592729 + 0.805402i \(0.701949\pi\)
\(830\) − 4.32297e10i − 2.62427i
\(831\) 1.63561e10 0.988729
\(832\) 0 0
\(833\) 1.15912e9 0.0694818
\(834\) 3.19295e10i 1.90595i
\(835\) −4.05327e10 −2.40937
\(836\) 3.70730e10 2.19450
\(837\) − 8.50701e9i − 0.501462i
\(838\) 3.04924e10i 1.78994i
\(839\) − 1.48186e9i − 0.0866244i −0.999062 0.0433122i \(-0.986209\pi\)
0.999062 0.0433122i \(-0.0137910\pi\)
\(840\) 7.63995e10i 4.44747i
\(841\) −1.15959e10 −0.672231
\(842\) 2.64003e10 1.52411
\(843\) 4.83533e8i 0.0277990i
\(844\) 3.95754e10 2.26583
\(845\) 0 0
\(846\) 1.36276e10 0.773790
\(847\) 7.40172e9i 0.418544i
\(848\) −2.26237e10 −1.27403
\(849\) 1.17426e10 0.658547
\(850\) 1.12458e10i 0.628095i
\(851\) 1.08528e10i 0.603652i
\(852\) 4.76949e9i 0.264200i
\(853\) 5.95360e9i 0.328442i 0.986424 + 0.164221i \(0.0525109\pi\)
−0.986424 + 0.164221i \(0.947489\pi\)
\(854\) 1.00620e10 0.552820
\(855\) 5.24923e10 2.87219
\(856\) 5.96395e9i 0.324994i
\(857\) 8.37353e9 0.454439 0.227220 0.973844i \(-0.427037\pi\)
0.227220 + 0.973844i \(0.427037\pi\)
\(858\) 0 0
\(859\) −2.14894e10 −1.15677 −0.578386 0.815763i \(-0.696317\pi\)
−0.578386 + 0.815763i \(0.696317\pi\)
\(860\) 1.99161e10i 1.06773i
\(861\) 5.44862e10 2.90921
\(862\) −3.15574e10 −1.67813
\(863\) − 9.93195e9i − 0.526013i −0.964794 0.263007i \(-0.915286\pi\)
0.964794 0.263007i \(-0.0847141\pi\)
\(864\) − 3.49727e8i − 0.0184472i
\(865\) 2.30581e9i 0.121134i
\(866\) 3.71657e10i 1.94460i
\(867\) 2.69873e10 1.40635
\(868\) 3.46185e10 1.79676
\(869\) 1.80671e10i 0.933940i
\(870\) −4.42412e10 −2.27777
\(871\) 0 0
\(872\) −7.32179e8 −0.0373946
\(873\) − 1.15450e10i − 0.587277i
\(874\) −5.12875e10 −2.59849
\(875\) −6.22084e9 −0.313921
\(876\) 1.00245e11i 5.03847i
\(877\) 3.23745e10i 1.62071i 0.585940 + 0.810355i \(0.300725\pi\)
−0.585940 + 0.810355i \(0.699275\pi\)
\(878\) − 2.13152e10i − 1.06282i
\(879\) 2.55846e10i 1.27063i
\(880\) 2.42142e10 1.19779
\(881\) −6.00548e9 −0.295891 −0.147946 0.988995i \(-0.547266\pi\)
−0.147946 + 0.988995i \(0.547266\pi\)
\(882\) − 1.13189e10i − 0.555473i
\(883\) 2.76852e9 0.135327 0.0676636 0.997708i \(-0.478446\pi\)
0.0676636 + 0.997708i \(0.478446\pi\)
\(884\) 0 0
\(885\) 7.52195e10 3.64778
\(886\) − 5.25788e10i − 2.53976i
\(887\) 3.08999e10 1.48670 0.743351 0.668902i \(-0.233235\pi\)
0.743351 + 0.668902i \(0.233235\pi\)
\(888\) −3.15624e10 −1.51260
\(889\) − 3.37300e10i − 1.61013i
\(890\) − 7.06239e10i − 3.35804i
\(891\) − 7.29955e9i − 0.345720i
\(892\) − 3.34356e10i − 1.57736i
\(893\) 9.38464e9 0.440999
\(894\) 2.32131e10 1.08656
\(895\) 3.15237e10i 1.46980i
\(896\) −4.10341e10 −1.90575
\(897\) 0 0
\(898\) −5.43871e10 −2.50627
\(899\) 1.00659e10i 0.462056i
\(900\) 7.33144e10 3.35228
\(901\) 8.28972e9 0.377575
\(902\) − 5.10869e10i − 2.31786i
\(903\) − 1.36469e10i − 0.616777i
\(904\) − 1.06273e10i − 0.478448i
\(905\) 2.12341e10i 0.952280i
\(906\) −5.03533e10 −2.24946
\(907\) −2.63801e10 −1.17395 −0.586977 0.809604i \(-0.699682\pi\)
−0.586977 + 0.809604i \(0.699682\pi\)
\(908\) − 8.91913e10i − 3.95387i
\(909\) −3.28247e10 −1.44953
\(910\) 0 0
\(911\) 9.42968e9 0.413221 0.206611 0.978423i \(-0.433757\pi\)
0.206611 + 0.978423i \(0.433757\pi\)
\(912\) − 5.04194e10i − 2.20098i
\(913\) 1.85422e10 0.806329
\(914\) −3.70836e10 −1.60646
\(915\) − 1.52836e10i − 0.659557i
\(916\) 2.12724e10i 0.914498i
\(917\) − 3.01517e10i − 1.29128i
\(918\) 7.67844e9i 0.327585i
\(919\) 3.27533e10 1.39204 0.696019 0.718023i \(-0.254953\pi\)
0.696019 + 0.718023i \(0.254953\pi\)
\(920\) −6.61594e10 −2.80114
\(921\) 4.92691e9i 0.207810i
\(922\) −1.41019e10 −0.592544
\(923\) 0 0
\(924\) −6.52619e10 −2.72150
\(925\) − 1.60027e10i − 0.664809i
\(926\) −6.59151e9 −0.272801
\(927\) 2.47569e10 1.02074
\(928\) 4.13814e8i 0.0169976i
\(929\) 2.49414e10i 1.02062i 0.859989 + 0.510312i \(0.170470\pi\)
−0.859989 + 0.510312i \(0.829530\pi\)
\(930\) − 7.87636e10i − 3.21096i
\(931\) − 7.79473e9i − 0.316576i
\(932\) −3.90434e9 −0.157976
\(933\) −5.06175e10 −2.04040
\(934\) − 3.17917e9i − 0.127673i
\(935\) −8.87251e9 −0.354982
\(936\) 0 0
\(937\) −1.59590e10 −0.633750 −0.316875 0.948467i \(-0.602634\pi\)
−0.316875 + 0.948467i \(0.602634\pi\)
\(938\) − 8.03562e10i − 3.17914i
\(939\) −6.09972e10 −2.40425
\(940\) 2.41095e10 0.946763
\(941\) 2.91329e8i 0.0113978i 0.999984 + 0.00569888i \(0.00181402\pi\)
−0.999984 + 0.00569888i \(0.998186\pi\)
\(942\) 2.33631e10i 0.910653i
\(943\) 4.71832e10i 1.83230i
\(944\) − 4.21577e10i − 1.63108i
\(945\) −2.64481e10 −1.01949
\(946\) −1.27955e10 −0.491405
\(947\) − 1.58421e10i − 0.606160i −0.952965 0.303080i \(-0.901985\pi\)
0.952965 0.303080i \(-0.0980149\pi\)
\(948\) 9.66467e10 3.68432
\(949\) 0 0
\(950\) 7.56248e10 2.86175
\(951\) 7.18405e10i 2.70856i
\(952\) −1.56897e10 −0.589366
\(953\) −4.30011e10 −1.60937 −0.804683 0.593705i \(-0.797665\pi\)
−0.804683 + 0.593705i \(0.797665\pi\)
\(954\) − 8.09495e10i − 3.01853i
\(955\) − 4.93871e9i − 0.183486i
\(956\) − 4.15240e10i − 1.53708i
\(957\) − 1.89760e10i − 0.699862i
\(958\) 3.67466e10 1.35032
\(959\) 1.78465e10 0.653412
\(960\) 6.12519e10i 2.23445i
\(961\) 9.59202e9 0.348641
\(962\) 0 0
\(963\) −7.21341e9 −0.260285
\(964\) 3.33123e10i 1.19767i
\(965\) 5.67966e10 2.03459
\(966\) 9.02846e10 3.22251
\(967\) 4.06842e10i 1.44688i 0.690386 + 0.723441i \(0.257441\pi\)
−0.690386 + 0.723441i \(0.742559\pi\)
\(968\) − 1.86408e10i − 0.660541i
\(969\) 1.84746e10i 0.652290i
\(970\) − 3.05942e10i − 1.07631i
\(971\) 5.95290e9 0.208671 0.104335 0.994542i \(-0.466729\pi\)
0.104335 + 0.994542i \(0.466729\pi\)
\(972\) −7.47779e10 −2.61181
\(973\) − 2.25859e10i − 0.786036i
\(974\) −5.48279e10 −1.90128
\(975\) 0 0
\(976\) −8.56590e9 −0.294916
\(977\) − 8.40433e9i − 0.288318i −0.989555 0.144159i \(-0.953952\pi\)
0.989555 0.144159i \(-0.0460477\pi\)
\(978\) 1.03073e11 3.52337
\(979\) 3.02921e10 1.03179
\(980\) − 2.00250e10i − 0.679643i
\(981\) − 8.85571e8i − 0.0299490i
\(982\) 3.67780e9i 0.123936i
\(983\) − 3.76311e10i − 1.26360i −0.775132 0.631799i \(-0.782317\pi\)
0.775132 0.631799i \(-0.217683\pi\)
\(984\) −1.37220e11 −4.59129
\(985\) 3.86529e10 1.28871
\(986\) − 9.08552e9i − 0.301843i
\(987\) −1.65204e10 −0.546902
\(988\) 0 0
\(989\) 1.18178e10 0.388462
\(990\) 8.66404e10i 2.83790i
\(991\) 4.38732e10 1.43199 0.715997 0.698103i \(-0.245972\pi\)
0.715997 + 0.698103i \(0.245972\pi\)
\(992\) −7.36723e8 −0.0239615
\(993\) 1.06031e10i 0.343647i
\(994\) − 5.05352e9i − 0.163208i
\(995\) 5.32255e10i 1.71293i
\(996\) − 9.91879e10i − 3.18091i
\(997\) 2.15416e10 0.688408 0.344204 0.938895i \(-0.388149\pi\)
0.344204 + 0.938895i \(0.388149\pi\)
\(998\) 5.99824e10 1.91015
\(999\) − 1.09263e10i − 0.346733i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.8.b.f.168.38 42
13.5 odd 4 169.8.a.i.1.19 yes 21
13.8 odd 4 169.8.a.h.1.3 21
13.12 even 2 inner 169.8.b.f.168.5 42
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.8.a.h.1.3 21 13.8 odd 4
169.8.a.i.1.19 yes 21 13.5 odd 4
169.8.b.f.168.5 42 13.12 even 2 inner
169.8.b.f.168.38 42 1.1 even 1 trivial