Properties

Label 169.8.b.d.168.2
Level $169$
Weight $8$
Character 169.168
Analytic conductor $52.793$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,8,Mod(168,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.168"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 169.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.7930693068\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 1279 x^{12} + 629380 x^{10} + 148562016 x^{8} + 16872573312 x^{6} + 790180980480 x^{4} + \cdots + 4669637050368 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{17}\cdot 3^{3}\cdot 13^{6} \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 168.2
Root \(-16.7657i\) of defining polynomial
Character \(\chi\) \(=\) 169.168
Dual form 169.8.b.d.168.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.7657i q^{2} -81.0229 q^{3} -153.090 q^{4} +223.318i q^{5} +1358.41i q^{6} +666.907i q^{7} +420.649i q^{8} +4377.70 q^{9} +3744.09 q^{10} +7590.80i q^{11} +12403.8 q^{12} +11181.2 q^{14} -18093.9i q^{15} -12543.0 q^{16} +14102.9 q^{17} -73395.4i q^{18} +8343.98i q^{19} -34187.7i q^{20} -54034.7i q^{21} +127265. q^{22} -58145.3 q^{23} -34082.2i q^{24} +28254.0 q^{25} -177497. q^{27} -102097. i q^{28} -33045.0 q^{29} -303357. q^{30} +91450.2i q^{31} +264136. i q^{32} -615028. i q^{33} -236445. i q^{34} -148932. q^{35} -670182. q^{36} -355545. i q^{37} +139893. q^{38} -93938.5 q^{40} +582075. i q^{41} -905932. q^{42} +104498. q^{43} -1.16207e6i q^{44} +977620. i q^{45} +974848. i q^{46} +398024. i q^{47} +1.01627e6 q^{48} +378778. q^{49} -473700. i q^{50} -1.14266e6 q^{51} +1.49881e6 q^{53} +2.97587e6i q^{54} -1.69516e6 q^{55} -280534. q^{56} -676053. i q^{57} +554024. i q^{58} -330628. i q^{59} +2.76999e6i q^{60} -1.44273e6 q^{61} +1.53323e6 q^{62} +2.91952e6i q^{63} +2.82292e6 q^{64} -1.03114e7 q^{66} +2.56680e6i q^{67} -2.15901e6 q^{68} +4.71110e6 q^{69} +2.49696e6i q^{70} -1.29773e6i q^{71} +1.84148e6i q^{72} -2.66195e6i q^{73} -5.96097e6 q^{74} -2.28922e6 q^{75} -1.27738e6i q^{76} -5.06236e6 q^{77} +2.13906e6 q^{79} -2.80108e6i q^{80} +4.80728e6 q^{81} +9.75892e6 q^{82} +1.63158e6i q^{83} +8.27217e6i q^{84} +3.14943e6i q^{85} -1.75198e6i q^{86} +2.67740e6 q^{87} -3.19306e6 q^{88} -401206. i q^{89} +1.63905e7 q^{90} +8.90145e6 q^{92} -7.40955e6i q^{93} +6.67316e6 q^{94} -1.86336e6 q^{95} -2.14010e7i q^{96} +1.10423e7i q^{97} -6.35048e6i q^{98} +3.32303e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 52 q^{3} - 766 q^{4} + 6982 q^{9} + 1018 q^{10} + 38380 q^{12} - 47916 q^{14} + 1266 q^{16} + 76806 q^{17} + 251764 q^{22} + 137100 q^{23} + 39380 q^{25} - 432400 q^{27} - 443166 q^{29} + 315780 q^{30}+ \cdots + 86840772 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 16.7657i − 1.48190i −0.671563 0.740948i \(-0.734377\pi\)
0.671563 0.740948i \(-0.265623\pi\)
\(3\) −81.0229 −1.73254 −0.866270 0.499576i \(-0.833489\pi\)
−0.866270 + 0.499576i \(0.833489\pi\)
\(4\) −153.090 −1.19601
\(5\) 223.318i 0.798967i 0.916740 + 0.399483i \(0.130811\pi\)
−0.916740 + 0.399483i \(0.869189\pi\)
\(6\) 1358.41i 2.56744i
\(7\) 666.907i 0.734890i 0.930045 + 0.367445i \(0.119767\pi\)
−0.930045 + 0.367445i \(0.880233\pi\)
\(8\) 420.649i 0.290472i
\(9\) 4377.70 2.00169
\(10\) 3744.09 1.18399
\(11\) 7590.80i 1.71954i 0.510679 + 0.859771i \(0.329394\pi\)
−0.510679 + 0.859771i \(0.670606\pi\)
\(12\) 12403.8 2.07214
\(13\) 0 0
\(14\) 11181.2 1.08903
\(15\) − 18093.9i − 1.38424i
\(16\) −12543.0 −0.765564
\(17\) 14102.9 0.696204 0.348102 0.937457i \(-0.386826\pi\)
0.348102 + 0.937457i \(0.386826\pi\)
\(18\) − 73395.4i − 2.96630i
\(19\) 8343.98i 0.279085i 0.990216 + 0.139542i \(0.0445631\pi\)
−0.990216 + 0.139542i \(0.955437\pi\)
\(20\) − 34187.7i − 0.955576i
\(21\) − 54034.7i − 1.27323i
\(22\) 127265. 2.54818
\(23\) −58145.3 −0.996476 −0.498238 0.867040i \(-0.666019\pi\)
−0.498238 + 0.867040i \(0.666019\pi\)
\(24\) − 34082.2i − 0.503255i
\(25\) 28254.0 0.361652
\(26\) 0 0
\(27\) −177497. −1.73547
\(28\) − 102097.i − 0.878939i
\(29\) −33045.0 −0.251601 −0.125801 0.992056i \(-0.540150\pi\)
−0.125801 + 0.992056i \(0.540150\pi\)
\(30\) −303357. −2.05130
\(31\) 91450.2i 0.551339i 0.961252 + 0.275669i \(0.0888995\pi\)
−0.961252 + 0.275669i \(0.911100\pi\)
\(32\) 264136.i 1.42496i
\(33\) − 615028.i − 2.97918i
\(34\) − 236445.i − 1.03170i
\(35\) −148932. −0.587153
\(36\) −670182. −2.39405
\(37\) − 355545.i − 1.15395i −0.816760 0.576977i \(-0.804232\pi\)
0.816760 0.576977i \(-0.195768\pi\)
\(38\) 139893. 0.413574
\(39\) 0 0
\(40\) −93938.5 −0.232078
\(41\) 582075.i 1.31897i 0.751717 + 0.659486i \(0.229226\pi\)
−0.751717 + 0.659486i \(0.770774\pi\)
\(42\) −905932. −1.88679
\(43\) 104498. 0.200432 0.100216 0.994966i \(-0.468047\pi\)
0.100216 + 0.994966i \(0.468047\pi\)
\(44\) − 1.16207e6i − 2.05660i
\(45\) 977620.i 1.59929i
\(46\) 974848.i 1.47667i
\(47\) 398024.i 0.559199i 0.960117 + 0.279600i \(0.0902017\pi\)
−0.960117 + 0.279600i \(0.909798\pi\)
\(48\) 1.01627e6 1.32637
\(49\) 378778. 0.459937
\(50\) − 473700.i − 0.535930i
\(51\) −1.14266e6 −1.20620
\(52\) 0 0
\(53\) 1.49881e6 1.38287 0.691433 0.722441i \(-0.256980\pi\)
0.691433 + 0.722441i \(0.256980\pi\)
\(54\) 2.97587e6i 2.57179i
\(55\) −1.69516e6 −1.37386
\(56\) −280534. −0.213465
\(57\) − 676053.i − 0.483525i
\(58\) 554024.i 0.372847i
\(59\) − 330628.i − 0.209584i −0.994494 0.104792i \(-0.966582\pi\)
0.994494 0.104792i \(-0.0334176\pi\)
\(60\) 2.76999e6i 1.65557i
\(61\) −1.44273e6 −0.813825 −0.406912 0.913467i \(-0.633395\pi\)
−0.406912 + 0.913467i \(0.633395\pi\)
\(62\) 1.53323e6 0.817027
\(63\) 2.91952e6i 1.47102i
\(64\) 2.82292e6 1.34608
\(65\) 0 0
\(66\) −1.03114e7 −4.41483
\(67\) 2.56680e6i 1.04263i 0.853364 + 0.521316i \(0.174559\pi\)
−0.853364 + 0.521316i \(0.825441\pi\)
\(68\) −2.15901e6 −0.832670
\(69\) 4.71110e6 1.72643
\(70\) 2.49696e6i 0.870099i
\(71\) − 1.29773e6i − 0.430307i −0.976580 0.215154i \(-0.930975\pi\)
0.976580 0.215154i \(-0.0690252\pi\)
\(72\) 1.84148e6i 0.581437i
\(73\) − 2.66195e6i − 0.800885i −0.916322 0.400442i \(-0.868856\pi\)
0.916322 0.400442i \(-0.131144\pi\)
\(74\) −5.96097e6 −1.71004
\(75\) −2.28922e6 −0.626576
\(76\) − 1.27738e6i − 0.333789i
\(77\) −5.06236e6 −1.26367
\(78\) 0 0
\(79\) 2.13906e6 0.488121 0.244060 0.969760i \(-0.421520\pi\)
0.244060 + 0.969760i \(0.421520\pi\)
\(80\) − 2.80108e6i − 0.611661i
\(81\) 4.80728e6 1.00508
\(82\) 9.75892e6 1.95458
\(83\) 1.63158e6i 0.313211i 0.987661 + 0.156605i \(0.0500550\pi\)
−0.987661 + 0.156605i \(0.949945\pi\)
\(84\) 8.27217e6i 1.52280i
\(85\) 3.14943e6i 0.556244i
\(86\) − 1.75198e6i − 0.297020i
\(87\) 2.67740e6 0.435909
\(88\) −3.19306e6 −0.499480
\(89\) − 401206.i − 0.0603258i −0.999545 0.0301629i \(-0.990397\pi\)
0.999545 0.0301629i \(-0.00960260\pi\)
\(90\) 1.63905e7 2.36998
\(91\) 0 0
\(92\) 8.90145e6 1.19180
\(93\) − 7.40955e6i − 0.955216i
\(94\) 6.67316e6 0.828675
\(95\) −1.86336e6 −0.222979
\(96\) − 2.14010e7i − 2.46880i
\(97\) 1.10423e7i 1.22846i 0.789128 + 0.614228i \(0.210533\pi\)
−0.789128 + 0.614228i \(0.789467\pi\)
\(98\) − 6.35048e6i − 0.681578i
\(99\) 3.32303e7i 3.44200i
\(100\) −4.32541e6 −0.432541
\(101\) −7.68319e6 −0.742022 −0.371011 0.928629i \(-0.620989\pi\)
−0.371011 + 0.928629i \(0.620989\pi\)
\(102\) 1.91575e7i 1.78746i
\(103\) 485826. 0.0438077 0.0219039 0.999760i \(-0.493027\pi\)
0.0219039 + 0.999760i \(0.493027\pi\)
\(104\) 0 0
\(105\) 1.20669e7 1.01727
\(106\) − 2.51286e7i − 2.04926i
\(107\) −69974.3 −0.00552198 −0.00276099 0.999996i \(-0.500879\pi\)
−0.00276099 + 0.999996i \(0.500879\pi\)
\(108\) 2.71730e7 2.07565
\(109\) 4.06366e6i 0.300556i 0.988644 + 0.150278i \(0.0480168\pi\)
−0.988644 + 0.150278i \(0.951983\pi\)
\(110\) 2.84206e7i 2.03591i
\(111\) 2.88073e7i 1.99927i
\(112\) − 8.36502e6i − 0.562606i
\(113\) −2.09954e7 −1.36883 −0.684417 0.729091i \(-0.739943\pi\)
−0.684417 + 0.729091i \(0.739943\pi\)
\(114\) −1.13345e7 −0.716534
\(115\) − 1.29849e7i − 0.796152i
\(116\) 5.05885e6 0.300919
\(117\) 0 0
\(118\) −5.54322e6 −0.310581
\(119\) 9.40531e6i 0.511633i
\(120\) 7.61117e6 0.402084
\(121\) −3.81330e7 −1.95683
\(122\) 2.41884e7i 1.20600i
\(123\) − 4.71614e7i − 2.28517i
\(124\) − 1.40001e7i − 0.659409i
\(125\) 2.37564e7i 1.08791i
\(126\) 4.89479e7 2.17990
\(127\) −9.33567e6 −0.404420 −0.202210 0.979342i \(-0.564812\pi\)
−0.202210 + 0.979342i \(0.564812\pi\)
\(128\) − 1.35190e7i − 0.569784i
\(129\) −8.46671e6 −0.347257
\(130\) 0 0
\(131\) −4.07546e7 −1.58390 −0.791948 0.610588i \(-0.790933\pi\)
−0.791948 + 0.610588i \(0.790933\pi\)
\(132\) 9.41545e7i 3.56314i
\(133\) −5.56466e6 −0.205096
\(134\) 4.30343e7 1.54507
\(135\) − 3.96383e7i − 1.38659i
\(136\) 5.93236e6i 0.202228i
\(137\) − 4.87238e7i − 1.61890i −0.587190 0.809449i \(-0.699766\pi\)
0.587190 0.809449i \(-0.300234\pi\)
\(138\) − 7.89850e7i − 2.55840i
\(139\) −5.32895e7 −1.68302 −0.841511 0.540240i \(-0.818334\pi\)
−0.841511 + 0.540240i \(0.818334\pi\)
\(140\) 2.28000e7 0.702243
\(141\) − 3.22490e7i − 0.968835i
\(142\) −2.17573e7 −0.637670
\(143\) 0 0
\(144\) −5.49096e7 −1.53243
\(145\) − 7.37955e6i − 0.201021i
\(146\) −4.46296e7 −1.18683
\(147\) −3.06896e7 −0.796858
\(148\) 5.44303e7i 1.38015i
\(149\) 3.62391e7i 0.897480i 0.893662 + 0.448740i \(0.148127\pi\)
−0.893662 + 0.448740i \(0.851873\pi\)
\(150\) 3.83805e7i 0.928520i
\(151\) 2.55676e7i 0.604326i 0.953256 + 0.302163i \(0.0977087\pi\)
−0.953256 + 0.302163i \(0.902291\pi\)
\(152\) −3.50989e6 −0.0810664
\(153\) 6.17382e7 1.39359
\(154\) 8.48741e7i 1.87263i
\(155\) −2.04225e7 −0.440502
\(156\) 0 0
\(157\) 4.23295e7 0.872960 0.436480 0.899714i \(-0.356225\pi\)
0.436480 + 0.899714i \(0.356225\pi\)
\(158\) − 3.58629e7i − 0.723344i
\(159\) −1.21438e8 −2.39587
\(160\) −5.89863e7 −1.13849
\(161\) − 3.87775e7i − 0.732301i
\(162\) − 8.05976e7i − 1.48943i
\(163\) 3.44898e7i 0.623784i 0.950118 + 0.311892i \(0.100963\pi\)
−0.950118 + 0.311892i \(0.899037\pi\)
\(164\) − 8.91098e7i − 1.57751i
\(165\) 1.37347e8 2.38026
\(166\) 2.73547e7 0.464145
\(167\) 8.00957e6i 0.133077i 0.997784 + 0.0665383i \(0.0211955\pi\)
−0.997784 + 0.0665383i \(0.978805\pi\)
\(168\) 2.27297e7 0.369837
\(169\) 0 0
\(170\) 5.28024e7 0.824295
\(171\) 3.65275e7i 0.558642i
\(172\) −1.59975e7 −0.239720
\(173\) −3.73141e7 −0.547912 −0.273956 0.961742i \(-0.588332\pi\)
−0.273956 + 0.961742i \(0.588332\pi\)
\(174\) − 4.48886e7i − 0.645972i
\(175\) 1.88428e7i 0.265774i
\(176\) − 9.52114e7i − 1.31642i
\(177\) 2.67884e7i 0.363112i
\(178\) −6.72652e6 −0.0893965
\(179\) 6.85207e7 0.892968 0.446484 0.894792i \(-0.352676\pi\)
0.446484 + 0.894792i \(0.352676\pi\)
\(180\) − 1.49664e8i − 1.91277i
\(181\) −1.20860e8 −1.51498 −0.757489 0.652848i \(-0.773574\pi\)
−0.757489 + 0.652848i \(0.773574\pi\)
\(182\) 0 0
\(183\) 1.16894e8 1.40998
\(184\) − 2.44588e7i − 0.289449i
\(185\) 7.93996e7 0.921972
\(186\) −1.24227e8 −1.41553
\(187\) 1.07052e8i 1.19715i
\(188\) − 6.09334e7i − 0.668810i
\(189\) − 1.18374e8i − 1.27538i
\(190\) 3.12406e7i 0.330432i
\(191\) −8.40445e7 −0.872755 −0.436377 0.899764i \(-0.643739\pi\)
−0.436377 + 0.899764i \(0.643739\pi\)
\(192\) −2.28721e8 −2.33213
\(193\) − 4.45097e7i − 0.445661i −0.974857 0.222830i \(-0.928470\pi\)
0.974857 0.222830i \(-0.0715296\pi\)
\(194\) 1.85133e8 1.82044
\(195\) 0 0
\(196\) −5.79870e7 −0.550091
\(197\) − 1.26502e8i − 1.17887i −0.807815 0.589437i \(-0.799350\pi\)
0.807815 0.589437i \(-0.200650\pi\)
\(198\) 5.57130e8 5.10068
\(199\) 9.62184e7 0.865511 0.432755 0.901511i \(-0.357541\pi\)
0.432755 + 0.901511i \(0.357541\pi\)
\(200\) 1.18850e7i 0.105050i
\(201\) − 2.07970e8i − 1.80640i
\(202\) 1.28814e8i 1.09960i
\(203\) − 2.20380e7i − 0.184899i
\(204\) 1.74929e8 1.44263
\(205\) −1.29988e8 −1.05382
\(206\) − 8.14523e6i − 0.0649185i
\(207\) −2.54543e8 −1.99464
\(208\) 0 0
\(209\) −6.33375e7 −0.479898
\(210\) − 2.02311e8i − 1.50748i
\(211\) −5.03533e7 −0.369011 −0.184505 0.982832i \(-0.559068\pi\)
−0.184505 + 0.982832i \(0.559068\pi\)
\(212\) −2.29452e8 −1.65393
\(213\) 1.05145e8i 0.745524i
\(214\) 1.17317e6i 0.00818300i
\(215\) 2.33362e7i 0.160139i
\(216\) − 7.46640e7i − 0.504107i
\(217\) −6.09888e7 −0.405173
\(218\) 6.81303e7 0.445392
\(219\) 2.15679e8i 1.38756i
\(220\) 2.59512e8 1.64315
\(221\) 0 0
\(222\) 4.82975e8 2.96271
\(223\) − 2.45161e8i − 1.48042i −0.672378 0.740208i \(-0.734727\pi\)
0.672378 0.740208i \(-0.265273\pi\)
\(224\) −1.76154e8 −1.04719
\(225\) 1.23688e8 0.723916
\(226\) 3.52004e8i 2.02847i
\(227\) 1.90894e6i 0.0108318i 0.999985 + 0.00541591i \(0.00172395\pi\)
−0.999985 + 0.00541591i \(0.998276\pi\)
\(228\) 1.03497e8i 0.578303i
\(229\) − 2.07407e8i − 1.14130i −0.821194 0.570650i \(-0.806691\pi\)
0.821194 0.570650i \(-0.193309\pi\)
\(230\) −2.17701e8 −1.17981
\(231\) 4.10167e8 2.18937
\(232\) − 1.39004e7i − 0.0730832i
\(233\) 3.42955e8 1.77620 0.888099 0.459652i \(-0.152026\pi\)
0.888099 + 0.459652i \(0.152026\pi\)
\(234\) 0 0
\(235\) −8.88859e7 −0.446782
\(236\) 5.06158e7i 0.250665i
\(237\) −1.73312e8 −0.845689
\(238\) 1.57687e8 0.758187
\(239\) − 3.94963e8i − 1.87139i −0.352815 0.935693i \(-0.614775\pi\)
0.352815 0.935693i \(-0.385225\pi\)
\(240\) 2.26952e8i 1.05973i
\(241\) − 7.77374e7i − 0.357742i −0.983873 0.178871i \(-0.942755\pi\)
0.983873 0.178871i \(-0.0572445\pi\)
\(242\) 6.39328e8i 2.89981i
\(243\) −1.31373e6 −0.00587334
\(244\) 2.20867e8 0.973346
\(245\) 8.45879e7i 0.367474i
\(246\) −7.90695e8 −3.38638
\(247\) 0 0
\(248\) −3.84684e7 −0.160149
\(249\) − 1.32196e8i − 0.542650i
\(250\) 3.98293e8 1.61218
\(251\) 3.50877e8 1.40054 0.700272 0.713877i \(-0.253062\pi\)
0.700272 + 0.713877i \(0.253062\pi\)
\(252\) − 4.46949e8i − 1.75937i
\(253\) − 4.41369e8i − 1.71348i
\(254\) 1.56519e8i 0.599308i
\(255\) − 2.55176e8i − 0.963715i
\(256\) 1.34678e8 0.501715
\(257\) 3.59200e8 1.31999 0.659995 0.751270i \(-0.270558\pi\)
0.659995 + 0.751270i \(0.270558\pi\)
\(258\) 1.41951e8i 0.514598i
\(259\) 2.37116e8 0.848030
\(260\) 0 0
\(261\) −1.44661e8 −0.503629
\(262\) 6.83280e8i 2.34717i
\(263\) −1.99512e8 −0.676277 −0.338139 0.941096i \(-0.609797\pi\)
−0.338139 + 0.941096i \(0.609797\pi\)
\(264\) 2.58711e8 0.865368
\(265\) 3.34711e8i 1.10486i
\(266\) 9.32957e7i 0.303932i
\(267\) 3.25069e7i 0.104517i
\(268\) − 3.92951e8i − 1.24700i
\(269\) −6.44857e7 −0.201990 −0.100995 0.994887i \(-0.532203\pi\)
−0.100995 + 0.994887i \(0.532203\pi\)
\(270\) −6.64565e8 −2.05478
\(271\) − 4.79494e7i − 0.146349i −0.997319 0.0731747i \(-0.976687\pi\)
0.997319 0.0731747i \(-0.0233131\pi\)
\(272\) −1.76892e8 −0.532989
\(273\) 0 0
\(274\) −8.16891e8 −2.39904
\(275\) 2.14471e8i 0.621876i
\(276\) −7.21221e8 −2.06484
\(277\) −5.93018e8 −1.67644 −0.838221 0.545331i \(-0.816404\pi\)
−0.838221 + 0.545331i \(0.816404\pi\)
\(278\) 8.93438e8i 2.49406i
\(279\) 4.00342e8i 1.10361i
\(280\) − 6.26483e7i − 0.170552i
\(281\) 1.74758e8i 0.469856i 0.972013 + 0.234928i \(0.0754854\pi\)
−0.972013 + 0.234928i \(0.924515\pi\)
\(282\) −5.40679e8 −1.43571
\(283\) −6.61117e8 −1.73391 −0.866954 0.498389i \(-0.833925\pi\)
−0.866954 + 0.498389i \(0.833925\pi\)
\(284\) 1.98669e8i 0.514653i
\(285\) 1.50975e8 0.386321
\(286\) 0 0
\(287\) −3.88190e8 −0.969299
\(288\) 1.15631e9i 2.85233i
\(289\) −2.11448e8 −0.515300
\(290\) −1.23724e8 −0.297892
\(291\) − 8.94681e8i − 2.12835i
\(292\) 4.07518e8i 0.957869i
\(293\) 5.36743e8i 1.24661i 0.781980 + 0.623304i \(0.214210\pi\)
−0.781980 + 0.623304i \(0.785790\pi\)
\(294\) 5.14534e8i 1.18086i
\(295\) 7.38352e7 0.167451
\(296\) 1.49560e8 0.335192
\(297\) − 1.34734e9i − 2.98422i
\(298\) 6.07574e8 1.32997
\(299\) 0 0
\(300\) 3.50457e8 0.749394
\(301\) 6.96903e7i 0.147296i
\(302\) 4.28660e8 0.895548
\(303\) 6.22514e8 1.28558
\(304\) − 1.04659e8i − 0.213657i
\(305\) − 3.22188e8i − 0.650219i
\(306\) − 1.03509e9i − 2.06515i
\(307\) 3.58135e8i 0.706419i 0.935544 + 0.353209i \(0.114910\pi\)
−0.935544 + 0.353209i \(0.885090\pi\)
\(308\) 7.74995e8 1.51137
\(309\) −3.93630e7 −0.0758986
\(310\) 3.42398e8i 0.652777i
\(311\) 4.95093e8 0.933309 0.466655 0.884440i \(-0.345459\pi\)
0.466655 + 0.884440i \(0.345459\pi\)
\(312\) 0 0
\(313\) −3.14797e8 −0.580263 −0.290131 0.956987i \(-0.593699\pi\)
−0.290131 + 0.956987i \(0.593699\pi\)
\(314\) − 7.09685e8i − 1.29364i
\(315\) −6.51982e8 −1.17530
\(316\) −3.27468e8 −0.583800
\(317\) − 6.24177e8i − 1.10053i −0.834991 0.550263i \(-0.814527\pi\)
0.834991 0.550263i \(-0.185473\pi\)
\(318\) 2.03599e9i 3.55043i
\(319\) − 2.50838e8i − 0.432639i
\(320\) 6.30410e8i 1.07547i
\(321\) 5.66952e6 0.00956706
\(322\) −6.50133e8 −1.08519
\(323\) 1.17674e8i 0.194300i
\(324\) −7.35946e8 −1.20209
\(325\) 0 0
\(326\) 5.78247e8 0.924382
\(327\) − 3.29250e8i − 0.520725i
\(328\) −2.44849e8 −0.383125
\(329\) −2.65445e8 −0.410950
\(330\) − 2.30272e9i − 3.52730i
\(331\) 5.03800e8i 0.763590i 0.924247 + 0.381795i \(0.124694\pi\)
−0.924247 + 0.381795i \(0.875306\pi\)
\(332\) − 2.49779e8i − 0.374604i
\(333\) − 1.55647e9i − 2.30986i
\(334\) 1.34286e8 0.197206
\(335\) −5.73213e8 −0.833028
\(336\) 6.77758e8i 0.974737i
\(337\) −9.64189e8 −1.37233 −0.686164 0.727447i \(-0.740707\pi\)
−0.686164 + 0.727447i \(0.740707\pi\)
\(338\) 0 0
\(339\) 1.70111e9 2.37156
\(340\) − 4.82145e8i − 0.665276i
\(341\) −6.94180e8 −0.948051
\(342\) 6.12410e8 0.827849
\(343\) 8.01836e8i 1.07289i
\(344\) 4.39569e7i 0.0582200i
\(345\) 1.05207e9i 1.37936i
\(346\) 6.25598e8i 0.811949i
\(347\) 4.60468e8 0.591624 0.295812 0.955246i \(-0.404410\pi\)
0.295812 + 0.955246i \(0.404410\pi\)
\(348\) −4.09883e8 −0.521354
\(349\) − 2.44565e8i − 0.307967i −0.988073 0.153984i \(-0.950790\pi\)
0.988073 0.153984i \(-0.0492103\pi\)
\(350\) 3.15914e8 0.393850
\(351\) 0 0
\(352\) −2.00500e9 −2.45028
\(353\) 5.42061e8i 0.655899i 0.944695 + 0.327949i \(0.106358\pi\)
−0.944695 + 0.327949i \(0.893642\pi\)
\(354\) 4.49128e8 0.538094
\(355\) 2.89806e8 0.343801
\(356\) 6.14206e7i 0.0721505i
\(357\) − 7.62045e8i − 0.886425i
\(358\) − 1.14880e9i − 1.32329i
\(359\) − 5.16223e8i − 0.588853i −0.955674 0.294427i \(-0.904871\pi\)
0.955674 0.294427i \(-0.0951286\pi\)
\(360\) −4.11235e8 −0.464549
\(361\) 8.24250e8 0.922112
\(362\) 2.02630e9i 2.24504i
\(363\) 3.08965e9 3.39028
\(364\) 0 0
\(365\) 5.94462e8 0.639880
\(366\) − 1.95982e9i − 2.08945i
\(367\) 1.03213e9 1.08994 0.544969 0.838456i \(-0.316541\pi\)
0.544969 + 0.838456i \(0.316541\pi\)
\(368\) 7.29317e8 0.762867
\(369\) 2.54815e9i 2.64018i
\(370\) − 1.33119e9i − 1.36627i
\(371\) 9.99565e8i 1.01625i
\(372\) 1.13433e9i 1.14245i
\(373\) −1.80008e9 −1.79602 −0.898012 0.439971i \(-0.854989\pi\)
−0.898012 + 0.439971i \(0.854989\pi\)
\(374\) 1.79481e9 1.77405
\(375\) − 1.92481e9i − 1.88486i
\(376\) −1.67428e8 −0.162432
\(377\) 0 0
\(378\) −1.98463e9 −1.88998
\(379\) 7.94428e8i 0.749579i 0.927110 + 0.374790i \(0.122285\pi\)
−0.927110 + 0.374790i \(0.877715\pi\)
\(380\) 2.85262e8 0.266686
\(381\) 7.56403e8 0.700674
\(382\) 1.40907e9i 1.29333i
\(383\) 1.89190e9i 1.72069i 0.509710 + 0.860346i \(0.329753\pi\)
−0.509710 + 0.860346i \(0.670247\pi\)
\(384\) 1.09535e9i 0.987174i
\(385\) − 1.13052e9i − 1.00963i
\(386\) −7.46239e8 −0.660423
\(387\) 4.57460e8 0.401204
\(388\) − 1.69047e9i − 1.46925i
\(389\) −9.79194e8 −0.843422 −0.421711 0.906730i \(-0.638570\pi\)
−0.421711 + 0.906730i \(0.638570\pi\)
\(390\) 0 0
\(391\) −8.20016e8 −0.693751
\(392\) 1.59332e8i 0.133599i
\(393\) 3.30205e9 2.74416
\(394\) −2.12091e9 −1.74697
\(395\) 4.77690e8i 0.389993i
\(396\) − 5.08721e9i − 4.11668i
\(397\) − 1.17845e9i − 0.945244i −0.881265 0.472622i \(-0.843308\pi\)
0.881265 0.472622i \(-0.156692\pi\)
\(398\) − 1.61317e9i − 1.28260i
\(399\) 4.50865e8 0.355338
\(400\) −3.54391e8 −0.276868
\(401\) 9.42929e8i 0.730254i 0.930958 + 0.365127i \(0.118974\pi\)
−0.930958 + 0.365127i \(0.881026\pi\)
\(402\) −3.48676e9 −2.67690
\(403\) 0 0
\(404\) 1.17622e9 0.887468
\(405\) 1.07355e9i 0.803029i
\(406\) −3.69483e8 −0.274001
\(407\) 2.69887e9 1.98427
\(408\) − 4.80657e8i − 0.350368i
\(409\) − 1.96849e9i − 1.42266i −0.702858 0.711331i \(-0.748093\pi\)
0.702858 0.711331i \(-0.251907\pi\)
\(410\) 2.17934e9i 1.56164i
\(411\) 3.94774e9i 2.80480i
\(412\) −7.43751e7 −0.0523947
\(413\) 2.20498e8 0.154021
\(414\) 4.26760e9i 2.95585i
\(415\) −3.64362e8 −0.250245
\(416\) 0 0
\(417\) 4.31767e9 2.91590
\(418\) 1.06190e9i 0.711159i
\(419\) −1.95673e9 −1.29952 −0.649758 0.760141i \(-0.725130\pi\)
−0.649758 + 0.760141i \(0.725130\pi\)
\(420\) −1.84732e9 −1.21666
\(421\) − 2.92602e8i − 0.191113i −0.995424 0.0955563i \(-0.969537\pi\)
0.995424 0.0955563i \(-0.0304630\pi\)
\(422\) 8.44209e8i 0.546835i
\(423\) 1.74243e9i 1.11935i
\(424\) 6.30471e8i 0.401684i
\(425\) 3.98463e8 0.251783
\(426\) 1.76284e9 1.10479
\(427\) − 9.62168e8i − 0.598072i
\(428\) 1.07123e7 0.00660437
\(429\) 0 0
\(430\) 3.91249e8 0.237309
\(431\) − 9.77619e7i − 0.0588165i −0.999567 0.0294083i \(-0.990638\pi\)
0.999567 0.0294083i \(-0.00936229\pi\)
\(432\) 2.22635e9 1.32862
\(433\) 6.53277e8 0.386714 0.193357 0.981128i \(-0.438062\pi\)
0.193357 + 0.981128i \(0.438062\pi\)
\(434\) 1.02252e9i 0.600425i
\(435\) 5.97912e8i 0.348277i
\(436\) − 6.22105e8i − 0.359469i
\(437\) − 4.85163e8i − 0.278101i
\(438\) 3.61601e9 2.05623
\(439\) −1.57565e9 −0.888862 −0.444431 0.895813i \(-0.646594\pi\)
−0.444431 + 0.895813i \(0.646594\pi\)
\(440\) − 7.13068e8i − 0.399068i
\(441\) 1.65818e9 0.920652
\(442\) 0 0
\(443\) 2.36999e9 1.29519 0.647594 0.761985i \(-0.275775\pi\)
0.647594 + 0.761985i \(0.275775\pi\)
\(444\) − 4.41010e9i − 2.39116i
\(445\) 8.95966e7 0.0481983
\(446\) −4.11030e9 −2.19382
\(447\) − 2.93619e9i − 1.55492i
\(448\) 1.88263e9i 0.989217i
\(449\) − 2.05507e8i − 0.107143i −0.998564 0.0535716i \(-0.982939\pi\)
0.998564 0.0535716i \(-0.0170605\pi\)
\(450\) − 2.07372e9i − 1.07277i
\(451\) −4.41841e9 −2.26803
\(452\) 3.21419e9 1.63714
\(453\) − 2.07156e9i − 1.04702i
\(454\) 3.20048e7 0.0160516
\(455\) 0 0
\(456\) 2.84381e8 0.140451
\(457\) − 2.69717e9i − 1.32191i −0.750426 0.660954i \(-0.770152\pi\)
0.750426 0.660954i \(-0.229848\pi\)
\(458\) −3.47733e9 −1.69129
\(459\) −2.50322e9 −1.20824
\(460\) 1.98785e9i 0.952209i
\(461\) − 1.92610e9i − 0.915642i −0.889044 0.457821i \(-0.848630\pi\)
0.889044 0.457821i \(-0.151370\pi\)
\(462\) − 6.87675e9i − 3.24441i
\(463\) − 2.34776e9i − 1.09931i −0.835391 0.549655i \(-0.814759\pi\)
0.835391 0.549655i \(-0.185241\pi\)
\(464\) 4.14484e8 0.192617
\(465\) 1.65469e9 0.763186
\(466\) − 5.74989e9i − 2.63214i
\(467\) −1.71342e9 −0.778493 −0.389246 0.921134i \(-0.627264\pi\)
−0.389246 + 0.921134i \(0.627264\pi\)
\(468\) 0 0
\(469\) −1.71182e9 −0.766219
\(470\) 1.49024e9i 0.662084i
\(471\) −3.42966e9 −1.51244
\(472\) 1.39078e8 0.0608783
\(473\) 7.93221e8i 0.344652i
\(474\) 2.90571e9i 1.25322i
\(475\) 2.35751e8i 0.100931i
\(476\) − 1.43986e9i − 0.611921i
\(477\) 6.56133e9 2.76807
\(478\) −6.62184e9 −2.77320
\(479\) 1.13940e8i 0.0473697i 0.999719 + 0.0236848i \(0.00753982\pi\)
−0.999719 + 0.0236848i \(0.992460\pi\)
\(480\) 4.77924e9 1.97249
\(481\) 0 0
\(482\) −1.30332e9 −0.530137
\(483\) 3.14186e9i 1.26874i
\(484\) 5.83778e9 2.34039
\(485\) −2.46595e9 −0.981496
\(486\) 2.20257e7i 0.00870367i
\(487\) − 7.96258e8i − 0.312394i −0.987726 0.156197i \(-0.950077\pi\)
0.987726 0.156197i \(-0.0499234\pi\)
\(488\) − 6.06883e8i − 0.236394i
\(489\) − 2.79446e9i − 1.08073i
\(490\) 1.41818e9 0.544558
\(491\) −3.65621e9 −1.39395 −0.696973 0.717097i \(-0.745470\pi\)
−0.696973 + 0.717097i \(0.745470\pi\)
\(492\) 7.21993e9i 2.73310i
\(493\) −4.66030e8 −0.175166
\(494\) 0 0
\(495\) −7.42092e9 −2.75004
\(496\) − 1.14706e9i − 0.422085i
\(497\) 8.65463e8 0.316228
\(498\) −2.21636e9 −0.804150
\(499\) − 7.46131e8i − 0.268821i −0.990926 0.134411i \(-0.957086\pi\)
0.990926 0.134411i \(-0.0429141\pi\)
\(500\) − 3.63686e9i − 1.30116i
\(501\) − 6.48959e8i − 0.230560i
\(502\) − 5.88270e9i − 2.07546i
\(503\) −4.68159e8 −0.164023 −0.0820117 0.996631i \(-0.526134\pi\)
−0.0820117 + 0.996631i \(0.526134\pi\)
\(504\) −1.22809e9 −0.427292
\(505\) − 1.71579e9i − 0.592851i
\(506\) −7.39987e9 −2.53920
\(507\) 0 0
\(508\) 1.42920e9 0.483692
\(509\) − 5.93386e8i − 0.199446i −0.995015 0.0997229i \(-0.968204\pi\)
0.995015 0.0997229i \(-0.0317956\pi\)
\(510\) −4.27821e9 −1.42812
\(511\) 1.77527e9 0.588562
\(512\) − 3.98841e9i − 1.31327i
\(513\) − 1.48103e9i − 0.484344i
\(514\) − 6.02225e9i − 1.95609i
\(515\) 1.08494e8i 0.0350009i
\(516\) 1.29617e9 0.415324
\(517\) −3.02132e9 −0.961567
\(518\) − 3.97542e9i − 1.25669i
\(519\) 3.02329e9 0.949280
\(520\) 0 0
\(521\) 2.35950e9 0.730950 0.365475 0.930821i \(-0.380907\pi\)
0.365475 + 0.930821i \(0.380907\pi\)
\(522\) 2.42535e9i 0.746325i
\(523\) 5.49264e8 0.167890 0.0839451 0.996470i \(-0.473248\pi\)
0.0839451 + 0.996470i \(0.473248\pi\)
\(524\) 6.23911e9 1.89436
\(525\) − 1.52670e9i − 0.460465i
\(526\) 3.34497e9i 1.00217i
\(527\) 1.28971e9i 0.383844i
\(528\) 7.71430e9i 2.28075i
\(529\) −2.39521e7 −0.00703475
\(530\) 5.61167e9 1.63729
\(531\) − 1.44739e9i − 0.419522i
\(532\) 8.51893e8 0.245298
\(533\) 0 0
\(534\) 5.45002e8 0.154883
\(535\) − 1.56265e7i − 0.00441188i
\(536\) −1.07972e9 −0.302856
\(537\) −5.55174e9 −1.54710
\(538\) 1.08115e9i 0.299328i
\(539\) 2.87522e9i 0.790881i
\(540\) 6.06822e9i 1.65838i
\(541\) − 6.19192e7i − 0.0168126i −0.999965 0.00840630i \(-0.997324\pi\)
0.999965 0.00840630i \(-0.00267584\pi\)
\(542\) −8.03907e8 −0.216874
\(543\) 9.79240e9 2.62476
\(544\) 3.72507e9i 0.992062i
\(545\) −9.07489e8 −0.240134
\(546\) 0 0
\(547\) −4.11747e9 −1.07566 −0.537830 0.843053i \(-0.680756\pi\)
−0.537830 + 0.843053i \(0.680756\pi\)
\(548\) 7.45912e9i 1.93622i
\(549\) −6.31585e9 −1.62903
\(550\) 3.59576e9 0.921555
\(551\) − 2.75727e8i − 0.0702181i
\(552\) 1.98172e9i 0.501482i
\(553\) 1.42655e9i 0.358715i
\(554\) 9.94238e9i 2.48431i
\(555\) −6.43319e9 −1.59735
\(556\) 8.15808e9 2.01292
\(557\) 4.03807e9i 0.990105i 0.868863 + 0.495052i \(0.164851\pi\)
−0.868863 + 0.495052i \(0.835149\pi\)
\(558\) 6.71202e9 1.63544
\(559\) 0 0
\(560\) 1.86806e9 0.449503
\(561\) − 8.67366e9i − 2.07411i
\(562\) 2.92994e9 0.696277
\(563\) 6.53949e8 0.154442 0.0772209 0.997014i \(-0.475395\pi\)
0.0772209 + 0.997014i \(0.475395\pi\)
\(564\) 4.93700e9i 1.15874i
\(565\) − 4.68866e9i − 1.09365i
\(566\) 1.10841e10i 2.56947i
\(567\) 3.20601e9i 0.738626i
\(568\) 5.45887e8 0.124992
\(569\) −3.78098e9 −0.860423 −0.430211 0.902728i \(-0.641561\pi\)
−0.430211 + 0.902728i \(0.641561\pi\)
\(570\) − 2.53121e9i − 0.572487i
\(571\) −1.41244e9 −0.317499 −0.158750 0.987319i \(-0.550746\pi\)
−0.158750 + 0.987319i \(0.550746\pi\)
\(572\) 0 0
\(573\) 6.80952e9 1.51208
\(574\) 6.50829e9i 1.43640i
\(575\) −1.64284e9 −0.360377
\(576\) 1.23579e10 2.69443
\(577\) − 2.80901e9i − 0.608749i −0.952553 0.304374i \(-0.901553\pi\)
0.952553 0.304374i \(-0.0984474\pi\)
\(578\) 3.54507e9i 0.763621i
\(579\) 3.60631e9i 0.772125i
\(580\) 1.12973e9i 0.240424i
\(581\) −1.08812e9 −0.230175
\(582\) −1.50000e10 −3.15399
\(583\) 1.13771e10i 2.37790i
\(584\) 1.11975e9 0.232635
\(585\) 0 0
\(586\) 8.99889e9 1.84734
\(587\) 5.36072e9i 1.09393i 0.837156 + 0.546965i \(0.184217\pi\)
−0.837156 + 0.546965i \(0.815783\pi\)
\(588\) 4.69827e9 0.953054
\(589\) −7.63059e8 −0.153870
\(590\) − 1.23790e9i − 0.248144i
\(591\) 1.02496e10i 2.04245i
\(592\) 4.45960e9i 0.883426i
\(593\) 2.19757e9i 0.432765i 0.976309 + 0.216382i \(0.0694258\pi\)
−0.976309 + 0.216382i \(0.930574\pi\)
\(594\) −2.25892e10 −4.42230
\(595\) −2.10038e9 −0.408778
\(596\) − 5.54783e9i − 1.07340i
\(597\) −7.79589e9 −1.49953
\(598\) 0 0
\(599\) −9.75825e9 −1.85515 −0.927573 0.373642i \(-0.878109\pi\)
−0.927573 + 0.373642i \(0.878109\pi\)
\(600\) − 9.62960e8i − 0.182003i
\(601\) 3.68732e9 0.692868 0.346434 0.938074i \(-0.387393\pi\)
0.346434 + 0.938074i \(0.387393\pi\)
\(602\) 1.16841e9 0.218277
\(603\) 1.12367e10i 2.08703i
\(604\) − 3.91414e9i − 0.722782i
\(605\) − 8.51579e9i − 1.56344i
\(606\) − 1.04369e10i − 1.90510i
\(607\) 5.90498e9 1.07166 0.535831 0.844325i \(-0.319998\pi\)
0.535831 + 0.844325i \(0.319998\pi\)
\(608\) −2.20394e9 −0.397684
\(609\) 1.78558e9i 0.320345i
\(610\) −5.40171e9 −0.963557
\(611\) 0 0
\(612\) −9.45149e9 −1.66675
\(613\) − 8.40999e9i − 1.47463i −0.675548 0.737316i \(-0.736093\pi\)
0.675548 0.737316i \(-0.263907\pi\)
\(614\) 6.00439e9 1.04684
\(615\) 1.05320e10 1.82578
\(616\) − 2.12948e9i − 0.367063i
\(617\) − 8.51257e9i − 1.45902i −0.683967 0.729512i \(-0.739747\pi\)
0.683967 0.729512i \(-0.260253\pi\)
\(618\) 6.59950e8i 0.112474i
\(619\) 8.70392e9i 1.47502i 0.675337 + 0.737509i \(0.263998\pi\)
−0.675337 + 0.737509i \(0.736002\pi\)
\(620\) 3.12647e9 0.526846
\(621\) 1.03206e10 1.72936
\(622\) − 8.30060e9i − 1.38307i
\(623\) 2.67568e8 0.0443328
\(624\) 0 0
\(625\) −3.09788e9 −0.507556
\(626\) 5.27780e9i 0.859889i
\(627\) 5.13178e9 0.831442
\(628\) −6.48022e9 −1.04407
\(629\) − 5.01421e9i − 0.803388i
\(630\) 1.09310e10i 1.74167i
\(631\) − 9.88656e9i − 1.56654i −0.621679 0.783272i \(-0.713549\pi\)
0.621679 0.783272i \(-0.286451\pi\)
\(632\) 8.99792e8i 0.141786i
\(633\) 4.07976e9 0.639326
\(634\) −1.04648e10 −1.63086
\(635\) − 2.08482e9i − 0.323118i
\(636\) 1.85909e10 2.86549
\(637\) 0 0
\(638\) −4.20548e9 −0.641126
\(639\) − 5.68106e9i − 0.861343i
\(640\) 3.01904e9 0.455239
\(641\) 6.76169e9 1.01403 0.507017 0.861936i \(-0.330748\pi\)
0.507017 + 0.861936i \(0.330748\pi\)
\(642\) − 9.50536e7i − 0.0141774i
\(643\) − 2.81532e9i − 0.417627i −0.977955 0.208814i \(-0.933040\pi\)
0.977955 0.208814i \(-0.0669602\pi\)
\(644\) 5.93644e9i 0.875842i
\(645\) − 1.89077e9i − 0.277447i
\(646\) 1.97289e9 0.287932
\(647\) 1.19349e10 1.73243 0.866213 0.499674i \(-0.166547\pi\)
0.866213 + 0.499674i \(0.166547\pi\)
\(648\) 2.02218e9i 0.291949i
\(649\) 2.50973e9 0.360388
\(650\) 0 0
\(651\) 4.94149e9 0.701979
\(652\) − 5.28004e9i − 0.746054i
\(653\) 1.28240e9 0.180231 0.0901153 0.995931i \(-0.471276\pi\)
0.0901153 + 0.995931i \(0.471276\pi\)
\(654\) −5.52011e9 −0.771659
\(655\) − 9.10123e9i − 1.26548i
\(656\) − 7.30097e9i − 1.00976i
\(657\) − 1.16532e10i − 1.60313i
\(658\) 4.45038e9i 0.608985i
\(659\) −4.85245e9 −0.660484 −0.330242 0.943896i \(-0.607130\pi\)
−0.330242 + 0.943896i \(0.607130\pi\)
\(660\) −2.10264e10 −2.84683
\(661\) − 4.76107e9i − 0.641209i −0.947213 0.320605i \(-0.896114\pi\)
0.947213 0.320605i \(-0.103886\pi\)
\(662\) 8.44658e9 1.13156
\(663\) 0 0
\(664\) −6.86325e8 −0.0909790
\(665\) − 1.24269e9i − 0.163865i
\(666\) −2.60954e10 −3.42298
\(667\) 1.92141e9 0.250715
\(668\) − 1.22618e9i − 0.159162i
\(669\) 1.98636e10i 2.56488i
\(670\) 9.61034e9i 1.23446i
\(671\) − 1.09515e10i − 1.39941i
\(672\) 1.42725e10 1.81429
\(673\) 1.03481e10 1.30861 0.654303 0.756233i \(-0.272962\pi\)
0.654303 + 0.756233i \(0.272962\pi\)
\(674\) 1.61653e10i 2.03365i
\(675\) −5.01501e9 −0.627637
\(676\) 0 0
\(677\) −1.09230e9 −0.135295 −0.0676477 0.997709i \(-0.521549\pi\)
−0.0676477 + 0.997709i \(0.521549\pi\)
\(678\) − 2.85204e10i − 3.51440i
\(679\) −7.36421e9 −0.902780
\(680\) −1.32480e9 −0.161573
\(681\) − 1.54668e8i − 0.0187666i
\(682\) 1.16384e10i 1.40491i
\(683\) − 7.72912e9i − 0.928234i −0.885774 0.464117i \(-0.846372\pi\)
0.885774 0.464117i \(-0.153628\pi\)
\(684\) − 5.59199e9i − 0.668144i
\(685\) 1.08809e10 1.29345
\(686\) 1.34434e10 1.58992
\(687\) 1.68047e10i 1.97735i
\(688\) −1.31072e9 −0.153444
\(689\) 0 0
\(690\) 1.76388e10 2.04407
\(691\) 8.59771e9i 0.991310i 0.868519 + 0.495655i \(0.165072\pi\)
−0.868519 + 0.495655i \(0.834928\pi\)
\(692\) 5.71240e9 0.655311
\(693\) −2.21615e10 −2.52949
\(694\) − 7.72008e9i − 0.876725i
\(695\) − 1.19005e10i − 1.34468i
\(696\) 1.12625e9i 0.126620i
\(697\) 8.20893e9i 0.918273i
\(698\) −4.10030e9 −0.456375
\(699\) −2.77872e10 −3.07733
\(700\) − 2.88465e9i − 0.317870i
\(701\) 4.34708e9 0.476633 0.238317 0.971188i \(-0.423404\pi\)
0.238317 + 0.971188i \(0.423404\pi\)
\(702\) 0 0
\(703\) 2.96666e9 0.322051
\(704\) 2.14282e10i 2.31463i
\(705\) 7.20179e9 0.774067
\(706\) 9.08805e9 0.971973
\(707\) − 5.12397e9i − 0.545304i
\(708\) − 4.10104e9i − 0.434287i
\(709\) 1.22439e10i 1.29020i 0.764098 + 0.645100i \(0.223184\pi\)
−0.764098 + 0.645100i \(0.776816\pi\)
\(710\) − 4.85880e9i − 0.509477i
\(711\) 9.36416e9 0.977069
\(712\) 1.68767e8 0.0175230
\(713\) − 5.31740e9i − 0.549396i
\(714\) −1.27762e10 −1.31359
\(715\) 0 0
\(716\) −1.04898e10 −1.06800
\(717\) 3.20010e10i 3.24225i
\(718\) −8.65486e9 −0.872619
\(719\) 2.29472e9 0.230239 0.115119 0.993352i \(-0.463275\pi\)
0.115119 + 0.993352i \(0.463275\pi\)
\(720\) − 1.22623e10i − 1.22436i
\(721\) 3.24001e8i 0.0321939i
\(722\) − 1.38191e10i − 1.36647i
\(723\) 6.29851e9i 0.619803i
\(724\) 1.85024e10 1.81194
\(725\) −9.33655e8 −0.0909921
\(726\) − 5.18002e10i − 5.02404i
\(727\) −5.74619e9 −0.554638 −0.277319 0.960778i \(-0.589446\pi\)
−0.277319 + 0.960778i \(0.589446\pi\)
\(728\) 0 0
\(729\) −1.04071e10 −0.994908
\(730\) − 9.96659e9i − 0.948236i
\(731\) 1.47372e9 0.139542
\(732\) −1.78953e10 −1.68636
\(733\) − 1.26955e9i − 0.119065i −0.998226 0.0595326i \(-0.981039\pi\)
0.998226 0.0595326i \(-0.0189610\pi\)
\(734\) − 1.73044e10i − 1.61518i
\(735\) − 6.85355e9i − 0.636664i
\(736\) − 1.53582e10i − 1.41994i
\(737\) −1.94841e10 −1.79285
\(738\) 4.27216e10 3.91247
\(739\) 2.57407e9i 0.234620i 0.993095 + 0.117310i \(0.0374270\pi\)
−0.993095 + 0.117310i \(0.962573\pi\)
\(740\) −1.21553e10 −1.10269
\(741\) 0 0
\(742\) 1.67584e10 1.50598
\(743\) − 4.84335e9i − 0.433196i −0.976261 0.216598i \(-0.930504\pi\)
0.976261 0.216598i \(-0.0694961\pi\)
\(744\) 3.11682e9 0.277464
\(745\) −8.09283e9 −0.717057
\(746\) 3.01797e10i 2.66152i
\(747\) 7.14260e9i 0.626952i
\(748\) − 1.63886e10i − 1.43181i
\(749\) − 4.66664e7i − 0.00405805i
\(750\) −3.22708e10 −2.79316
\(751\) −2.07398e10 −1.78676 −0.893378 0.449307i \(-0.851671\pi\)
−0.893378 + 0.449307i \(0.851671\pi\)
\(752\) − 4.99242e9i − 0.428103i
\(753\) −2.84290e10 −2.42650
\(754\) 0 0
\(755\) −5.70971e9 −0.482836
\(756\) 1.81219e10i 1.52538i
\(757\) 2.98409e9 0.250021 0.125010 0.992155i \(-0.460104\pi\)
0.125010 + 0.992155i \(0.460104\pi\)
\(758\) 1.33192e10 1.11080
\(759\) 3.57610e10i 2.96868i
\(760\) − 7.83821e8i − 0.0647694i
\(761\) 2.11422e10i 1.73901i 0.493920 + 0.869507i \(0.335564\pi\)
−0.493920 + 0.869507i \(0.664436\pi\)
\(762\) − 1.26816e10i − 1.03832i
\(763\) −2.71009e9 −0.220875
\(764\) 1.28663e10 1.04383
\(765\) 1.37873e10i 1.11343i
\(766\) 3.17191e10 2.54989
\(767\) 0 0
\(768\) −1.09120e10 −0.869240
\(769\) 1.37622e8i 0.0109130i 0.999985 + 0.00545652i \(0.00173687\pi\)
−0.999985 + 0.00545652i \(0.998263\pi\)
\(770\) −1.89539e10 −1.49617
\(771\) −2.91034e10 −2.28693
\(772\) 6.81399e9i 0.533017i
\(773\) − 4.08746e9i − 0.318292i −0.987255 0.159146i \(-0.949126\pi\)
0.987255 0.159146i \(-0.0508740\pi\)
\(774\) − 7.66966e9i − 0.594542i
\(775\) 2.58384e9i 0.199393i
\(776\) −4.64495e9 −0.356833
\(777\) −1.92118e10 −1.46924
\(778\) 1.64169e10i 1.24986i
\(779\) −4.85683e9 −0.368105
\(780\) 0 0
\(781\) 9.85077e9 0.739932
\(782\) 1.37482e10i 1.02807i
\(783\) 5.86539e9 0.436648
\(784\) −4.75101e9 −0.352111
\(785\) 9.45295e9i 0.697466i
\(786\) − 5.53613e10i − 4.06656i
\(787\) 1.83896e10i 1.34481i 0.740184 + 0.672404i \(0.234738\pi\)
−0.740184 + 0.672404i \(0.765262\pi\)
\(788\) 1.93662e10i 1.40995i
\(789\) 1.61651e10 1.17168
\(790\) 8.00882e9 0.577928
\(791\) − 1.40020e10i − 1.00594i
\(792\) −1.39783e10 −0.999805
\(793\) 0 0
\(794\) −1.97576e10 −1.40075
\(795\) − 2.71192e10i − 1.91422i
\(796\) −1.47301e10 −1.03516
\(797\) 1.07541e10 0.752436 0.376218 0.926531i \(-0.377224\pi\)
0.376218 + 0.926531i \(0.377224\pi\)
\(798\) − 7.55908e9i − 0.526573i
\(799\) 5.61328e9i 0.389317i
\(800\) 7.46290e9i 0.515339i
\(801\) − 1.75636e9i − 0.120754i
\(802\) 1.58089e10 1.08216
\(803\) 2.02063e10 1.37716
\(804\) 3.18380e10i 2.16048i
\(805\) 8.65972e9 0.585084
\(806\) 0 0
\(807\) 5.22482e9 0.349956
\(808\) − 3.23192e9i − 0.215537i
\(809\) 7.93391e9 0.526826 0.263413 0.964683i \(-0.415152\pi\)
0.263413 + 0.964683i \(0.415152\pi\)
\(810\) 1.79989e10 1.19000
\(811\) − 2.50497e10i − 1.64903i −0.565837 0.824517i \(-0.691447\pi\)
0.565837 0.824517i \(-0.308553\pi\)
\(812\) 3.37379e9i 0.221142i
\(813\) 3.88500e9i 0.253556i
\(814\) − 4.52485e10i − 2.94049i
\(815\) −7.70220e9 −0.498383
\(816\) 1.43323e10 0.923424
\(817\) 8.71928e8i 0.0559375i
\(818\) −3.30032e10 −2.10824
\(819\) 0 0
\(820\) 1.98998e10 1.26038
\(821\) 5.53755e9i 0.349234i 0.984636 + 0.174617i \(0.0558687\pi\)
−0.984636 + 0.174617i \(0.944131\pi\)
\(822\) 6.61868e10 4.15643
\(823\) −2.94660e10 −1.84256 −0.921282 0.388896i \(-0.872856\pi\)
−0.921282 + 0.388896i \(0.872856\pi\)
\(824\) 2.04362e8i 0.0127249i
\(825\) − 1.73770e10i − 1.07742i
\(826\) − 3.69682e9i − 0.228243i
\(827\) 2.47966e10i 1.52448i 0.647294 + 0.762241i \(0.275901\pi\)
−0.647294 + 0.762241i \(0.724099\pi\)
\(828\) 3.89679e10 2.38562
\(829\) 1.08636e10 0.662266 0.331133 0.943584i \(-0.392569\pi\)
0.331133 + 0.943584i \(0.392569\pi\)
\(830\) 6.10880e9i 0.370837i
\(831\) 4.80480e10 2.90450
\(832\) 0 0
\(833\) 5.34185e9 0.320210
\(834\) − 7.23889e10i − 4.32106i
\(835\) −1.78868e9 −0.106324
\(836\) 9.69632e9 0.573965
\(837\) − 1.62321e10i − 0.956834i
\(838\) 3.28060e10i 1.92575i
\(839\) − 1.43527e10i − 0.839007i −0.907754 0.419504i \(-0.862204\pi\)
0.907754 0.419504i \(-0.137796\pi\)
\(840\) 5.07594e9i 0.295488i
\(841\) −1.61579e10 −0.936697
\(842\) −4.90568e9 −0.283209
\(843\) − 1.41594e10i − 0.814044i
\(844\) 7.70857e9 0.441342
\(845\) 0 0
\(846\) 2.92131e10 1.65875
\(847\) − 2.54312e10i − 1.43805i
\(848\) −1.87995e10 −1.05867
\(849\) 5.35656e10 3.00406
\(850\) − 6.68053e9i − 0.373117i
\(851\) 2.06733e10i 1.14989i
\(852\) − 1.60967e10i − 0.891658i
\(853\) 2.42734e10i 1.33909i 0.742774 + 0.669543i \(0.233510\pi\)
−0.742774 + 0.669543i \(0.766490\pi\)
\(854\) −1.61314e10 −0.886280
\(855\) −8.15725e9 −0.446336
\(856\) − 2.94346e7i − 0.00160398i
\(857\) 9.63070e9 0.522667 0.261334 0.965249i \(-0.415838\pi\)
0.261334 + 0.965249i \(0.415838\pi\)
\(858\) 0 0
\(859\) 2.19480e10 1.18146 0.590729 0.806870i \(-0.298840\pi\)
0.590729 + 0.806870i \(0.298840\pi\)
\(860\) − 3.57254e9i − 0.191528i
\(861\) 3.14523e10 1.67935
\(862\) −1.63905e9 −0.0871599
\(863\) 1.90983e10i 1.01148i 0.862686 + 0.505740i \(0.168780\pi\)
−0.862686 + 0.505740i \(0.831220\pi\)
\(864\) − 4.68833e10i − 2.47298i
\(865\) − 8.33290e9i − 0.437764i
\(866\) − 1.09527e10i − 0.573070i
\(867\) 1.71321e10 0.892778
\(868\) 9.33676e9 0.484593
\(869\) 1.62371e10i 0.839345i
\(870\) 1.00244e10 0.516110
\(871\) 0 0
\(872\) −1.70938e9 −0.0873031
\(873\) 4.83401e10i 2.45899i
\(874\) −8.13412e9 −0.412117
\(875\) −1.58433e10 −0.799498
\(876\) − 3.30182e10i − 1.65955i
\(877\) 2.78380e10i 1.39360i 0.717263 + 0.696802i \(0.245394\pi\)
−0.717263 + 0.696802i \(0.754606\pi\)
\(878\) 2.64169e10i 1.31720i
\(879\) − 4.34885e10i − 2.15980i
\(880\) 2.12624e10 1.05178
\(881\) −2.24473e10 −1.10598 −0.552992 0.833186i \(-0.686514\pi\)
−0.552992 + 0.833186i \(0.686514\pi\)
\(882\) − 2.78005e10i − 1.36431i
\(883\) 1.41508e10 0.691700 0.345850 0.938290i \(-0.387591\pi\)
0.345850 + 0.938290i \(0.387591\pi\)
\(884\) 0 0
\(885\) −5.98234e9 −0.290115
\(886\) − 3.97346e10i − 1.91933i
\(887\) 3.27385e10 1.57516 0.787582 0.616210i \(-0.211333\pi\)
0.787582 + 0.616210i \(0.211333\pi\)
\(888\) −1.21178e10 −0.580733
\(889\) − 6.22603e9i − 0.297204i
\(890\) − 1.50215e9i − 0.0714248i
\(891\) 3.64911e10i 1.72828i
\(892\) 3.75316e10i 1.77060i
\(893\) −3.32110e9 −0.156064
\(894\) −4.92274e10 −2.30423
\(895\) 1.53019e10i 0.713452i
\(896\) 9.01594e9 0.418729
\(897\) 0 0
\(898\) −3.44548e9 −0.158775
\(899\) − 3.02197e9i − 0.138718i
\(900\) −1.89353e10 −0.865814
\(901\) 2.11375e10 0.962756
\(902\) 7.40780e10i 3.36098i
\(903\) − 5.64651e9i − 0.255195i
\(904\) − 8.83171e9i − 0.397608i
\(905\) − 2.69902e10i − 1.21042i
\(906\) −3.47313e10 −1.55157
\(907\) −4.64948e9 −0.206909 −0.103454 0.994634i \(-0.532990\pi\)
−0.103454 + 0.994634i \(0.532990\pi\)
\(908\) − 2.92239e8i − 0.0129550i
\(909\) −3.36347e10 −1.48530
\(910\) 0 0
\(911\) −1.91286e9 −0.0838242 −0.0419121 0.999121i \(-0.513345\pi\)
−0.0419121 + 0.999121i \(0.513345\pi\)
\(912\) 8.47974e9i 0.370170i
\(913\) −1.23850e10 −0.538579
\(914\) −4.52200e10 −1.95893
\(915\) 2.61046e10i 1.12653i
\(916\) 3.17519e10i 1.36501i
\(917\) − 2.71795e10i − 1.16399i
\(918\) 4.19683e10i 1.79049i
\(919\) −4.51305e10 −1.91808 −0.959039 0.283275i \(-0.908579\pi\)
−0.959039 + 0.283275i \(0.908579\pi\)
\(920\) 5.46208e9 0.231260
\(921\) − 2.90171e10i − 1.22390i
\(922\) −3.22925e10 −1.35689
\(923\) 0 0
\(924\) −6.27923e10 −2.61851
\(925\) − 1.00456e10i − 0.417330i
\(926\) −3.93619e10 −1.62906
\(927\) 2.12680e9 0.0876897
\(928\) − 8.72837e9i − 0.358522i
\(929\) 6.56214e9i 0.268529i 0.990946 + 0.134264i \(0.0428671\pi\)
−0.990946 + 0.134264i \(0.957133\pi\)
\(930\) − 2.77420e10i − 1.13096i
\(931\) 3.16051e9i 0.128361i
\(932\) −5.25029e10 −2.12436
\(933\) −4.01139e10 −1.61700
\(934\) 2.87267e10i 1.15364i
\(935\) −2.39067e10 −0.956485
\(936\) 0 0
\(937\) −1.55199e10 −0.616314 −0.308157 0.951336i \(-0.599712\pi\)
−0.308157 + 0.951336i \(0.599712\pi\)
\(938\) 2.86999e10i 1.13546i
\(939\) 2.55057e10 1.00533
\(940\) 1.36075e10 0.534357
\(941\) 1.49766e10i 0.585933i 0.956123 + 0.292967i \(0.0946425\pi\)
−0.956123 + 0.292967i \(0.905358\pi\)
\(942\) 5.75007e10i 2.24128i
\(943\) − 3.38449e10i − 1.31432i
\(944\) 4.14707e9i 0.160450i
\(945\) 2.64351e10 1.01899
\(946\) 1.32989e10 0.510738
\(947\) 1.19869e10i 0.458651i 0.973350 + 0.229325i \(0.0736519\pi\)
−0.973350 + 0.229325i \(0.926348\pi\)
\(948\) 2.65324e10 1.01146
\(949\) 0 0
\(950\) 3.95254e9 0.149570
\(951\) 5.05726e10i 1.90671i
\(952\) −3.95633e9 −0.148615
\(953\) 6.04429e9 0.226214 0.113107 0.993583i \(-0.463920\pi\)
0.113107 + 0.993583i \(0.463920\pi\)
\(954\) − 1.10006e11i − 4.10200i
\(955\) − 1.87686e10i − 0.697302i
\(956\) 6.04648e10i 2.23820i
\(957\) 2.03236e10i 0.749565i
\(958\) 1.91028e9 0.0701969
\(959\) 3.24943e10 1.18971
\(960\) − 5.10776e10i − 1.86329i
\(961\) 1.91495e10 0.696025
\(962\) 0 0
\(963\) −3.06327e8 −0.0110533
\(964\) 1.19008e10i 0.427865i
\(965\) 9.93983e9 0.356068
\(966\) 5.26757e10 1.88014
\(967\) − 4.09241e9i − 0.145541i −0.997349 0.0727706i \(-0.976816\pi\)
0.997349 0.0727706i \(-0.0231841\pi\)
\(968\) − 1.60406e10i − 0.568404i
\(969\) − 9.53430e9i − 0.336632i
\(970\) 4.13435e10i 1.45447i
\(971\) 4.94435e10 1.73317 0.866587 0.499026i \(-0.166309\pi\)
0.866587 + 0.499026i \(0.166309\pi\)
\(972\) 2.01119e8 0.00702460
\(973\) − 3.55392e10i − 1.23684i
\(974\) −1.33498e10 −0.462935
\(975\) 0 0
\(976\) 1.80962e10 0.623035
\(977\) 4.89243e10i 1.67839i 0.543828 + 0.839197i \(0.316974\pi\)
−0.543828 + 0.839197i \(0.683026\pi\)
\(978\) −4.68512e10 −1.60153
\(979\) 3.04548e9 0.103733
\(980\) − 1.29495e10i − 0.439504i
\(981\) 1.77895e10i 0.601620i
\(982\) 6.12991e10i 2.06568i
\(983\) − 1.74370e10i − 0.585511i −0.956187 0.292755i \(-0.905428\pi\)
0.956187 0.292755i \(-0.0945722\pi\)
\(984\) 1.98384e10 0.663779
\(985\) 2.82503e10 0.941881
\(986\) 7.81333e9i 0.259577i
\(987\) 2.15071e10 0.711987
\(988\) 0 0
\(989\) −6.07605e9 −0.199726
\(990\) 1.24417e11i 4.07528i
\(991\) −4.84851e10 −1.58252 −0.791262 0.611477i \(-0.790576\pi\)
−0.791262 + 0.611477i \(0.790576\pi\)
\(992\) −2.41553e10 −0.785635
\(993\) − 4.08193e10i − 1.32295i
\(994\) − 1.45101e10i − 0.468618i
\(995\) 2.14873e10i 0.691515i
\(996\) 2.02378e10i 0.649017i
\(997\) 2.19592e10 0.701752 0.350876 0.936422i \(-0.385884\pi\)
0.350876 + 0.936422i \(0.385884\pi\)
\(998\) −1.25094e10 −0.398365
\(999\) 6.31082e10i 2.00266i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.8.b.d.168.2 14
13.5 odd 4 169.8.a.g.1.2 14
13.8 odd 4 169.8.a.g.1.13 14
13.9 even 3 13.8.e.a.10.1 yes 14
13.10 even 6 13.8.e.a.4.1 14
13.12 even 2 inner 169.8.b.d.168.13 14
39.23 odd 6 117.8.q.b.82.7 14
39.35 odd 6 117.8.q.b.10.7 14
52.23 odd 6 208.8.w.a.17.1 14
52.35 odd 6 208.8.w.a.49.1 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.8.e.a.4.1 14 13.10 even 6
13.8.e.a.10.1 yes 14 13.9 even 3
117.8.q.b.10.7 14 39.35 odd 6
117.8.q.b.82.7 14 39.23 odd 6
169.8.a.g.1.2 14 13.5 odd 4
169.8.a.g.1.13 14 13.8 odd 4
169.8.b.d.168.2 14 1.1 even 1 trivial
169.8.b.d.168.13 14 13.12 even 2 inner
208.8.w.a.17.1 14 52.23 odd 6
208.8.w.a.49.1 14 52.35 odd 6