Properties

Label 169.8.b.b
Level $169$
Weight $8$
Character orbit 169.b
Analytic conductor $52.793$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,8,Mod(168,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.168");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 169.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.7930693068\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{337})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 169x^{2} + 7056 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (5 \beta_{2} + \beta_1) q^{2} + (3 \beta_{3} + 21) q^{3} + ( - 19 \beta_{3} - 37) q^{4} + (91 \beta_{2} + 11 \beta_1) q^{5} + (246 \beta_{2} + 51 \beta_1) q^{6} + ( - 500 \beta_{2} + 9 \beta_1) q^{7} + ( - 438 \beta_{2} - 99 \beta_1) q^{8} + (135 \beta_{3} - 990) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (5 \beta_{2} + \beta_1) q^{2} + (3 \beta_{3} + 21) q^{3} + ( - 19 \beta_{3} - 37) q^{4} + (91 \beta_{2} + 11 \beta_1) q^{5} + (246 \beta_{2} + 51 \beta_1) q^{6} + ( - 500 \beta_{2} + 9 \beta_1) q^{7} + ( - 438 \beta_{2} - 99 \beta_1) q^{8} + (135 \beta_{3} - 990) q^{9} + ( - 281 \beta_{3} - 2463) q^{10} + ( - 608 \beta_{2} - 622 \beta_1) q^{11} + ( - 567 \beta_{3} - 5565) q^{12} + (919 \beta_{3} + 8325) q^{14} + (3570 \beta_{2} + 777 \beta_1) q^{15} + ( - 665 \beta_{3} + 10573) q^{16} + (2003 \beta_{3} + 11679) q^{17} + (1395 \beta_{2} + 360 \beta_1) q^{18} + ( - 6672 \beta_{2} - 4582 \beta_1) q^{19} + ( - 13874 \beta_{2} - 3865 \beta_1) q^{20} + ( - 10866 \beta_{2} - 2811 \beta_1) q^{21} + (6814 \beta_{3} + 57594) q^{22} + ( - 6792 \beta_{3} + 16608) q^{23} + ( - 22986 \beta_{2} - 4707 \beta_1) q^{24} + ( - 3883 \beta_{3} + 38720) q^{25} + ( - 6291 \beta_{3} - 32697) q^{27} + (20818 \beta_{2} + 18667 \beta_1) q^{28} + (3544 \beta_{3} - 4674) q^{29} + ( - 14133 \beta_{3} - 122535) q^{30} + ( - 9062 \beta_{2} + 3496 \beta_1) q^{31} + ( - 34454 \beta_{2} - 8749 \beta_1) q^{32} + ( - 92964 \beta_{2} - 16710 \beta_1) q^{33} + (152536 \beta_{2} + 31709 \beta_1) q^{34} + (9461 \beta_{3} + 164223) q^{35} + (11250 \beta_{3} - 178830) q^{36} + (37541 \beta_{2} - 13135 \beta_1) q^{37} + (54582 \beta_{3} + 463746) q^{38} + (26565 \beta_{3} + 224343) q^{40} + (72423 \beta_{2} - 41178 \beta_1) q^{41} + (47031 \beta_{3} + 406413) q^{42} + ( - 4357 \beta_{3} - 112475) q^{43} + (530404 \beta_{2} + 46118 \beta_1) q^{44} + ( - 15435 \beta_{2} + 13680 \beta_1) q^{45} + ( - 236184 \beta_{2} - 51312 \beta_1) q^{46} + ( - 408576 \beta_{2} + 4221 \beta_1) q^{47} + (15759 \beta_{3} + 54453) q^{48} + (18081 \beta_{3} - 201342) q^{49} + (11099 \beta_{2} - 110 \beta_1) q^{50} + (83109 \beta_{3} + 750015) q^{51} + ( - 104610 \beta_{3} + 575496) q^{53} + ( - 459162 \beta_{2} - 95607 \beta_1) q^{54} + (119738 \beta_{3} + 676302) q^{55} + ( - 92007 \beta_{3} - 709149) q^{56} + ( - 737460 \beta_{2} - 136254 \beta_1) q^{57} + (143198 \beta_{2} + 30766 \beta_1) q^{58} + ( - 81168 \beta_{2} + 45486 \beta_1) q^{59} + ( - 819966 \beta_{2} - 164409 \beta_1) q^{60} + ( - 78370 \beta_{3} + 2376896) q^{61} + ( - 13340 \beta_{3} - 99084) q^{62} + (478530 \beta_{2} - 143910 \beta_1) q^{63} + (62529 \beta_{3} + 2629691) q^{64} + (336318 \beta_{3} + 2926602) q^{66} + (523360 \beta_{2} + 272038 \beta_1) q^{67} + ( - 334069 \beta_{3} - 3628911) q^{68} + ( - 113184 \beta_{3} - 1362816) q^{69} + (1265782 \beta_{2} + 258833 \beta_1) q^{70} + (147420 \beta_{2} - 545931 \beta_1) q^{71} + ( - 186840 \beta_{2} - 20250 \beta_1) q^{72} + ( - 1600571 \beta_{2} + 57000 \beta_1) q^{73} + (43133 \beta_{3} + 309387) q^{74} + (22968 \beta_{3} - 165396) q^{75} + (4030068 \beta_{2} + 423070 \beta_1) q^{76} + ( - 616654 \beta_{3} - 129114) q^{77} + ( - 516480 \beta_{3} + 221336) q^{79} + (594398 \beta_{2} - 4727 \beta_1) q^{80} + ( - 544320 \beta_{3} - 106839) q^{81} + (225756 \beta_{3} + 1784736) q^{82} + (2984420 \beta_{2} - 163292 \beta_1) q^{83} + (2851674 \beta_{2} + 516915 \beta_1) q^{84} + (2170448 \beta_{2} + 493015 \beta_1) q^{85} + ( - 767154 \beta_{2} - 156045 \beta_1) q^{86} + (71034 \beta_{3} + 794934) q^{87} + ( - 603678 \beta_{3} - 5634090) q^{88} + (2293837 \beta_{2} - 639712 \beta_1) q^{89} + ( - 92250 \beta_{3} - 748170) q^{90} + (64800 \beta_{3} + 10225536) q^{92} + (223008 \beta_{2} + 19044 \beta_1) q^{93} + (779163 \beta_{3} + 7037793) q^{94} + (930306 \beta_{3} + 5732070) q^{95} + ( - 1929270 \beta_{2} - 390453 \beta_1) q^{96} + (4551919 \beta_{2} + 615988 \beta_1) q^{97} + ( - 156903 \beta_{2} - 20532 \beta_1) q^{98} + ( - 3006900 \beta_{2} + 451620 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 90 q^{3} - 186 q^{4} - 3690 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 90 q^{3} - 186 q^{4} - 3690 q^{9} - 10414 q^{10} - 23394 q^{12} + 35138 q^{14} + 40962 q^{16} + 50722 q^{17} + 244004 q^{22} + 52848 q^{23} + 147114 q^{25} - 143370 q^{27} - 11608 q^{29} - 518406 q^{30} + 675814 q^{35} - 692820 q^{36} + 1964148 q^{38} + 950502 q^{40} + 1719714 q^{42} - 458614 q^{43} + 249330 q^{48} - 769206 q^{49} + 3166278 q^{51} + 2092764 q^{53} + 2944684 q^{55} - 3020610 q^{56} + 9350844 q^{61} - 423016 q^{62} + 10643822 q^{64} + 12379044 q^{66} - 15183782 q^{68} - 5677632 q^{69} + 1323814 q^{74} - 615648 q^{75} - 1749764 q^{77} - 147616 q^{79} - 1515996 q^{81} + 7590456 q^{82} + 3321804 q^{87} - 23743716 q^{88} - 3177180 q^{90} + 41031744 q^{92} + 29709498 q^{94} + 24788892 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 169x^{2} + 7056 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 85\nu ) / 42 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 85 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 85 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 42\beta_{2} - 85\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
168.1
8.67878i
9.67878i
9.67878i
8.67878i
18.6788i 50.0363 −220.897 277.467i 934.618i 921.891i 1735.20i 316.635 −5182.74
168.2 0.321220i −5.03634 127.897 75.5334i 1.61777i 1087.11i 82.1992i −2161.64 −24.2629
168.3 0.321220i −5.03634 127.897 75.5334i 1.61777i 1087.11i 82.1992i −2161.64 −24.2629
168.4 18.6788i 50.0363 −220.897 277.467i 934.618i 921.891i 1735.20i 316.635 −5182.74
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 169.8.b.b 4
13.b even 2 1 inner 169.8.b.b 4
13.d odd 4 1 13.8.a.b 2
13.d odd 4 1 169.8.a.b 2
39.f even 4 1 117.8.a.c 2
52.f even 4 1 208.8.a.g 2
65.g odd 4 1 325.8.a.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.8.a.b 2 13.d odd 4 1
117.8.a.c 2 39.f even 4 1
169.8.a.b 2 13.d odd 4 1
169.8.b.b 4 1.a even 1 1 trivial
169.8.b.b 4 13.b even 2 1 inner
208.8.a.g 2 52.f even 4 1
325.8.a.b 2 65.g odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 349T_{2}^{2} + 36 \) acting on \(S_{8}^{\mathrm{new}}(169, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 349T^{2} + 36 \) Copy content Toggle raw display
$3$ \( (T^{2} - 45 T - 252)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 82693 T^{2} + 439237764 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 1004396822416 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 10\!\cdots\!04 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 25361 T - 177216678)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 27\!\cdots\!44 \) Copy content Toggle raw display
$23$ \( (T^{2} - 26424 T - 3712002048)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 5804 T - 1049753004)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 40\!\cdots\!96 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 61\!\cdots\!36 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 13\!\cdots\!04 \) Copy content Toggle raw display
$43$ \( (T^{2} + 229307 T + 11546069484)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 44\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( (T^{2} - 1046382 T - 648240166944)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 19\!\cdots\!84 \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots + 4947441275696)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 29\!\cdots\!36 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 61\!\cdots\!56 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 10\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots - 22472459585984)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 11\!\cdots\!16 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 10\!\cdots\!24 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 20\!\cdots\!16 \) Copy content Toggle raw display
show more
show less