Properties

Label 169.8.a.h.1.3
Level $169$
Weight $8$
Character 169.1
Self dual yes
Analytic conductor $52.793$
Analytic rank $1$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,8,Mod(1,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [21,-31] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.7930693068\)
Analytic rank: \(1\)
Dimension: \(21\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Character \(\chi\) \(=\) 169.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-19.6237 q^{2} -72.4635 q^{3} +257.091 q^{4} +413.760 q^{5} +1422.00 q^{6} +1005.88 q^{7} -2533.24 q^{8} +3063.96 q^{9} -8119.51 q^{10} +3482.63 q^{11} -18629.7 q^{12} -19739.1 q^{14} -29982.5 q^{15} +16804.1 q^{16} +6157.31 q^{17} -60126.4 q^{18} -41406.0 q^{19} +106374. q^{20} -72889.6 q^{21} -68342.2 q^{22} -63119.9 q^{23} +183568. q^{24} +93072.0 q^{25} -63547.8 q^{27} +258602. q^{28} +75193.0 q^{29} +588368. q^{30} -133868. q^{31} -5503.36 q^{32} -252364. q^{33} -120829. q^{34} +416192. q^{35} +787717. q^{36} +171939. q^{37} +812541. q^{38} -1.04815e6 q^{40} -747517. q^{41} +1.43037e6 q^{42} -187227. q^{43} +895352. q^{44} +1.26774e6 q^{45} +1.23865e6 q^{46} -226649. q^{47} -1.21768e6 q^{48} +188251. q^{49} -1.82642e6 q^{50} -446180. q^{51} -1.34632e6 q^{53} +1.24705e6 q^{54} +1.44097e6 q^{55} -2.54814e6 q^{56} +3.00043e6 q^{57} -1.47557e6 q^{58} -2.50878e6 q^{59} -7.70822e6 q^{60} -509752. q^{61} +2.62699e6 q^{62} +3.08198e6 q^{63} -2.04292e6 q^{64} +4.95232e6 q^{66} -4.07091e6 q^{67} +1.58299e6 q^{68} +4.57389e6 q^{69} -8.16725e6 q^{70} -256015. q^{71} -7.76177e6 q^{72} +5.38093e6 q^{73} -3.37408e6 q^{74} -6.74433e6 q^{75} -1.06451e7 q^{76} +3.50311e6 q^{77} +5.18777e6 q^{79} +6.95285e6 q^{80} -2.09599e6 q^{81} +1.46691e7 q^{82} +5.32418e6 q^{83} -1.87392e7 q^{84} +2.54765e6 q^{85} +3.67410e6 q^{86} -5.44875e6 q^{87} -8.82235e6 q^{88} -8.69805e6 q^{89} -2.48779e7 q^{90} -1.62276e7 q^{92} +9.70053e6 q^{93} +4.44770e6 q^{94} -1.71321e7 q^{95} +398793. q^{96} +3.76799e6 q^{97} -3.69419e6 q^{98} +1.06706e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 21 q - 31 q^{2} - 26 q^{3} + 1409 q^{4} - 680 q^{5} - 1470 q^{6} - 2929 q^{7} - 4716 q^{8} + 15465 q^{9} - 5167 q^{10} - 14824 q^{11} + 21795 q^{12} - 179 q^{14} - 36398 q^{15} + 113205 q^{16} + 45016 q^{17}+ \cdots - 37605493 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −19.6237 −1.73451 −0.867255 0.497865i \(-0.834118\pi\)
−0.867255 + 0.497865i \(0.834118\pi\)
\(3\) −72.4635 −1.54951 −0.774756 0.632260i \(-0.782127\pi\)
−0.774756 + 0.632260i \(0.782127\pi\)
\(4\) 257.091 2.00852
\(5\) 413.760 1.48031 0.740156 0.672436i \(-0.234752\pi\)
0.740156 + 0.672436i \(0.234752\pi\)
\(6\) 1422.00 2.68764
\(7\) 1005.88 1.10842 0.554208 0.832378i \(-0.313021\pi\)
0.554208 + 0.832378i \(0.313021\pi\)
\(8\) −2533.24 −1.74929
\(9\) 3063.96 1.40099
\(10\) −8119.51 −2.56761
\(11\) 3482.63 0.788920 0.394460 0.918913i \(-0.370932\pi\)
0.394460 + 0.918913i \(0.370932\pi\)
\(12\) −18629.7 −3.11223
\(13\) 0 0
\(14\) −19739.1 −1.92256
\(15\) −29982.5 −2.29376
\(16\) 16804.1 1.02564
\(17\) 6157.31 0.303962 0.151981 0.988383i \(-0.451435\pi\)
0.151981 + 0.988383i \(0.451435\pi\)
\(18\) −60126.4 −2.43003
\(19\) −41406.0 −1.38492 −0.692462 0.721454i \(-0.743474\pi\)
−0.692462 + 0.721454i \(0.743474\pi\)
\(20\) 106374. 2.97324
\(21\) −72889.6 −1.71751
\(22\) −68342.2 −1.36839
\(23\) −63119.9 −1.08173 −0.540865 0.841109i \(-0.681903\pi\)
−0.540865 + 0.841109i \(0.681903\pi\)
\(24\) 183568. 2.71055
\(25\) 93072.0 1.19132
\(26\) 0 0
\(27\) −63547.8 −0.621337
\(28\) 258602. 2.22628
\(29\) 75193.0 0.572512 0.286256 0.958153i \(-0.407589\pi\)
0.286256 + 0.958153i \(0.407589\pi\)
\(30\) 588368. 3.97855
\(31\) −133868. −0.807068 −0.403534 0.914965i \(-0.632218\pi\)
−0.403534 + 0.914965i \(0.632218\pi\)
\(32\) −5503.36 −0.0296895
\(33\) −252364. −1.22244
\(34\) −120829. −0.527225
\(35\) 416192. 1.64080
\(36\) 787717. 2.81392
\(37\) 171939. 0.558043 0.279022 0.960285i \(-0.409990\pi\)
0.279022 + 0.960285i \(0.409990\pi\)
\(38\) 812541. 2.40216
\(39\) 0 0
\(40\) −1.04815e6 −2.58950
\(41\) −747517. −1.69386 −0.846930 0.531705i \(-0.821552\pi\)
−0.846930 + 0.531705i \(0.821552\pi\)
\(42\) 1.43037e6 2.97903
\(43\) −187227. −0.359112 −0.179556 0.983748i \(-0.557466\pi\)
−0.179556 + 0.983748i \(0.557466\pi\)
\(44\) 895352. 1.58456
\(45\) 1.26774e6 2.07390
\(46\) 1.23865e6 1.87627
\(47\) −226649. −0.318428 −0.159214 0.987244i \(-0.550896\pi\)
−0.159214 + 0.987244i \(0.550896\pi\)
\(48\) −1.21768e6 −1.58924
\(49\) 188251. 0.228587
\(50\) −1.82642e6 −2.06636
\(51\) −446180. −0.470993
\(52\) 0 0
\(53\) −1.34632e6 −1.24218 −0.621088 0.783740i \(-0.713309\pi\)
−0.621088 + 0.783740i \(0.713309\pi\)
\(54\) 1.24705e6 1.07772
\(55\) 1.44097e6 1.16785
\(56\) −2.54814e6 −1.93894
\(57\) 3.00043e6 2.14596
\(58\) −1.47557e6 −0.993027
\(59\) −2.50878e6 −1.59031 −0.795153 0.606409i \(-0.792610\pi\)
−0.795153 + 0.606409i \(0.792610\pi\)
\(60\) −7.70822e6 −4.60707
\(61\) −509752. −0.287544 −0.143772 0.989611i \(-0.545923\pi\)
−0.143772 + 0.989611i \(0.545923\pi\)
\(62\) 2.62699e6 1.39987
\(63\) 3.08198e6 1.55288
\(64\) −2.04292e6 −0.974142
\(65\) 0 0
\(66\) 4.95232e6 2.12034
\(67\) −4.07091e6 −1.65360 −0.826799 0.562498i \(-0.809840\pi\)
−0.826799 + 0.562498i \(0.809840\pi\)
\(68\) 1.58299e6 0.610515
\(69\) 4.57389e6 1.67616
\(70\) −8.16725e6 −2.84599
\(71\) −256015. −0.0848910 −0.0424455 0.999099i \(-0.513515\pi\)
−0.0424455 + 0.999099i \(0.513515\pi\)
\(72\) −7.76177e6 −2.45074
\(73\) 5.38093e6 1.61893 0.809463 0.587171i \(-0.199758\pi\)
0.809463 + 0.587171i \(0.199758\pi\)
\(74\) −3.37408e6 −0.967931
\(75\) −6.74433e6 −1.84597
\(76\) −1.06451e7 −2.78165
\(77\) 3.50311e6 0.874452
\(78\) 0 0
\(79\) 5.18777e6 1.18382 0.591911 0.806004i \(-0.298374\pi\)
0.591911 + 0.806004i \(0.298374\pi\)
\(80\) 6.95285e6 1.51827
\(81\) −2.09599e6 −0.438219
\(82\) 1.46691e7 2.93801
\(83\) 5.32418e6 1.02207 0.511034 0.859561i \(-0.329263\pi\)
0.511034 + 0.859561i \(0.329263\pi\)
\(84\) −1.87392e7 −3.44965
\(85\) 2.54765e6 0.449959
\(86\) 3.67410e6 0.622883
\(87\) −5.44875e6 −0.887114
\(88\) −8.82235e6 −1.38005
\(89\) −8.69805e6 −1.30785 −0.653923 0.756561i \(-0.726878\pi\)
−0.653923 + 0.756561i \(0.726878\pi\)
\(90\) −2.48779e7 −3.59720
\(91\) 0 0
\(92\) −1.62276e7 −2.17268
\(93\) 9.70053e6 1.25056
\(94\) 4.44770e6 0.552317
\(95\) −1.71321e7 −2.05012
\(96\) 398793. 0.0460043
\(97\) 3.76799e6 0.419187 0.209594 0.977789i \(-0.432786\pi\)
0.209594 + 0.977789i \(0.432786\pi\)
\(98\) −3.69419e6 −0.396486
\(99\) 1.06706e7 1.10527
\(100\) 2.39280e7 2.39280
\(101\) 1.07132e7 1.03465 0.517325 0.855789i \(-0.326928\pi\)
0.517325 + 0.855789i \(0.326928\pi\)
\(102\) 8.75572e6 0.816942
\(103\) −8.08002e6 −0.728588 −0.364294 0.931284i \(-0.618690\pi\)
−0.364294 + 0.931284i \(0.618690\pi\)
\(104\) 0 0
\(105\) −3.01588e7 −2.54244
\(106\) 2.64199e7 2.15457
\(107\) −2.35427e6 −0.185786 −0.0928931 0.995676i \(-0.529611\pi\)
−0.0928931 + 0.995676i \(0.529611\pi\)
\(108\) −1.63376e7 −1.24797
\(109\) 289028. 0.0213770 0.0106885 0.999943i \(-0.496598\pi\)
0.0106885 + 0.999943i \(0.496598\pi\)
\(110\) −2.82772e7 −2.02564
\(111\) −1.24593e7 −0.864695
\(112\) 1.69029e7 1.13684
\(113\) 4.19514e6 0.273509 0.136755 0.990605i \(-0.456333\pi\)
0.136755 + 0.990605i \(0.456333\pi\)
\(114\) −5.88796e7 −3.72218
\(115\) −2.61165e7 −1.60130
\(116\) 1.93314e7 1.14990
\(117\) 0 0
\(118\) 4.92317e7 2.75840
\(119\) 6.19351e6 0.336917
\(120\) 7.59529e7 4.01246
\(121\) −7.35846e6 −0.377605
\(122\) 1.00032e7 0.498748
\(123\) 5.41677e7 2.62466
\(124\) −3.44162e7 −1.62101
\(125\) 6.18447e6 0.283216
\(126\) −6.04799e7 −2.69348
\(127\) 3.35328e7 1.45264 0.726318 0.687358i \(-0.241230\pi\)
0.726318 + 0.687358i \(0.241230\pi\)
\(128\) 4.07942e7 1.71935
\(129\) 1.35672e7 0.556449
\(130\) 0 0
\(131\) −2.99754e7 −1.16497 −0.582487 0.812840i \(-0.697920\pi\)
−0.582487 + 0.812840i \(0.697920\pi\)
\(132\) −6.48804e7 −2.45530
\(133\) −4.16495e7 −1.53507
\(134\) 7.98865e7 2.86818
\(135\) −2.62935e7 −0.919773
\(136\) −1.55980e7 −0.531719
\(137\) −1.77421e7 −0.589501 −0.294750 0.955574i \(-0.595236\pi\)
−0.294750 + 0.955574i \(0.595236\pi\)
\(138\) −8.97569e7 −2.90731
\(139\) −2.24539e7 −0.709152 −0.354576 0.935027i \(-0.615375\pi\)
−0.354576 + 0.935027i \(0.615375\pi\)
\(140\) 1.06999e8 3.29559
\(141\) 1.64238e7 0.493409
\(142\) 5.02398e6 0.147244
\(143\) 0 0
\(144\) 5.14871e7 1.43691
\(145\) 3.11118e7 0.847495
\(146\) −1.05594e8 −2.80804
\(147\) −1.36413e7 −0.354198
\(148\) 4.42039e7 1.12084
\(149\) −1.63242e7 −0.404278 −0.202139 0.979357i \(-0.564789\pi\)
−0.202139 + 0.979357i \(0.564789\pi\)
\(150\) 1.32349e8 3.20185
\(151\) −3.54101e7 −0.836965 −0.418483 0.908225i \(-0.637438\pi\)
−0.418483 + 0.908225i \(0.637438\pi\)
\(152\) 1.04892e8 2.42264
\(153\) 1.88658e7 0.425848
\(154\) −6.87440e7 −1.51674
\(155\) −5.53891e7 −1.19471
\(156\) 0 0
\(157\) −1.64297e7 −0.338830 −0.169415 0.985545i \(-0.554188\pi\)
−0.169415 + 0.985545i \(0.554188\pi\)
\(158\) −1.01803e8 −2.05335
\(159\) 9.75593e7 1.92477
\(160\) −2.27707e6 −0.0439497
\(161\) −6.34911e7 −1.19901
\(162\) 4.11311e7 0.760095
\(163\) 7.24842e7 1.31095 0.655475 0.755216i \(-0.272468\pi\)
0.655475 + 0.755216i \(0.272468\pi\)
\(164\) −1.92180e8 −3.40215
\(165\) −1.04418e8 −1.80959
\(166\) −1.04480e8 −1.77279
\(167\) −9.79620e7 −1.62761 −0.813804 0.581139i \(-0.802607\pi\)
−0.813804 + 0.581139i \(0.802607\pi\)
\(168\) 1.84647e8 3.00442
\(169\) 0 0
\(170\) −4.99943e7 −0.780458
\(171\) −1.26867e8 −1.94026
\(172\) −4.81345e7 −0.721284
\(173\) 5.57283e6 0.0818303 0.0409151 0.999163i \(-0.486973\pi\)
0.0409151 + 0.999163i \(0.486973\pi\)
\(174\) 1.06925e8 1.53871
\(175\) 9.36193e7 1.32048
\(176\) 5.85224e7 0.809147
\(177\) 1.81795e8 2.46420
\(178\) 1.70688e8 2.26847
\(179\) 7.61885e7 0.992896 0.496448 0.868067i \(-0.334637\pi\)
0.496448 + 0.868067i \(0.334637\pi\)
\(180\) 3.25925e8 4.16547
\(181\) 5.13200e7 0.643297 0.321648 0.946859i \(-0.395763\pi\)
0.321648 + 0.946859i \(0.395763\pi\)
\(182\) 0 0
\(183\) 3.69384e7 0.445553
\(184\) 1.59898e8 1.89226
\(185\) 7.11413e7 0.826078
\(186\) −1.90361e8 −2.16911
\(187\) 2.14436e7 0.239802
\(188\) −5.82694e7 −0.639570
\(189\) −6.39215e7 −0.688701
\(190\) 3.36197e8 3.55595
\(191\) 1.19362e7 0.123951 0.0619753 0.998078i \(-0.480260\pi\)
0.0619753 + 0.998078i \(0.480260\pi\)
\(192\) 1.48038e8 1.50945
\(193\) 1.37269e8 1.37443 0.687216 0.726453i \(-0.258833\pi\)
0.687216 + 0.726453i \(0.258833\pi\)
\(194\) −7.39419e7 −0.727084
\(195\) 0 0
\(196\) 4.83976e7 0.459122
\(197\) −9.34188e7 −0.870567 −0.435284 0.900293i \(-0.643352\pi\)
−0.435284 + 0.900293i \(0.643352\pi\)
\(198\) −2.09398e8 −1.91710
\(199\) 1.28639e8 1.15714 0.578571 0.815632i \(-0.303611\pi\)
0.578571 + 0.815632i \(0.303611\pi\)
\(200\) −2.35774e8 −2.08397
\(201\) 2.94993e8 2.56227
\(202\) −2.10232e8 −1.79461
\(203\) 7.56351e7 0.634581
\(204\) −1.14709e8 −0.946001
\(205\) −3.09292e8 −2.50744
\(206\) 1.58560e8 1.26374
\(207\) −1.93397e8 −1.51549
\(208\) 0 0
\(209\) −1.44202e8 −1.09259
\(210\) 5.91828e8 4.40989
\(211\) −1.53936e8 −1.12811 −0.564054 0.825738i \(-0.690759\pi\)
−0.564054 + 0.825738i \(0.690759\pi\)
\(212\) −3.46127e8 −2.49494
\(213\) 1.85518e7 0.131540
\(214\) 4.61996e7 0.322248
\(215\) −7.74672e7 −0.531598
\(216\) 1.60982e8 1.08690
\(217\) −1.34655e8 −0.894568
\(218\) −5.67181e6 −0.0370786
\(219\) −3.89921e8 −2.50855
\(220\) 3.70461e8 2.34565
\(221\) 0 0
\(222\) 2.44498e8 1.49982
\(223\) −1.30054e8 −0.785336 −0.392668 0.919680i \(-0.628448\pi\)
−0.392668 + 0.919680i \(0.628448\pi\)
\(224\) −5.53572e6 −0.0329083
\(225\) 2.85169e8 1.66903
\(226\) −8.23244e7 −0.474405
\(227\) −3.46925e8 −1.96855 −0.984273 0.176657i \(-0.943472\pi\)
−0.984273 + 0.176657i \(0.943472\pi\)
\(228\) 7.71382e8 4.31020
\(229\) −8.27429e7 −0.455309 −0.227655 0.973742i \(-0.573106\pi\)
−0.227655 + 0.973742i \(0.573106\pi\)
\(230\) 5.12503e8 2.77747
\(231\) −2.53848e8 −1.35497
\(232\) −1.90482e8 −1.00149
\(233\) −1.51866e7 −0.0786530 −0.0393265 0.999226i \(-0.512521\pi\)
−0.0393265 + 0.999226i \(0.512521\pi\)
\(234\) 0 0
\(235\) −9.37783e7 −0.471373
\(236\) −6.44985e8 −3.19417
\(237\) −3.75924e8 −1.83435
\(238\) −1.21540e8 −0.584385
\(239\) −1.61515e8 −0.765280 −0.382640 0.923898i \(-0.624985\pi\)
−0.382640 + 0.923898i \(0.624985\pi\)
\(240\) −5.03828e8 −2.35257
\(241\) −1.29574e8 −0.596292 −0.298146 0.954520i \(-0.596368\pi\)
−0.298146 + 0.954520i \(0.596368\pi\)
\(242\) 1.44400e8 0.654960
\(243\) 2.90862e8 1.30036
\(244\) −1.31053e8 −0.577538
\(245\) 7.78907e7 0.338380
\(246\) −1.06297e9 −4.55249
\(247\) 0 0
\(248\) 3.39120e8 1.41180
\(249\) −3.85809e8 −1.58371
\(250\) −1.21362e8 −0.491241
\(251\) −1.44103e8 −0.575196 −0.287598 0.957751i \(-0.592857\pi\)
−0.287598 + 0.957751i \(0.592857\pi\)
\(252\) 7.92348e8 3.11899
\(253\) −2.19823e8 −0.853399
\(254\) −6.58039e8 −2.51961
\(255\) −1.84611e8 −0.697217
\(256\) −5.39041e8 −2.00808
\(257\) 2.48876e8 0.914572 0.457286 0.889320i \(-0.348822\pi\)
0.457286 + 0.889320i \(0.348822\pi\)
\(258\) −2.66238e8 −0.965165
\(259\) 1.72950e8 0.618544
\(260\) 0 0
\(261\) 2.30388e8 0.802082
\(262\) 5.88230e8 2.02066
\(263\) 1.91513e8 0.649163 0.324582 0.945858i \(-0.394777\pi\)
0.324582 + 0.945858i \(0.394777\pi\)
\(264\) 6.39299e8 2.13841
\(265\) −5.57054e8 −1.83881
\(266\) 8.17318e8 2.66260
\(267\) 6.30291e8 2.02652
\(268\) −1.04659e9 −3.32129
\(269\) −2.90813e8 −0.910922 −0.455461 0.890256i \(-0.650526\pi\)
−0.455461 + 0.890256i \(0.650526\pi\)
\(270\) 5.15977e8 1.59535
\(271\) 6.34456e7 0.193646 0.0968232 0.995302i \(-0.469132\pi\)
0.0968232 + 0.995302i \(0.469132\pi\)
\(272\) 1.03468e8 0.311756
\(273\) 0 0
\(274\) 3.48167e8 1.02249
\(275\) 3.24135e8 0.939858
\(276\) 1.17591e9 3.36660
\(277\) 2.25716e8 0.638090 0.319045 0.947739i \(-0.396638\pi\)
0.319045 + 0.947739i \(0.396638\pi\)
\(278\) 4.40629e8 1.23003
\(279\) −4.10166e8 −1.13069
\(280\) −1.05432e9 −2.87024
\(281\) −6.67278e6 −0.0179405 −0.00897025 0.999960i \(-0.502855\pi\)
−0.00897025 + 0.999960i \(0.502855\pi\)
\(282\) −3.22296e8 −0.855822
\(283\) 1.62048e8 0.425002 0.212501 0.977161i \(-0.431839\pi\)
0.212501 + 0.977161i \(0.431839\pi\)
\(284\) −6.58192e7 −0.170505
\(285\) 1.24146e9 3.17669
\(286\) 0 0
\(287\) −7.51912e8 −1.87750
\(288\) −1.68621e7 −0.0415947
\(289\) −3.72426e8 −0.907607
\(290\) −6.10530e8 −1.46999
\(291\) −2.73042e8 −0.649536
\(292\) 1.38339e9 3.25165
\(293\) −3.53069e8 −0.820017 −0.410009 0.912082i \(-0.634474\pi\)
−0.410009 + 0.912082i \(0.634474\pi\)
\(294\) 2.67694e8 0.614360
\(295\) −1.03803e9 −2.35415
\(296\) −4.35563e8 −0.976180
\(297\) −2.21314e8 −0.490186
\(298\) 3.20342e8 0.701224
\(299\) 0 0
\(300\) −1.73390e9 −3.70767
\(301\) −1.88328e8 −0.398046
\(302\) 6.94878e8 1.45172
\(303\) −7.76314e8 −1.60320
\(304\) −6.95790e8 −1.42043
\(305\) −2.10915e8 −0.425655
\(306\) −3.70217e8 −0.738637
\(307\) −6.79916e7 −0.134113 −0.0670565 0.997749i \(-0.521361\pi\)
−0.0670565 + 0.997749i \(0.521361\pi\)
\(308\) 9.00617e8 1.75636
\(309\) 5.85507e8 1.12896
\(310\) 1.08694e9 2.07224
\(311\) −6.98524e8 −1.31680 −0.658401 0.752668i \(-0.728767\pi\)
−0.658401 + 0.752668i \(0.728767\pi\)
\(312\) 0 0
\(313\) 8.41764e8 1.55162 0.775810 0.630967i \(-0.217342\pi\)
0.775810 + 0.630967i \(0.217342\pi\)
\(314\) 3.22412e8 0.587703
\(315\) 1.27520e9 2.29874
\(316\) 1.33373e9 2.37773
\(317\) 9.91402e8 1.74800 0.874002 0.485922i \(-0.161516\pi\)
0.874002 + 0.485922i \(0.161516\pi\)
\(318\) −1.91448e9 −3.33853
\(319\) 2.61869e8 0.451666
\(320\) −8.45280e8 −1.44203
\(321\) 1.70599e8 0.287878
\(322\) 1.24593e9 2.07969
\(323\) −2.54950e8 −0.420965
\(324\) −5.38859e8 −0.880172
\(325\) 0 0
\(326\) −1.42241e9 −2.27386
\(327\) −2.09440e7 −0.0331240
\(328\) 1.89364e9 2.96305
\(329\) −2.27982e8 −0.352951
\(330\) 2.04907e9 3.13876
\(331\) 1.46324e8 0.221777 0.110889 0.993833i \(-0.464630\pi\)
0.110889 + 0.993833i \(0.464630\pi\)
\(332\) 1.36880e9 2.05284
\(333\) 5.26814e8 0.781812
\(334\) 1.92238e9 2.82310
\(335\) −1.68438e9 −2.44784
\(336\) −1.22484e9 −1.76154
\(337\) 5.22422e8 0.743561 0.371780 0.928321i \(-0.378747\pi\)
0.371780 + 0.928321i \(0.378747\pi\)
\(338\) 0 0
\(339\) −3.03995e8 −0.423806
\(340\) 6.54976e8 0.903752
\(341\) −4.66212e8 −0.636712
\(342\) 2.48960e9 3.36541
\(343\) −6.39027e8 −0.855047
\(344\) 4.74293e8 0.628191
\(345\) 1.89249e9 2.48123
\(346\) −1.09360e8 −0.141935
\(347\) 6.74172e7 0.0866199 0.0433100 0.999062i \(-0.486210\pi\)
0.0433100 + 0.999062i \(0.486210\pi\)
\(348\) −1.40082e9 −1.78179
\(349\) 7.24565e8 0.912406 0.456203 0.889876i \(-0.349209\pi\)
0.456203 + 0.889876i \(0.349209\pi\)
\(350\) −1.83716e9 −2.29039
\(351\) 0 0
\(352\) −1.91662e7 −0.0234227
\(353\) 4.32002e8 0.522726 0.261363 0.965241i \(-0.415828\pi\)
0.261363 + 0.965241i \(0.415828\pi\)
\(354\) −3.56750e9 −4.27418
\(355\) −1.05929e8 −0.125665
\(356\) −2.23619e9 −2.62684
\(357\) −4.48804e8 −0.522057
\(358\) −1.49510e9 −1.72219
\(359\) −1.10242e9 −1.25752 −0.628761 0.777598i \(-0.716438\pi\)
−0.628761 + 0.777598i \(0.716438\pi\)
\(360\) −3.21151e9 −3.62785
\(361\) 8.20588e8 0.918015
\(362\) −1.00709e9 −1.11580
\(363\) 5.33220e8 0.585104
\(364\) 0 0
\(365\) 2.22641e9 2.39652
\(366\) −7.24869e8 −0.772816
\(367\) 1.31669e9 1.39044 0.695222 0.718796i \(-0.255306\pi\)
0.695222 + 0.718796i \(0.255306\pi\)
\(368\) −1.06067e9 −1.10947
\(369\) −2.29036e9 −2.37308
\(370\) −1.39606e9 −1.43284
\(371\) −1.35424e9 −1.37685
\(372\) 2.49392e9 2.51178
\(373\) 1.44085e9 1.43760 0.718799 0.695218i \(-0.244692\pi\)
0.718799 + 0.695218i \(0.244692\pi\)
\(374\) −4.20804e8 −0.415939
\(375\) −4.48149e8 −0.438847
\(376\) 5.74158e8 0.557024
\(377\) 0 0
\(378\) 1.25438e9 1.19456
\(379\) −1.01968e8 −0.0962111 −0.0481056 0.998842i \(-0.515318\pi\)
−0.0481056 + 0.998842i \(0.515318\pi\)
\(380\) −4.40452e9 −4.11771
\(381\) −2.42991e9 −2.25088
\(382\) −2.34232e8 −0.214993
\(383\) −1.94208e9 −1.76633 −0.883164 0.469065i \(-0.844591\pi\)
−0.883164 + 0.469065i \(0.844591\pi\)
\(384\) −2.95609e9 −2.66415
\(385\) 1.44944e9 1.29446
\(386\) −2.69374e9 −2.38397
\(387\) −5.73658e8 −0.503112
\(388\) 9.68715e8 0.841947
\(389\) 1.75657e9 1.51301 0.756506 0.653987i \(-0.226905\pi\)
0.756506 + 0.653987i \(0.226905\pi\)
\(390\) 0 0
\(391\) −3.88649e8 −0.328805
\(392\) −4.76886e8 −0.399865
\(393\) 2.17213e9 1.80514
\(394\) 1.83322e9 1.51001
\(395\) 2.14649e9 1.75242
\(396\) 2.74333e9 2.21996
\(397\) −2.22292e9 −1.78302 −0.891511 0.452998i \(-0.850354\pi\)
−0.891511 + 0.452998i \(0.850354\pi\)
\(398\) −2.52437e9 −2.00707
\(399\) 3.01807e9 2.37861
\(400\) 1.56399e9 1.22187
\(401\) −1.61957e9 −1.25428 −0.627139 0.778908i \(-0.715774\pi\)
−0.627139 + 0.778908i \(0.715774\pi\)
\(402\) −5.78885e9 −4.44428
\(403\) 0 0
\(404\) 2.75426e9 2.07812
\(405\) −8.67235e8 −0.648700
\(406\) −1.48424e9 −1.10069
\(407\) 5.98799e8 0.440251
\(408\) 1.13028e9 0.823905
\(409\) 2.57824e9 1.86334 0.931670 0.363307i \(-0.118352\pi\)
0.931670 + 0.363307i \(0.118352\pi\)
\(410\) 6.06947e9 4.34918
\(411\) 1.28566e9 0.913438
\(412\) −2.07730e9 −1.46339
\(413\) −2.52353e9 −1.76272
\(414\) 3.79517e9 2.62864
\(415\) 2.20293e9 1.51298
\(416\) 0 0
\(417\) 1.62709e9 1.09884
\(418\) 2.82978e9 1.89512
\(419\) 1.55385e9 1.03196 0.515978 0.856602i \(-0.327429\pi\)
0.515978 + 0.856602i \(0.327429\pi\)
\(420\) −7.75354e9 −5.10655
\(421\) 1.34533e9 0.878699 0.439350 0.898316i \(-0.355209\pi\)
0.439350 + 0.898316i \(0.355209\pi\)
\(422\) 3.02079e9 1.95671
\(423\) −6.94445e8 −0.446115
\(424\) 3.41056e9 2.17293
\(425\) 5.73073e8 0.362117
\(426\) −3.64055e8 −0.228157
\(427\) −5.12749e8 −0.318718
\(428\) −6.05262e8 −0.373156
\(429\) 0 0
\(430\) 1.52019e9 0.922061
\(431\) −1.60812e9 −0.967495 −0.483747 0.875208i \(-0.660725\pi\)
−0.483747 + 0.875208i \(0.660725\pi\)
\(432\) −1.06786e9 −0.637268
\(433\) −1.89392e9 −1.12112 −0.560562 0.828113i \(-0.689415\pi\)
−0.560562 + 0.828113i \(0.689415\pi\)
\(434\) 2.64243e9 1.55164
\(435\) −2.25447e9 −1.31320
\(436\) 7.43065e7 0.0429362
\(437\) 2.61355e9 1.49812
\(438\) 7.65171e9 4.35110
\(439\) 1.08620e9 0.612749 0.306375 0.951911i \(-0.400884\pi\)
0.306375 + 0.951911i \(0.400884\pi\)
\(440\) −3.65033e9 −2.04290
\(441\) 5.76794e8 0.320248
\(442\) 0 0
\(443\) −2.67935e9 −1.46425 −0.732127 0.681168i \(-0.761472\pi\)
−0.732127 + 0.681168i \(0.761472\pi\)
\(444\) −3.20317e9 −1.73676
\(445\) −3.59890e9 −1.93602
\(446\) 2.55214e9 1.36217
\(447\) 1.18291e9 0.626434
\(448\) −2.05494e9 −1.07976
\(449\) 2.77150e9 1.44495 0.722474 0.691398i \(-0.243005\pi\)
0.722474 + 0.691398i \(0.243005\pi\)
\(450\) −5.59608e9 −2.89495
\(451\) −2.60332e9 −1.33632
\(452\) 1.07853e9 0.549350
\(453\) 2.56594e9 1.29689
\(454\) 6.80797e9 3.41446
\(455\) 0 0
\(456\) −7.60081e9 −3.75390
\(457\) −1.88973e9 −0.926177 −0.463088 0.886312i \(-0.653259\pi\)
−0.463088 + 0.886312i \(0.653259\pi\)
\(458\) 1.62372e9 0.789738
\(459\) −3.91284e8 −0.188863
\(460\) −6.71431e9 −3.21624
\(461\) −7.18617e8 −0.341621 −0.170810 0.985304i \(-0.554639\pi\)
−0.170810 + 0.985304i \(0.554639\pi\)
\(462\) 4.98144e9 2.35022
\(463\) 3.35895e8 0.157279 0.0786393 0.996903i \(-0.474942\pi\)
0.0786393 + 0.996903i \(0.474942\pi\)
\(464\) 1.26355e9 0.587190
\(465\) 4.01369e9 1.85122
\(466\) 2.98018e8 0.136424
\(467\) 1.62006e8 0.0736076 0.0368038 0.999323i \(-0.488282\pi\)
0.0368038 + 0.999323i \(0.488282\pi\)
\(468\) 0 0
\(469\) −4.09485e9 −1.83287
\(470\) 1.84028e9 0.817601
\(471\) 1.19056e9 0.525021
\(472\) 6.35536e9 2.78191
\(473\) −6.52044e8 −0.283311
\(474\) 7.37704e9 3.18169
\(475\) −3.85374e9 −1.64989
\(476\) 1.59230e9 0.676705
\(477\) −4.12508e9 −1.74028
\(478\) 3.16953e9 1.32738
\(479\) −1.87256e9 −0.778505 −0.389253 0.921131i \(-0.627267\pi\)
−0.389253 + 0.921131i \(0.627267\pi\)
\(480\) 1.65004e8 0.0681007
\(481\) 0 0
\(482\) 2.54273e9 1.03427
\(483\) 4.60079e9 1.85788
\(484\) −1.89179e9 −0.758428
\(485\) 1.55904e9 0.620528
\(486\) −5.70779e9 −2.25549
\(487\) −2.79396e9 −1.09615 −0.548073 0.836431i \(-0.684638\pi\)
−0.548073 + 0.836431i \(0.684638\pi\)
\(488\) 1.29133e9 0.502998
\(489\) −5.25246e9 −2.03133
\(490\) −1.52851e9 −0.586923
\(491\) −1.87416e8 −0.0714532 −0.0357266 0.999362i \(-0.511375\pi\)
−0.0357266 + 0.999362i \(0.511375\pi\)
\(492\) 1.39260e10 5.27168
\(493\) 4.62986e8 0.174022
\(494\) 0 0
\(495\) 4.41508e9 1.63614
\(496\) −2.24952e9 −0.827761
\(497\) −2.57521e8 −0.0940946
\(498\) 7.57101e9 2.74695
\(499\) 3.05663e9 1.10126 0.550631 0.834749i \(-0.314387\pi\)
0.550631 + 0.834749i \(0.314387\pi\)
\(500\) 1.58997e9 0.568845
\(501\) 7.09867e9 2.52200
\(502\) 2.82784e9 0.997682
\(503\) −1.10435e9 −0.386916 −0.193458 0.981109i \(-0.561970\pi\)
−0.193458 + 0.981109i \(0.561970\pi\)
\(504\) −7.80740e9 −2.71644
\(505\) 4.43268e9 1.53160
\(506\) 4.31376e9 1.48023
\(507\) 0 0
\(508\) 8.62098e9 2.91765
\(509\) 2.84435e8 0.0956029 0.0478014 0.998857i \(-0.484779\pi\)
0.0478014 + 0.998857i \(0.484779\pi\)
\(510\) 3.62276e9 1.20933
\(511\) 5.41257e9 1.79444
\(512\) 5.35633e9 1.76369
\(513\) 2.63126e9 0.860505
\(514\) −4.88388e9 −1.58633
\(515\) −3.34318e9 −1.07854
\(516\) 3.48799e9 1.11764
\(517\) −7.89335e8 −0.251214
\(518\) −3.39392e9 −1.07287
\(519\) −4.03827e8 −0.126797
\(520\) 0 0
\(521\) −6.21830e8 −0.192637 −0.0963184 0.995351i \(-0.530707\pi\)
−0.0963184 + 0.995351i \(0.530707\pi\)
\(522\) −4.52108e9 −1.39122
\(523\) −1.32430e9 −0.404790 −0.202395 0.979304i \(-0.564873\pi\)
−0.202395 + 0.979304i \(0.564873\pi\)
\(524\) −7.70641e9 −2.33988
\(525\) −6.78398e9 −2.04610
\(526\) −3.75821e9 −1.12598
\(527\) −8.24266e8 −0.245318
\(528\) −4.24074e9 −1.25378
\(529\) 5.79302e8 0.170141
\(530\) 1.09315e10 3.18943
\(531\) −7.68681e9 −2.22800
\(532\) −1.07077e10 −3.08323
\(533\) 0 0
\(534\) −1.23687e10 −3.51503
\(535\) −9.74103e8 −0.275022
\(536\) 1.03126e10 2.89262
\(537\) −5.52089e9 −1.53850
\(538\) 5.70684e9 1.58000
\(539\) 6.55609e8 0.180337
\(540\) −6.75982e9 −1.84738
\(541\) 2.63957e9 0.716708 0.358354 0.933586i \(-0.383338\pi\)
0.358354 + 0.933586i \(0.383338\pi\)
\(542\) −1.24504e9 −0.335881
\(543\) −3.71883e9 −0.996797
\(544\) −3.38859e7 −0.00902449
\(545\) 1.19588e8 0.0316447
\(546\) 0 0
\(547\) −3.91983e9 −1.02403 −0.512013 0.858977i \(-0.671100\pi\)
−0.512013 + 0.858977i \(0.671100\pi\)
\(548\) −4.56134e9 −1.18402
\(549\) −1.56186e9 −0.402846
\(550\) −6.36075e9 −1.63019
\(551\) −3.11344e9 −0.792885
\(552\) −1.15868e10 −2.93208
\(553\) 5.21828e9 1.31217
\(554\) −4.42938e9 −1.10677
\(555\) −5.15515e9 −1.28002
\(556\) −5.77269e9 −1.42435
\(557\) 4.28372e9 1.05034 0.525168 0.850999i \(-0.324003\pi\)
0.525168 + 0.850999i \(0.324003\pi\)
\(558\) 8.04899e9 1.96120
\(559\) 0 0
\(560\) 6.99373e9 1.68287
\(561\) −1.55388e9 −0.371576
\(562\) 1.30945e8 0.0311180
\(563\) −7.15933e9 −1.69080 −0.845402 0.534131i \(-0.820639\pi\)
−0.845402 + 0.534131i \(0.820639\pi\)
\(564\) 4.22241e9 0.991022
\(565\) 1.73578e9 0.404879
\(566\) −3.17999e9 −0.737171
\(567\) −2.10831e9 −0.485729
\(568\) 6.48549e8 0.148499
\(569\) −5.31555e9 −1.20964 −0.604818 0.796364i \(-0.706754\pi\)
−0.604818 + 0.796364i \(0.706754\pi\)
\(570\) −2.43620e10 −5.50999
\(571\) −1.41625e9 −0.318356 −0.159178 0.987250i \(-0.550884\pi\)
−0.159178 + 0.987250i \(0.550884\pi\)
\(572\) 0 0
\(573\) −8.64938e8 −0.192063
\(574\) 1.47553e10 3.25654
\(575\) −5.87470e9 −1.28869
\(576\) −6.25945e9 −1.36476
\(577\) 3.09413e9 0.670538 0.335269 0.942123i \(-0.391173\pi\)
0.335269 + 0.942123i \(0.391173\pi\)
\(578\) 7.30839e9 1.57425
\(579\) −9.94703e9 −2.12970
\(580\) 7.99856e9 1.70221
\(581\) 5.35549e9 1.13288
\(582\) 5.35809e9 1.12663
\(583\) −4.68874e9 −0.979978
\(584\) −1.36312e10 −2.83197
\(585\) 0 0
\(586\) 6.92853e9 1.42233
\(587\) 5.10437e8 0.104162 0.0520809 0.998643i \(-0.483415\pi\)
0.0520809 + 0.998643i \(0.483415\pi\)
\(588\) −3.50706e9 −0.711415
\(589\) 5.54293e9 1.11773
\(590\) 2.03701e10 4.08329
\(591\) 6.76945e9 1.34895
\(592\) 2.88927e9 0.572351
\(593\) 6.99937e9 1.37838 0.689188 0.724583i \(-0.257968\pi\)
0.689188 + 0.724583i \(0.257968\pi\)
\(594\) 4.34300e9 0.850231
\(595\) 2.56263e9 0.498742
\(596\) −4.19680e9 −0.812002
\(597\) −9.32162e9 −1.79300
\(598\) 0 0
\(599\) 1.10847e9 0.210733 0.105366 0.994433i \(-0.466398\pi\)
0.105366 + 0.994433i \(0.466398\pi\)
\(600\) 1.70850e10 3.22914
\(601\) −3.46969e9 −0.651973 −0.325987 0.945374i \(-0.605696\pi\)
−0.325987 + 0.945374i \(0.605696\pi\)
\(602\) 3.69570e9 0.690414
\(603\) −1.24731e10 −2.31667
\(604\) −9.10361e9 −1.68106
\(605\) −3.04463e9 −0.558973
\(606\) 1.52342e10 2.78077
\(607\) −8.78548e9 −1.59443 −0.797215 0.603696i \(-0.793694\pi\)
−0.797215 + 0.603696i \(0.793694\pi\)
\(608\) 2.27872e8 0.0411177
\(609\) −5.48079e9 −0.983291
\(610\) 4.13893e9 0.738302
\(611\) 0 0
\(612\) 4.85022e9 0.855325
\(613\) −1.72321e9 −0.302152 −0.151076 0.988522i \(-0.548274\pi\)
−0.151076 + 0.988522i \(0.548274\pi\)
\(614\) 1.33425e9 0.232620
\(615\) 2.24124e10 3.88531
\(616\) −8.87423e9 −1.52967
\(617\) −3.95049e9 −0.677101 −0.338550 0.940948i \(-0.609937\pi\)
−0.338550 + 0.940948i \(0.609937\pi\)
\(618\) −1.14898e10 −1.95818
\(619\) −3.95281e9 −0.669866 −0.334933 0.942242i \(-0.608714\pi\)
−0.334933 + 0.942242i \(0.608714\pi\)
\(620\) −1.42400e10 −2.39961
\(621\) 4.01114e9 0.672120
\(622\) 1.37077e10 2.28400
\(623\) −8.74919e9 −1.44964
\(624\) 0 0
\(625\) −4.71237e9 −0.772074
\(626\) −1.65186e10 −2.69130
\(627\) 1.04494e10 1.69299
\(628\) −4.22393e9 −0.680547
\(629\) 1.05868e9 0.169624
\(630\) −2.50241e10 −3.98719
\(631\) −6.84671e9 −1.08487 −0.542437 0.840097i \(-0.682498\pi\)
−0.542437 + 0.840097i \(0.682498\pi\)
\(632\) −1.31419e10 −2.07085
\(633\) 1.11547e10 1.74802
\(634\) −1.94550e10 −3.03193
\(635\) 1.38745e10 2.15035
\(636\) 2.50816e10 3.86594
\(637\) 0 0
\(638\) −5.13885e9 −0.783419
\(639\) −7.84421e8 −0.118931
\(640\) 1.68790e10 2.54517
\(641\) 3.12250e9 0.468273 0.234136 0.972204i \(-0.424774\pi\)
0.234136 + 0.972204i \(0.424774\pi\)
\(642\) −3.34779e9 −0.499327
\(643\) 8.57775e9 1.27243 0.636216 0.771511i \(-0.280499\pi\)
0.636216 + 0.771511i \(0.280499\pi\)
\(644\) −1.63230e10 −2.40823
\(645\) 5.61354e9 0.823717
\(646\) 5.00307e9 0.730167
\(647\) 8.70898e9 1.26416 0.632080 0.774903i \(-0.282201\pi\)
0.632080 + 0.774903i \(0.282201\pi\)
\(648\) 5.30965e9 0.766572
\(649\) −8.73716e9 −1.25462
\(650\) 0 0
\(651\) 9.75757e9 1.38614
\(652\) 1.86350e10 2.63307
\(653\) −9.71192e9 −1.36493 −0.682463 0.730920i \(-0.739091\pi\)
−0.682463 + 0.730920i \(0.739091\pi\)
\(654\) 4.10999e8 0.0574538
\(655\) −1.24026e10 −1.72452
\(656\) −1.25613e10 −1.73729
\(657\) 1.64870e10 2.26810
\(658\) 4.47385e9 0.612197
\(659\) 3.34780e9 0.455680 0.227840 0.973699i \(-0.426834\pi\)
0.227840 + 0.973699i \(0.426834\pi\)
\(660\) −2.68449e10 −3.63461
\(661\) −8.98798e9 −1.21048 −0.605239 0.796044i \(-0.706922\pi\)
−0.605239 + 0.796044i \(0.706922\pi\)
\(662\) −2.87142e9 −0.384675
\(663\) 0 0
\(664\) −1.34874e10 −1.78789
\(665\) −1.72329e10 −2.27239
\(666\) −1.03381e10 −1.35606
\(667\) −4.74618e9 −0.619303
\(668\) −2.51851e10 −3.26909
\(669\) 9.42414e9 1.21689
\(670\) 3.30538e10 4.24580
\(671\) −1.77528e9 −0.226849
\(672\) 4.01138e8 0.0509919
\(673\) −1.90573e9 −0.240995 −0.120498 0.992714i \(-0.538449\pi\)
−0.120498 + 0.992714i \(0.538449\pi\)
\(674\) −1.02519e10 −1.28971
\(675\) −5.91452e9 −0.740213
\(676\) 0 0
\(677\) 1.10831e10 1.37278 0.686388 0.727236i \(-0.259195\pi\)
0.686388 + 0.727236i \(0.259195\pi\)
\(678\) 5.96552e9 0.735096
\(679\) 3.79014e9 0.464634
\(680\) −6.45381e9 −0.787109
\(681\) 2.51394e10 3.05029
\(682\) 9.14882e9 1.10438
\(683\) 5.53250e9 0.664429 0.332215 0.943204i \(-0.392204\pi\)
0.332215 + 0.943204i \(0.392204\pi\)
\(684\) −3.26162e10 −3.89706
\(685\) −7.34098e9 −0.872644
\(686\) 1.25401e10 1.48309
\(687\) 5.99584e9 0.705507
\(688\) −3.14618e9 −0.368319
\(689\) 0 0
\(690\) −3.71378e10 −4.30372
\(691\) 9.96854e9 1.14937 0.574683 0.818376i \(-0.305125\pi\)
0.574683 + 0.818376i \(0.305125\pi\)
\(692\) 1.43272e9 0.164358
\(693\) 1.07334e10 1.22510
\(694\) −1.32298e9 −0.150243
\(695\) −9.29051e9 −1.04977
\(696\) 1.38030e10 1.55182
\(697\) −4.60269e9 −0.514869
\(698\) −1.42187e10 −1.58258
\(699\) 1.10048e9 0.121874
\(700\) 2.40687e10 2.65221
\(701\) 1.56464e9 0.171554 0.0857769 0.996314i \(-0.472663\pi\)
0.0857769 + 0.996314i \(0.472663\pi\)
\(702\) 0 0
\(703\) −7.11930e9 −0.772847
\(704\) −7.11475e9 −0.768520
\(705\) 6.79550e9 0.730398
\(706\) −8.47749e9 −0.906673
\(707\) 1.07762e10 1.14682
\(708\) 4.67379e10 4.94940
\(709\) −4.49879e9 −0.474061 −0.237031 0.971502i \(-0.576174\pi\)
−0.237031 + 0.971502i \(0.576174\pi\)
\(710\) 2.07872e9 0.217967
\(711\) 1.58951e10 1.65852
\(712\) 2.20343e10 2.28780
\(713\) 8.44973e9 0.873030
\(714\) 8.80721e9 0.905512
\(715\) 0 0
\(716\) 1.95874e10 1.99425
\(717\) 1.17039e10 1.18581
\(718\) 2.16336e10 2.18118
\(719\) −1.28814e9 −0.129245 −0.0646223 0.997910i \(-0.520584\pi\)
−0.0646223 + 0.997910i \(0.520584\pi\)
\(720\) 2.13033e10 2.12707
\(721\) −8.12753e9 −0.807579
\(722\) −1.61030e10 −1.59231
\(723\) 9.38940e9 0.923962
\(724\) 1.31939e10 1.29208
\(725\) 6.99836e9 0.682046
\(726\) −1.04638e10 −1.01487
\(727\) 1.64110e9 0.158403 0.0792017 0.996859i \(-0.474763\pi\)
0.0792017 + 0.996859i \(0.474763\pi\)
\(728\) 0 0
\(729\) −1.64929e10 −1.57671
\(730\) −4.36905e10 −4.15678
\(731\) −1.15282e9 −0.109157
\(732\) 9.49653e9 0.894903
\(733\) 6.09340e9 0.571473 0.285737 0.958308i \(-0.407762\pi\)
0.285737 + 0.958308i \(0.407762\pi\)
\(734\) −2.58384e10 −2.41174
\(735\) −5.64424e9 −0.524324
\(736\) 3.47372e8 0.0321161
\(737\) −1.41775e10 −1.30456
\(738\) 4.49455e10 4.11613
\(739\) −1.10220e10 −1.00462 −0.502311 0.864687i \(-0.667517\pi\)
−0.502311 + 0.864687i \(0.667517\pi\)
\(740\) 1.82898e10 1.65919
\(741\) 0 0
\(742\) 2.65752e10 2.38816
\(743\) 1.44250e9 0.129020 0.0645098 0.997917i \(-0.479452\pi\)
0.0645098 + 0.997917i \(0.479452\pi\)
\(744\) −2.45738e10 −2.18760
\(745\) −6.75430e9 −0.598457
\(746\) −2.82748e10 −2.49353
\(747\) 1.63131e10 1.43190
\(748\) 5.51296e9 0.481648
\(749\) −2.36812e9 −0.205929
\(750\) 8.79435e9 0.761183
\(751\) −4.23430e9 −0.364789 −0.182395 0.983225i \(-0.558385\pi\)
−0.182395 + 0.983225i \(0.558385\pi\)
\(752\) −3.80863e9 −0.326593
\(753\) 1.04422e10 0.891273
\(754\) 0 0
\(755\) −1.46513e10 −1.23897
\(756\) −1.64336e10 −1.38327
\(757\) −4.85119e9 −0.406456 −0.203228 0.979131i \(-0.565143\pi\)
−0.203228 + 0.979131i \(0.565143\pi\)
\(758\) 2.00099e9 0.166879
\(759\) 1.59292e10 1.32235
\(760\) 4.33999e10 3.58625
\(761\) −1.68175e10 −1.38329 −0.691647 0.722236i \(-0.743115\pi\)
−0.691647 + 0.722236i \(0.743115\pi\)
\(762\) 4.76838e10 3.90417
\(763\) 2.90727e8 0.0236946
\(764\) 3.06868e9 0.248958
\(765\) 7.80589e9 0.630387
\(766\) 3.81108e10 3.06371
\(767\) 0 0
\(768\) 3.90608e10 3.11155
\(769\) −1.62454e9 −0.128821 −0.0644107 0.997923i \(-0.520517\pi\)
−0.0644107 + 0.997923i \(0.520517\pi\)
\(770\) −2.84435e10 −2.24525
\(771\) −1.80345e10 −1.41714
\(772\) 3.52907e10 2.76058
\(773\) 2.06113e10 1.60501 0.802503 0.596648i \(-0.203501\pi\)
0.802503 + 0.596648i \(0.203501\pi\)
\(774\) 1.12573e10 0.872652
\(775\) −1.24593e10 −0.961478
\(776\) −9.54523e9 −0.733281
\(777\) −1.25325e10 −0.958442
\(778\) −3.44705e10 −2.62433
\(779\) 3.09517e10 2.34587
\(780\) 0 0
\(781\) −8.91607e8 −0.0669722
\(782\) 7.62674e9 0.570316
\(783\) −4.77835e9 −0.355723
\(784\) 3.16339e9 0.234448
\(785\) −6.79795e9 −0.501573
\(786\) −4.26252e10 −3.13103
\(787\) 7.97469e9 0.583179 0.291590 0.956543i \(-0.405816\pi\)
0.291590 + 0.956543i \(0.405816\pi\)
\(788\) −2.40171e10 −1.74855
\(789\) −1.38777e10 −1.00589
\(790\) −4.21222e10 −3.03960
\(791\) 4.21981e9 0.303162
\(792\) −2.70314e10 −1.93344
\(793\) 0 0
\(794\) 4.36220e10 3.09267
\(795\) 4.03661e10 2.84926
\(796\) 3.30719e10 2.32414
\(797\) −2.05018e10 −1.43446 −0.717228 0.696839i \(-0.754589\pi\)
−0.717228 + 0.696839i \(0.754589\pi\)
\(798\) −5.92258e10 −4.12573
\(799\) −1.39555e9 −0.0967902
\(800\) −5.12209e8 −0.0353698
\(801\) −2.66505e10 −1.83228
\(802\) 3.17819e10 2.17556
\(803\) 1.87398e10 1.27720
\(804\) 7.58399e10 5.14638
\(805\) −2.62700e10 −1.77491
\(806\) 0 0
\(807\) 2.10734e10 1.41149
\(808\) −2.71391e10 −1.80990
\(809\) −1.78384e10 −1.18450 −0.592252 0.805753i \(-0.701761\pi\)
−0.592252 + 0.805753i \(0.701761\pi\)
\(810\) 1.70184e10 1.12518
\(811\) −1.20810e10 −0.795297 −0.397649 0.917538i \(-0.630174\pi\)
−0.397649 + 0.917538i \(0.630174\pi\)
\(812\) 1.94451e10 1.27457
\(813\) −4.59750e9 −0.300057
\(814\) −1.17507e10 −0.763620
\(815\) 2.99910e10 1.94062
\(816\) −7.49765e9 −0.483069
\(817\) 7.75235e9 0.497343
\(818\) −5.05947e10 −3.23198
\(819\) 0 0
\(820\) −7.95162e10 −5.03625
\(821\) 2.10707e10 1.32886 0.664428 0.747352i \(-0.268675\pi\)
0.664428 + 0.747352i \(0.268675\pi\)
\(822\) −2.52294e10 −1.58437
\(823\) 4.97330e9 0.310989 0.155494 0.987837i \(-0.450303\pi\)
0.155494 + 0.987837i \(0.450303\pi\)
\(824\) 2.04687e10 1.27451
\(825\) −2.34880e10 −1.45632
\(826\) 4.95211e10 3.05746
\(827\) −4.23151e9 −0.260151 −0.130076 0.991504i \(-0.541522\pi\)
−0.130076 + 0.991504i \(0.541522\pi\)
\(828\) −4.97206e10 −3.04390
\(829\) 1.94458e10 1.18546 0.592729 0.805402i \(-0.298051\pi\)
0.592729 + 0.805402i \(0.298051\pi\)
\(830\) −4.32297e10 −2.62427
\(831\) −1.63561e10 −0.988729
\(832\) 0 0
\(833\) 1.15912e9 0.0694818
\(834\) −3.19295e10 −1.90595
\(835\) −4.05327e10 −2.40937
\(836\) −3.70730e10 −2.19450
\(837\) 8.50701e9 0.501462
\(838\) −3.04924e10 −1.78994
\(839\) −1.48186e9 −0.0866244 −0.0433122 0.999062i \(-0.513791\pi\)
−0.0433122 + 0.999062i \(0.513791\pi\)
\(840\) 7.63995e10 4.44747
\(841\) −1.15959e10 −0.672231
\(842\) −2.64003e10 −1.52411
\(843\) 4.83533e8 0.0277990
\(844\) −3.95754e10 −2.26583
\(845\) 0 0
\(846\) 1.36276e10 0.773790
\(847\) −7.40172e9 −0.418544
\(848\) −2.26237e10 −1.27403
\(849\) −1.17426e10 −0.658547
\(850\) −1.12458e10 −0.628095
\(851\) −1.08528e10 −0.603652
\(852\) 4.76949e9 0.264200
\(853\) 5.95360e9 0.328442 0.164221 0.986424i \(-0.447489\pi\)
0.164221 + 0.986424i \(0.447489\pi\)
\(854\) 1.00620e10 0.552820
\(855\) −5.24923e10 −2.87219
\(856\) 5.96395e9 0.324994
\(857\) −8.37353e9 −0.454439 −0.227220 0.973844i \(-0.572963\pi\)
−0.227220 + 0.973844i \(0.572963\pi\)
\(858\) 0 0
\(859\) −2.14894e10 −1.15677 −0.578386 0.815763i \(-0.696317\pi\)
−0.578386 + 0.815763i \(0.696317\pi\)
\(860\) −1.99161e10 −1.06773
\(861\) 5.44862e10 2.90921
\(862\) 3.15574e10 1.67813
\(863\) 9.93195e9 0.526013 0.263007 0.964794i \(-0.415286\pi\)
0.263007 + 0.964794i \(0.415286\pi\)
\(864\) 3.49727e8 0.0184472
\(865\) 2.30581e9 0.121134
\(866\) 3.71657e10 1.94460
\(867\) 2.69873e10 1.40635
\(868\) −3.46185e10 −1.79676
\(869\) 1.80671e10 0.933940
\(870\) 4.42412e10 2.27777
\(871\) 0 0
\(872\) −7.32179e8 −0.0373946
\(873\) 1.15450e10 0.587277
\(874\) −5.12875e10 −2.59849
\(875\) 6.22084e9 0.313921
\(876\) −1.00245e11 −5.03847
\(877\) −3.23745e10 −1.62071 −0.810355 0.585940i \(-0.800725\pi\)
−0.810355 + 0.585940i \(0.800725\pi\)
\(878\) −2.13152e10 −1.06282
\(879\) 2.55846e10 1.27063
\(880\) 2.42142e10 1.19779
\(881\) 6.00548e9 0.295891 0.147946 0.988995i \(-0.452734\pi\)
0.147946 + 0.988995i \(0.452734\pi\)
\(882\) −1.13189e10 −0.555473
\(883\) −2.76852e9 −0.135327 −0.0676636 0.997708i \(-0.521554\pi\)
−0.0676636 + 0.997708i \(0.521554\pi\)
\(884\) 0 0
\(885\) 7.52195e10 3.64778
\(886\) 5.25788e10 2.53976
\(887\) 3.08999e10 1.48670 0.743351 0.668902i \(-0.233235\pi\)
0.743351 + 0.668902i \(0.233235\pi\)
\(888\) 3.15624e10 1.51260
\(889\) 3.37300e10 1.61013
\(890\) 7.06239e10 3.35804
\(891\) −7.29955e9 −0.345720
\(892\) −3.34356e10 −1.57736
\(893\) 9.38464e9 0.440999
\(894\) −2.32131e10 −1.08656
\(895\) 3.15237e10 1.46980
\(896\) 4.10341e10 1.90575
\(897\) 0 0
\(898\) −5.43871e10 −2.50627
\(899\) −1.00659e10 −0.462056
\(900\) 7.33144e10 3.35228
\(901\) −8.28972e9 −0.377575
\(902\) 5.10869e10 2.31786
\(903\) 1.36469e10 0.616777
\(904\) −1.06273e10 −0.478448
\(905\) 2.12341e10 0.952280
\(906\) −5.03533e10 −2.24946
\(907\) 2.63801e10 1.17395 0.586977 0.809604i \(-0.300318\pi\)
0.586977 + 0.809604i \(0.300318\pi\)
\(908\) −8.91913e10 −3.95387
\(909\) 3.28247e10 1.44953
\(910\) 0 0
\(911\) 9.42968e9 0.413221 0.206611 0.978423i \(-0.433757\pi\)
0.206611 + 0.978423i \(0.433757\pi\)
\(912\) 5.04194e10 2.20098
\(913\) 1.85422e10 0.806329
\(914\) 3.70836e10 1.60646
\(915\) 1.52836e10 0.659557
\(916\) −2.12724e10 −0.914498
\(917\) −3.01517e10 −1.29128
\(918\) 7.67844e9 0.327585
\(919\) 3.27533e10 1.39204 0.696019 0.718023i \(-0.254953\pi\)
0.696019 + 0.718023i \(0.254953\pi\)
\(920\) 6.61594e10 2.80114
\(921\) 4.92691e9 0.207810
\(922\) 1.41019e10 0.592544
\(923\) 0 0
\(924\) −6.52619e10 −2.72150
\(925\) 1.60027e10 0.664809
\(926\) −6.59151e9 −0.272801
\(927\) −2.47569e10 −1.02074
\(928\) −4.13814e8 −0.0169976
\(929\) −2.49414e10 −1.02062 −0.510312 0.859989i \(-0.670470\pi\)
−0.510312 + 0.859989i \(0.670470\pi\)
\(930\) −7.87636e10 −3.21096
\(931\) −7.79473e9 −0.316576
\(932\) −3.90434e9 −0.157976
\(933\) 5.06175e10 2.04040
\(934\) −3.17917e9 −0.127673
\(935\) 8.87251e9 0.354982
\(936\) 0 0
\(937\) −1.59590e10 −0.633750 −0.316875 0.948467i \(-0.602634\pi\)
−0.316875 + 0.948467i \(0.602634\pi\)
\(938\) 8.03562e10 3.17914
\(939\) −6.09972e10 −2.40425
\(940\) −2.41095e10 −0.946763
\(941\) −2.91329e8 −0.0113978 −0.00569888 0.999984i \(-0.501814\pi\)
−0.00569888 + 0.999984i \(0.501814\pi\)
\(942\) −2.33631e10 −0.910653
\(943\) 4.71832e10 1.83230
\(944\) −4.21577e10 −1.63108
\(945\) −2.64481e10 −1.01949
\(946\) 1.27955e10 0.491405
\(947\) −1.58421e10 −0.606160 −0.303080 0.952965i \(-0.598015\pi\)
−0.303080 + 0.952965i \(0.598015\pi\)
\(948\) −9.66467e10 −3.68432
\(949\) 0 0
\(950\) 7.56248e10 2.86175
\(951\) −7.18405e10 −2.70856
\(952\) −1.56897e10 −0.589366
\(953\) 4.30011e10 1.60937 0.804683 0.593705i \(-0.202335\pi\)
0.804683 + 0.593705i \(0.202335\pi\)
\(954\) 8.09495e10 3.01853
\(955\) 4.93871e9 0.183486
\(956\) −4.15240e10 −1.53708
\(957\) −1.89760e10 −0.699862
\(958\) 3.67466e10 1.35032
\(959\) −1.78465e10 −0.653412
\(960\) 6.12519e10 2.23445
\(961\) −9.59202e9 −0.348641
\(962\) 0 0
\(963\) −7.21341e9 −0.260285
\(964\) −3.33123e10 −1.19767
\(965\) 5.67966e10 2.03459
\(966\) −9.02846e10 −3.22251
\(967\) −4.06842e10 −1.44688 −0.723441 0.690386i \(-0.757441\pi\)
−0.723441 + 0.690386i \(0.757441\pi\)
\(968\) 1.86408e10 0.660541
\(969\) 1.84746e10 0.652290
\(970\) −3.05942e10 −1.07631
\(971\) 5.95290e9 0.208671 0.104335 0.994542i \(-0.466729\pi\)
0.104335 + 0.994542i \(0.466729\pi\)
\(972\) 7.47779e10 2.61181
\(973\) −2.25859e10 −0.786036
\(974\) 5.48279e10 1.90128
\(975\) 0 0
\(976\) −8.56590e9 −0.294916
\(977\) 8.40433e9 0.288318 0.144159 0.989555i \(-0.453952\pi\)
0.144159 + 0.989555i \(0.453952\pi\)
\(978\) 1.03073e11 3.52337
\(979\) −3.02921e10 −1.03179
\(980\) 2.00250e10 0.679643
\(981\) 8.85571e8 0.0299490
\(982\) 3.67780e9 0.123936
\(983\) −3.76311e10 −1.26360 −0.631799 0.775132i \(-0.717683\pi\)
−0.631799 + 0.775132i \(0.717683\pi\)
\(984\) −1.37220e11 −4.59129
\(985\) −3.86529e10 −1.28871
\(986\) −9.08552e9 −0.301843
\(987\) 1.65204e10 0.546902
\(988\) 0 0
\(989\) 1.18178e10 0.388462
\(990\) −8.66404e10 −2.83790
\(991\) 4.38732e10 1.43199 0.715997 0.698103i \(-0.245972\pi\)
0.715997 + 0.698103i \(0.245972\pi\)
\(992\) 7.36723e8 0.0239615
\(993\) −1.06031e10 −0.343647
\(994\) 5.05352e9 0.163208
\(995\) 5.32255e10 1.71293
\(996\) −9.91879e10 −3.18091
\(997\) 2.15416e10 0.688408 0.344204 0.938895i \(-0.388149\pi\)
0.344204 + 0.938895i \(0.388149\pi\)
\(998\) −5.99824e10 −1.91015
\(999\) −1.09263e10 −0.346733
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.8.a.h.1.3 21
13.5 odd 4 169.8.b.f.168.38 42
13.8 odd 4 169.8.b.f.168.5 42
13.12 even 2 169.8.a.i.1.19 yes 21
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.8.a.h.1.3 21 1.1 even 1 trivial
169.8.a.i.1.19 yes 21 13.12 even 2
169.8.b.f.168.5 42 13.8 odd 4
169.8.b.f.168.38 42 13.5 odd 4