Properties

Label 169.8.a.g.1.7
Level $169$
Weight $8$
Character 169.1
Self dual yes
Analytic conductor $52.793$
Analytic rank $1$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,8,Mod(1,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.7930693068\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 1279 x^{12} + 629380 x^{10} - 148562016 x^{8} + 16872573312 x^{6} - 790180980480 x^{4} + \cdots - 4669637050368 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{13}\cdot 3^{3}\cdot 13^{6} \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-0.679146\) of defining polynomial
Character \(\chi\) \(=\) 169.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.679146 q^{2} +62.4534 q^{3} -127.539 q^{4} -439.155 q^{5} -42.4150 q^{6} +1302.66 q^{7} +173.548 q^{8} +1713.42 q^{9} +298.251 q^{10} +574.818 q^{11} -7965.23 q^{12} -884.695 q^{14} -27426.7 q^{15} +16207.1 q^{16} -11268.5 q^{17} -1163.66 q^{18} +41049.5 q^{19} +56009.3 q^{20} +81355.4 q^{21} -390.385 q^{22} -44265.7 q^{23} +10838.7 q^{24} +114732. q^{25} -29576.4 q^{27} -166139. q^{28} -145512. q^{29} +18626.8 q^{30} -122045. q^{31} -33221.1 q^{32} +35899.3 q^{33} +7652.99 q^{34} -572069. q^{35} -218528. q^{36} +42002.0 q^{37} -27878.6 q^{38} -76214.6 q^{40} +87690.6 q^{41} -55252.2 q^{42} -749752. q^{43} -73311.5 q^{44} -752459. q^{45} +30062.9 q^{46} -940126. q^{47} +1.01219e6 q^{48} +873376. q^{49} -77920.0 q^{50} -703759. q^{51} -924214. q^{53} +20086.7 q^{54} -252434. q^{55} +226074. q^{56} +2.56368e6 q^{57} +98824.0 q^{58} -632344. q^{59} +3.49797e6 q^{60} -64406.5 q^{61} +82886.6 q^{62} +2.23201e6 q^{63} -2.05195e6 q^{64} -24380.9 q^{66} +1.94403e6 q^{67} +1.43718e6 q^{68} -2.76454e6 q^{69} +388519. q^{70} -4.72403e6 q^{71} +297361. q^{72} +1.92731e6 q^{73} -28525.5 q^{74} +7.16542e6 q^{75} -5.23540e6 q^{76} +748791. q^{77} -1.50287e6 q^{79} -7.11743e6 q^{80} -5.59441e6 q^{81} -59554.7 q^{82} +1.87974e6 q^{83} -1.03760e7 q^{84} +4.94864e6 q^{85} +509191. q^{86} -9.08772e6 q^{87} +99758.5 q^{88} +4.37470e6 q^{89} +511030. q^{90} +5.64559e6 q^{92} -7.62215e6 q^{93} +638483. q^{94} -1.80271e7 q^{95} -2.07477e6 q^{96} -1.77364e6 q^{97} -593150. q^{98} +984906. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 52 q^{3} + 766 q^{4} + 6982 q^{9} - 1018 q^{10} - 38380 q^{12} - 47916 q^{14} + 1266 q^{16} - 76806 q^{17} + 251764 q^{22} - 137100 q^{23} - 39380 q^{25} - 432400 q^{27} - 443166 q^{29} - 315780 q^{30}+ \cdots - 86840772 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.679146 −0.0600286 −0.0300143 0.999549i \(-0.509555\pi\)
−0.0300143 + 0.999549i \(0.509555\pi\)
\(3\) 62.4534 1.33546 0.667731 0.744403i \(-0.267266\pi\)
0.667731 + 0.744403i \(0.267266\pi\)
\(4\) −127.539 −0.996397
\(5\) −439.155 −1.57117 −0.785585 0.618754i \(-0.787638\pi\)
−0.785585 + 0.618754i \(0.787638\pi\)
\(6\) −42.4150 −0.0801659
\(7\) 1302.66 1.43545 0.717724 0.696328i \(-0.245184\pi\)
0.717724 + 0.696328i \(0.245184\pi\)
\(8\) 173.548 0.119841
\(9\) 1713.42 0.783459
\(10\) 298.251 0.0943151
\(11\) 574.818 0.130213 0.0651067 0.997878i \(-0.479261\pi\)
0.0651067 + 0.997878i \(0.479261\pi\)
\(12\) −7965.23 −1.33065
\(13\) 0 0
\(14\) −884.695 −0.0861679
\(15\) −27426.7 −2.09824
\(16\) 16207.1 0.989203
\(17\) −11268.5 −0.556284 −0.278142 0.960540i \(-0.589719\pi\)
−0.278142 + 0.960540i \(0.589719\pi\)
\(18\) −1163.66 −0.0470299
\(19\) 41049.5 1.37300 0.686499 0.727131i \(-0.259147\pi\)
0.686499 + 0.727131i \(0.259147\pi\)
\(20\) 56009.3 1.56551
\(21\) 81355.4 1.91699
\(22\) −390.385 −0.00781653
\(23\) −44265.7 −0.758612 −0.379306 0.925271i \(-0.623837\pi\)
−0.379306 + 0.925271i \(0.623837\pi\)
\(24\) 10838.7 0.160043
\(25\) 114732. 1.46857
\(26\) 0 0
\(27\) −29576.4 −0.289183
\(28\) −166139. −1.43028
\(29\) −145512. −1.10791 −0.553957 0.832545i \(-0.686883\pi\)
−0.553957 + 0.832545i \(0.686883\pi\)
\(30\) 18626.8 0.125954
\(31\) −122045. −0.735793 −0.367896 0.929867i \(-0.619922\pi\)
−0.367896 + 0.929867i \(0.619922\pi\)
\(32\) −33221.1 −0.179221
\(33\) 35899.3 0.173895
\(34\) 7652.99 0.0333930
\(35\) −572069. −2.25533
\(36\) −218528. −0.780635
\(37\) 42002.0 0.136322 0.0681608 0.997674i \(-0.478287\pi\)
0.0681608 + 0.997674i \(0.478287\pi\)
\(38\) −27878.6 −0.0824191
\(39\) 0 0
\(40\) −76214.6 −0.188290
\(41\) 87690.6 0.198705 0.0993526 0.995052i \(-0.468323\pi\)
0.0993526 + 0.995052i \(0.468323\pi\)
\(42\) −55252.2 −0.115074
\(43\) −749752. −1.43806 −0.719032 0.694977i \(-0.755415\pi\)
−0.719032 + 0.694977i \(0.755415\pi\)
\(44\) −73311.5 −0.129744
\(45\) −752459. −1.23095
\(46\) 30062.9 0.0455384
\(47\) −940126. −1.32082 −0.660410 0.750905i \(-0.729617\pi\)
−0.660410 + 0.750905i \(0.729617\pi\)
\(48\) 1.01219e6 1.32104
\(49\) 873376. 1.06051
\(50\) −77920.0 −0.0881564
\(51\) −703759. −0.742896
\(52\) 0 0
\(53\) −924214. −0.852721 −0.426360 0.904553i \(-0.640204\pi\)
−0.426360 + 0.904553i \(0.640204\pi\)
\(54\) 20086.7 0.0173592
\(55\) −252434. −0.204587
\(56\) 226074. 0.172025
\(57\) 2.56368e6 1.83359
\(58\) 98824.0 0.0665066
\(59\) −632344. −0.400840 −0.200420 0.979710i \(-0.564231\pi\)
−0.200420 + 0.979710i \(0.564231\pi\)
\(60\) 3.49797e6 2.09068
\(61\) −64406.5 −0.0363308 −0.0181654 0.999835i \(-0.505783\pi\)
−0.0181654 + 0.999835i \(0.505783\pi\)
\(62\) 82886.6 0.0441686
\(63\) 2.23201e6 1.12461
\(64\) −2.05195e6 −0.978444
\(65\) 0 0
\(66\) −24380.9 −0.0104387
\(67\) 1.94403e6 0.789660 0.394830 0.918754i \(-0.370803\pi\)
0.394830 + 0.918754i \(0.370803\pi\)
\(68\) 1.43718e6 0.554280
\(69\) −2.76454e6 −1.01310
\(70\) 388519. 0.135384
\(71\) −4.72403e6 −1.56642 −0.783211 0.621756i \(-0.786419\pi\)
−0.783211 + 0.621756i \(0.786419\pi\)
\(72\) 297361. 0.0938904
\(73\) 1.92731e6 0.579857 0.289928 0.957048i \(-0.406368\pi\)
0.289928 + 0.957048i \(0.406368\pi\)
\(74\) −28525.5 −0.00818319
\(75\) 7.16542e6 1.96122
\(76\) −5.23540e6 −1.36805
\(77\) 748791. 0.186915
\(78\) 0 0
\(79\) −1.50287e6 −0.342947 −0.171474 0.985189i \(-0.554853\pi\)
−0.171474 + 0.985189i \(0.554853\pi\)
\(80\) −7.11743e6 −1.55421
\(81\) −5.59441e6 −1.16965
\(82\) −59554.7 −0.0119280
\(83\) 1.87974e6 0.360848 0.180424 0.983589i \(-0.442253\pi\)
0.180424 + 0.983589i \(0.442253\pi\)
\(84\) −1.03760e7 −1.91008
\(85\) 4.94864e6 0.874017
\(86\) 509191. 0.0863250
\(87\) −9.08772e6 −1.47958
\(88\) 99758.5 0.0156049
\(89\) 4.37470e6 0.657784 0.328892 0.944368i \(-0.393325\pi\)
0.328892 + 0.944368i \(0.393325\pi\)
\(90\) 511030. 0.0738920
\(91\) 0 0
\(92\) 5.64559e6 0.755879
\(93\) −7.62215e6 −0.982623
\(94\) 638483. 0.0792869
\(95\) −1.80271e7 −2.15721
\(96\) −2.07477e6 −0.239343
\(97\) −1.77364e6 −0.197317 −0.0986583 0.995121i \(-0.531455\pi\)
−0.0986583 + 0.995121i \(0.531455\pi\)
\(98\) −593150. −0.0636610
\(99\) 984906. 0.102017
\(100\) −1.46328e7 −1.46328
\(101\) −9.63946e6 −0.930953 −0.465477 0.885060i \(-0.654117\pi\)
−0.465477 + 0.885060i \(0.654117\pi\)
\(102\) 477955. 0.0445950
\(103\) −7.14668e6 −0.644427 −0.322214 0.946667i \(-0.604427\pi\)
−0.322214 + 0.946667i \(0.604427\pi\)
\(104\) 0 0
\(105\) −3.57277e7 −3.01191
\(106\) 627676. 0.0511876
\(107\) −2.06005e7 −1.62568 −0.812839 0.582488i \(-0.802079\pi\)
−0.812839 + 0.582488i \(0.802079\pi\)
\(108\) 3.77214e6 0.288141
\(109\) 1.05713e7 0.781872 0.390936 0.920418i \(-0.372151\pi\)
0.390936 + 0.920418i \(0.372151\pi\)
\(110\) 171440. 0.0122811
\(111\) 2.62317e6 0.182052
\(112\) 2.11123e7 1.41995
\(113\) 2.68071e7 1.74774 0.873868 0.486163i \(-0.161604\pi\)
0.873868 + 0.486163i \(0.161604\pi\)
\(114\) −1.74111e6 −0.110068
\(115\) 1.94395e7 1.19191
\(116\) 1.85584e7 1.10392
\(117\) 0 0
\(118\) 429454. 0.0240619
\(119\) −1.46791e7 −0.798517
\(120\) −4.75986e6 −0.251455
\(121\) −1.91568e7 −0.983044
\(122\) 43741.4 0.00218089
\(123\) 5.47657e6 0.265363
\(124\) 1.55655e7 0.733141
\(125\) −1.60763e7 −0.736209
\(126\) −1.51586e6 −0.0675090
\(127\) −8.07064e6 −0.349619 −0.174810 0.984602i \(-0.555931\pi\)
−0.174810 + 0.984602i \(0.555931\pi\)
\(128\) 5.64588e6 0.237956
\(129\) −4.68246e7 −1.92048
\(130\) 0 0
\(131\) 1.26390e7 0.491206 0.245603 0.969370i \(-0.421014\pi\)
0.245603 + 0.969370i \(0.421014\pi\)
\(132\) −4.57855e6 −0.173268
\(133\) 5.34734e7 1.97087
\(134\) −1.32028e6 −0.0474022
\(135\) 1.29886e7 0.454355
\(136\) −1.95564e6 −0.0666656
\(137\) −2.83228e7 −0.941052 −0.470526 0.882386i \(-0.655936\pi\)
−0.470526 + 0.882386i \(0.655936\pi\)
\(138\) 1.87753e6 0.0608148
\(139\) −8.88148e6 −0.280500 −0.140250 0.990116i \(-0.544791\pi\)
−0.140250 + 0.990116i \(0.544791\pi\)
\(140\) 7.29610e7 2.24721
\(141\) −5.87140e7 −1.76390
\(142\) 3.20831e6 0.0940301
\(143\) 0 0
\(144\) 2.77696e7 0.774999
\(145\) 6.39024e7 1.74072
\(146\) −1.30892e6 −0.0348080
\(147\) 5.45453e7 1.41627
\(148\) −5.35689e6 −0.135830
\(149\) −5.08520e7 −1.25938 −0.629689 0.776848i \(-0.716817\pi\)
−0.629689 + 0.776848i \(0.716817\pi\)
\(150\) −4.86637e6 −0.117730
\(151\) −9.76974e6 −0.230921 −0.115461 0.993312i \(-0.536834\pi\)
−0.115461 + 0.993312i \(0.536834\pi\)
\(152\) 7.12406e6 0.164541
\(153\) −1.93078e7 −0.435826
\(154\) −508538. −0.0112202
\(155\) 5.35969e7 1.15606
\(156\) 0 0
\(157\) 6.53474e7 1.34766 0.673828 0.738888i \(-0.264649\pi\)
0.673828 + 0.738888i \(0.264649\pi\)
\(158\) 1.02067e6 0.0205867
\(159\) −5.77203e7 −1.13878
\(160\) 1.45892e7 0.281587
\(161\) −5.76631e7 −1.08895
\(162\) 3.79942e6 0.0702125
\(163\) −2.01980e7 −0.365302 −0.182651 0.983178i \(-0.558468\pi\)
−0.182651 + 0.983178i \(0.558468\pi\)
\(164\) −1.11839e7 −0.197989
\(165\) −1.57654e7 −0.273219
\(166\) −1.27662e6 −0.0216612
\(167\) −6.77083e6 −0.112495 −0.0562477 0.998417i \(-0.517914\pi\)
−0.0562477 + 0.998417i \(0.517914\pi\)
\(168\) 1.41191e7 0.229733
\(169\) 0 0
\(170\) −3.36085e6 −0.0524660
\(171\) 7.03351e7 1.07569
\(172\) 9.56225e7 1.43288
\(173\) 8.67045e7 1.27315 0.636576 0.771214i \(-0.280350\pi\)
0.636576 + 0.771214i \(0.280350\pi\)
\(174\) 6.17189e6 0.0888170
\(175\) 1.49457e8 2.10806
\(176\) 9.31612e6 0.128807
\(177\) −3.94920e7 −0.535307
\(178\) −2.97106e6 −0.0394858
\(179\) −8.94442e7 −1.16565 −0.582823 0.812599i \(-0.698052\pi\)
−0.582823 + 0.812599i \(0.698052\pi\)
\(180\) 9.59677e7 1.22651
\(181\) 2.55748e7 0.320581 0.160290 0.987070i \(-0.448757\pi\)
0.160290 + 0.987070i \(0.448757\pi\)
\(182\) 0 0
\(183\) −4.02240e6 −0.0485184
\(184\) −7.68223e6 −0.0909128
\(185\) −1.84454e7 −0.214184
\(186\) 5.17655e6 0.0589855
\(187\) −6.47736e6 −0.0724356
\(188\) 1.19902e8 1.31606
\(189\) −3.85280e7 −0.415107
\(190\) 1.22430e7 0.129494
\(191\) 1.45282e8 1.50868 0.754339 0.656486i \(-0.227958\pi\)
0.754339 + 0.656486i \(0.227958\pi\)
\(192\) −1.28151e8 −1.30668
\(193\) −9.12233e7 −0.913388 −0.456694 0.889624i \(-0.650967\pi\)
−0.456694 + 0.889624i \(0.650967\pi\)
\(194\) 1.20456e6 0.0118446
\(195\) 0 0
\(196\) −1.11389e8 −1.05669
\(197\) −1.70257e8 −1.58662 −0.793311 0.608817i \(-0.791644\pi\)
−0.793311 + 0.608817i \(0.791644\pi\)
\(198\) −668895. −0.00612392
\(199\) −1.39523e8 −1.25504 −0.627521 0.778599i \(-0.715931\pi\)
−0.627521 + 0.778599i \(0.715931\pi\)
\(200\) 1.99116e7 0.175995
\(201\) 1.21411e8 1.05456
\(202\) 6.54660e6 0.0558838
\(203\) −1.89553e8 −1.59035
\(204\) 8.97565e7 0.740219
\(205\) −3.85098e7 −0.312200
\(206\) 4.85364e6 0.0386841
\(207\) −7.58459e7 −0.594341
\(208\) 0 0
\(209\) 2.35960e7 0.178783
\(210\) 2.42643e7 0.180801
\(211\) 8.37079e7 0.613448 0.306724 0.951799i \(-0.400767\pi\)
0.306724 + 0.951799i \(0.400767\pi\)
\(212\) 1.17873e8 0.849648
\(213\) −2.95032e8 −2.09190
\(214\) 1.39908e7 0.0975872
\(215\) 3.29258e8 2.25944
\(216\) −5.13293e6 −0.0346559
\(217\) −1.58983e8 −1.05619
\(218\) −7.17946e6 −0.0469347
\(219\) 1.20367e8 0.774377
\(220\) 3.21951e7 0.203850
\(221\) 0 0
\(222\) −1.78152e6 −0.0109283
\(223\) 9.51011e7 0.574273 0.287137 0.957890i \(-0.407297\pi\)
0.287137 + 0.957890i \(0.407297\pi\)
\(224\) −4.32758e7 −0.257263
\(225\) 1.96585e8 1.15057
\(226\) −1.82060e7 −0.104914
\(227\) 9.88410e7 0.560850 0.280425 0.959876i \(-0.409525\pi\)
0.280425 + 0.959876i \(0.409525\pi\)
\(228\) −3.26968e8 −1.82698
\(229\) 8.72426e7 0.480070 0.240035 0.970764i \(-0.422841\pi\)
0.240035 + 0.970764i \(0.422841\pi\)
\(230\) −1.32023e7 −0.0715486
\(231\) 4.67645e7 0.249617
\(232\) −2.52534e7 −0.132773
\(233\) 2.42490e8 1.25588 0.627940 0.778262i \(-0.283898\pi\)
0.627940 + 0.778262i \(0.283898\pi\)
\(234\) 0 0
\(235\) 4.12861e8 2.07523
\(236\) 8.06484e7 0.399396
\(237\) −9.38595e7 −0.457993
\(238\) 9.96923e6 0.0479338
\(239\) 4.08512e8 1.93558 0.967792 0.251750i \(-0.0810060\pi\)
0.967792 + 0.251750i \(0.0810060\pi\)
\(240\) −4.44508e8 −2.07558
\(241\) −2.19249e8 −1.00897 −0.504484 0.863421i \(-0.668317\pi\)
−0.504484 + 0.863421i \(0.668317\pi\)
\(242\) 1.30102e7 0.0590108
\(243\) −2.84706e8 −1.27284
\(244\) 8.21432e6 0.0361999
\(245\) −3.83548e8 −1.66624
\(246\) −3.71939e6 −0.0159294
\(247\) 0 0
\(248\) −2.11807e7 −0.0881780
\(249\) 1.17396e8 0.481899
\(250\) 1.09182e7 0.0441936
\(251\) 1.48564e7 0.0593003 0.0296501 0.999560i \(-0.490561\pi\)
0.0296501 + 0.999560i \(0.490561\pi\)
\(252\) −2.84667e8 −1.12056
\(253\) −2.54447e7 −0.0987815
\(254\) 5.48114e6 0.0209871
\(255\) 3.09059e8 1.16722
\(256\) 2.58815e8 0.964160
\(257\) 4.99625e8 1.83602 0.918011 0.396555i \(-0.129794\pi\)
0.918011 + 0.396555i \(0.129794\pi\)
\(258\) 3.18007e7 0.115284
\(259\) 5.47143e7 0.195682
\(260\) 0 0
\(261\) −2.49324e8 −0.868005
\(262\) −8.58374e6 −0.0294864
\(263\) 3.03450e7 0.102859 0.0514295 0.998677i \(-0.483622\pi\)
0.0514295 + 0.998677i \(0.483622\pi\)
\(264\) 6.23026e6 0.0208397
\(265\) 4.05873e8 1.33977
\(266\) −3.63163e7 −0.118308
\(267\) 2.73215e8 0.878445
\(268\) −2.47939e8 −0.786815
\(269\) 1.10526e8 0.346204 0.173102 0.984904i \(-0.444621\pi\)
0.173102 + 0.984904i \(0.444621\pi\)
\(270\) −8.82119e6 −0.0272743
\(271\) 5.04061e7 0.153848 0.0769238 0.997037i \(-0.475490\pi\)
0.0769238 + 0.997037i \(0.475490\pi\)
\(272\) −1.82630e8 −0.550278
\(273\) 0 0
\(274\) 1.92353e7 0.0564900
\(275\) 6.59502e7 0.191228
\(276\) 3.52586e8 1.00945
\(277\) −5.38594e8 −1.52259 −0.761294 0.648406i \(-0.775436\pi\)
−0.761294 + 0.648406i \(0.775436\pi\)
\(278\) 6.03182e6 0.0168380
\(279\) −2.09115e8 −0.576463
\(280\) −9.92816e7 −0.270281
\(281\) 1.43482e8 0.385766 0.192883 0.981222i \(-0.438216\pi\)
0.192883 + 0.981222i \(0.438216\pi\)
\(282\) 3.98754e7 0.105885
\(283\) 1.01247e8 0.265540 0.132770 0.991147i \(-0.457613\pi\)
0.132770 + 0.991147i \(0.457613\pi\)
\(284\) 6.02497e8 1.56078
\(285\) −1.12585e9 −2.88088
\(286\) 0 0
\(287\) 1.14231e8 0.285231
\(288\) −5.69219e7 −0.140412
\(289\) −2.83359e8 −0.690548
\(290\) −4.33991e7 −0.104493
\(291\) −1.10770e8 −0.263509
\(292\) −2.45806e8 −0.577768
\(293\) 3.06304e8 0.711405 0.355702 0.934599i \(-0.384242\pi\)
0.355702 + 0.934599i \(0.384242\pi\)
\(294\) −3.70442e7 −0.0850168
\(295\) 2.77697e8 0.629788
\(296\) 7.28938e6 0.0163369
\(297\) −1.70010e7 −0.0376555
\(298\) 3.45359e7 0.0755986
\(299\) 0 0
\(300\) −9.13869e8 −1.95416
\(301\) −9.76671e8 −2.06427
\(302\) 6.63508e6 0.0138619
\(303\) −6.02017e8 −1.24325
\(304\) 6.65293e8 1.35817
\(305\) 2.82845e7 0.0570819
\(306\) 1.31128e7 0.0261620
\(307\) 8.86416e6 0.0174845 0.00874225 0.999962i \(-0.497217\pi\)
0.00874225 + 0.999962i \(0.497217\pi\)
\(308\) −9.54999e7 −0.186241
\(309\) −4.46334e8 −0.860608
\(310\) −3.64001e7 −0.0693964
\(311\) 3.95364e8 0.745309 0.372654 0.927970i \(-0.378448\pi\)
0.372654 + 0.927970i \(0.378448\pi\)
\(312\) 0 0
\(313\) −8.88408e8 −1.63760 −0.818799 0.574080i \(-0.805360\pi\)
−0.818799 + 0.574080i \(0.805360\pi\)
\(314\) −4.43804e7 −0.0808979
\(315\) −9.80197e8 −1.76696
\(316\) 1.91675e8 0.341712
\(317\) −3.40256e8 −0.599928 −0.299964 0.953951i \(-0.596975\pi\)
−0.299964 + 0.953951i \(0.596975\pi\)
\(318\) 3.92005e7 0.0683591
\(319\) −8.36429e7 −0.144265
\(320\) 9.01123e8 1.53730
\(321\) −1.28657e9 −2.17103
\(322\) 3.91617e7 0.0653680
\(323\) −4.62568e8 −0.763777
\(324\) 7.13504e8 1.16544
\(325\) 0 0
\(326\) 1.37174e7 0.0219286
\(327\) 6.60213e8 1.04416
\(328\) 1.52185e7 0.0238130
\(329\) −1.22466e9 −1.89597
\(330\) 1.07070e7 0.0164009
\(331\) −5.49409e8 −0.832717 −0.416359 0.909200i \(-0.636694\pi\)
−0.416359 + 0.909200i \(0.636694\pi\)
\(332\) −2.39740e8 −0.359548
\(333\) 7.19673e7 0.106802
\(334\) 4.59838e6 0.00675294
\(335\) −8.53729e8 −1.24069
\(336\) 1.31854e9 1.89629
\(337\) 6.88538e8 0.979993 0.489997 0.871724i \(-0.336998\pi\)
0.489997 + 0.871724i \(0.336998\pi\)
\(338\) 0 0
\(339\) 1.67420e9 2.33404
\(340\) −6.31144e8 −0.870867
\(341\) −7.01538e7 −0.0958100
\(342\) −4.77678e7 −0.0645720
\(343\) 6.49158e7 0.0868602
\(344\) −1.30118e8 −0.172339
\(345\) 1.21406e9 1.59175
\(346\) −5.88850e7 −0.0764255
\(347\) −6.87155e8 −0.882879 −0.441440 0.897291i \(-0.645532\pi\)
−0.441440 + 0.897291i \(0.645532\pi\)
\(348\) 1.15904e9 1.47425
\(349\) −1.03428e9 −1.30241 −0.651206 0.758901i \(-0.725737\pi\)
−0.651206 + 0.758901i \(0.725737\pi\)
\(350\) −1.01503e8 −0.126544
\(351\) 0 0
\(352\) −1.90961e7 −0.0233370
\(353\) −1.07291e9 −1.29823 −0.649116 0.760690i \(-0.724861\pi\)
−0.649116 + 0.760690i \(0.724861\pi\)
\(354\) 2.68209e7 0.0321337
\(355\) 2.07458e9 2.46111
\(356\) −5.57943e8 −0.655413
\(357\) −9.16757e8 −1.06639
\(358\) 6.07457e7 0.0699721
\(359\) −6.57582e8 −0.750100 −0.375050 0.927005i \(-0.622374\pi\)
−0.375050 + 0.927005i \(0.622374\pi\)
\(360\) −1.30588e8 −0.147518
\(361\) 7.91187e8 0.885123
\(362\) −1.73690e7 −0.0192440
\(363\) −1.19640e9 −1.31282
\(364\) 0 0
\(365\) −8.46387e8 −0.911054
\(366\) 2.73180e6 0.00291249
\(367\) −8.94686e8 −0.944799 −0.472400 0.881384i \(-0.656612\pi\)
−0.472400 + 0.881384i \(0.656612\pi\)
\(368\) −7.17418e8 −0.750421
\(369\) 1.50251e8 0.155677
\(370\) 1.25271e7 0.0128572
\(371\) −1.20393e9 −1.22404
\(372\) 9.72119e8 0.979082
\(373\) 6.84177e8 0.682633 0.341317 0.939948i \(-0.389127\pi\)
0.341317 + 0.939948i \(0.389127\pi\)
\(374\) 4.39907e6 0.00434821
\(375\) −1.00402e9 −0.983180
\(376\) −1.63157e8 −0.158288
\(377\) 0 0
\(378\) 2.61661e7 0.0249183
\(379\) 1.13972e9 1.07537 0.537687 0.843144i \(-0.319298\pi\)
0.537687 + 0.843144i \(0.319298\pi\)
\(380\) 2.29915e9 2.14944
\(381\) −5.04039e8 −0.466903
\(382\) −9.86680e7 −0.0905638
\(383\) 1.34437e9 1.22271 0.611355 0.791356i \(-0.290625\pi\)
0.611355 + 0.791356i \(0.290625\pi\)
\(384\) 3.52604e8 0.317781
\(385\) −3.28835e8 −0.293674
\(386\) 6.19540e7 0.0548294
\(387\) −1.28464e9 −1.12666
\(388\) 2.26208e8 0.196606
\(389\) −4.06758e8 −0.350359 −0.175179 0.984537i \(-0.556051\pi\)
−0.175179 + 0.984537i \(0.556051\pi\)
\(390\) 0 0
\(391\) 4.98810e8 0.422004
\(392\) 1.51573e8 0.127093
\(393\) 7.89350e8 0.655987
\(394\) 1.15629e8 0.0952427
\(395\) 6.59995e8 0.538829
\(396\) −1.25614e8 −0.101649
\(397\) −1.96883e8 −0.157922 −0.0789609 0.996878i \(-0.525160\pi\)
−0.0789609 + 0.996878i \(0.525160\pi\)
\(398\) 9.47562e7 0.0753385
\(399\) 3.33960e9 2.63202
\(400\) 1.85948e9 1.45272
\(401\) 1.00018e9 0.774588 0.387294 0.921956i \(-0.373410\pi\)
0.387294 + 0.921956i \(0.373410\pi\)
\(402\) −8.24558e7 −0.0633038
\(403\) 0 0
\(404\) 1.22940e9 0.927599
\(405\) 2.45681e9 1.83772
\(406\) 1.28734e8 0.0954667
\(407\) 2.41435e7 0.0177509
\(408\) −1.22136e8 −0.0890293
\(409\) 1.62401e9 1.17370 0.586850 0.809696i \(-0.300368\pi\)
0.586850 + 0.809696i \(0.300368\pi\)
\(410\) 2.61538e7 0.0187409
\(411\) −1.76885e9 −1.25674
\(412\) 9.11478e8 0.642105
\(413\) −8.23729e8 −0.575386
\(414\) 5.15104e7 0.0356775
\(415\) −8.25497e8 −0.566953
\(416\) 0 0
\(417\) −5.54678e8 −0.374598
\(418\) −1.60251e7 −0.0107321
\(419\) −1.91920e8 −0.127459 −0.0637297 0.997967i \(-0.520300\pi\)
−0.0637297 + 0.997967i \(0.520300\pi\)
\(420\) 4.55666e9 3.00106
\(421\) 1.17016e9 0.764292 0.382146 0.924102i \(-0.375185\pi\)
0.382146 + 0.924102i \(0.375185\pi\)
\(422\) −5.68499e7 −0.0368244
\(423\) −1.61083e9 −1.03481
\(424\) −1.60396e8 −0.102191
\(425\) −1.29287e9 −0.816944
\(426\) 2.00370e8 0.125574
\(427\) −8.38997e7 −0.0521510
\(428\) 2.62736e9 1.61982
\(429\) 0 0
\(430\) −2.23614e8 −0.135631
\(431\) 2.11589e8 0.127298 0.0636491 0.997972i \(-0.479726\pi\)
0.0636491 + 0.997972i \(0.479726\pi\)
\(432\) −4.79348e8 −0.286060
\(433\) −1.17596e9 −0.696119 −0.348060 0.937472i \(-0.613159\pi\)
−0.348060 + 0.937472i \(0.613159\pi\)
\(434\) 1.07973e8 0.0634017
\(435\) 3.99092e9 2.32467
\(436\) −1.34825e9 −0.779055
\(437\) −1.81708e9 −1.04157
\(438\) −8.17466e7 −0.0464848
\(439\) −2.42430e9 −1.36760 −0.683802 0.729668i \(-0.739675\pi\)
−0.683802 + 0.729668i \(0.739675\pi\)
\(440\) −4.38095e7 −0.0245179
\(441\) 1.49646e9 0.830866
\(442\) 0 0
\(443\) 8.11271e7 0.0443356 0.0221678 0.999754i \(-0.492943\pi\)
0.0221678 + 0.999754i \(0.492943\pi\)
\(444\) −3.34556e8 −0.181396
\(445\) −1.92117e9 −1.03349
\(446\) −6.45876e7 −0.0344728
\(447\) −3.17588e9 −1.68185
\(448\) −2.67299e9 −1.40451
\(449\) 2.64894e7 0.0138105 0.00690525 0.999976i \(-0.497802\pi\)
0.00690525 + 0.999976i \(0.497802\pi\)
\(450\) −1.33510e8 −0.0690669
\(451\) 5.04061e7 0.0258741
\(452\) −3.41895e9 −1.74144
\(453\) −6.10153e8 −0.308386
\(454\) −6.71275e7 −0.0336670
\(455\) 0 0
\(456\) 4.44921e8 0.219739
\(457\) 2.64093e9 1.29434 0.647172 0.762344i \(-0.275951\pi\)
0.647172 + 0.762344i \(0.275951\pi\)
\(458\) −5.92505e7 −0.0288179
\(459\) 3.33283e8 0.160868
\(460\) −2.47929e9 −1.18761
\(461\) −2.20686e8 −0.104911 −0.0524556 0.998623i \(-0.516705\pi\)
−0.0524556 + 0.998623i \(0.516705\pi\)
\(462\) −3.17599e7 −0.0149842
\(463\) −1.40461e9 −0.657691 −0.328845 0.944384i \(-0.606659\pi\)
−0.328845 + 0.944384i \(0.606659\pi\)
\(464\) −2.35833e9 −1.09595
\(465\) 3.34731e9 1.54387
\(466\) −1.64686e8 −0.0753887
\(467\) −1.70943e9 −0.776681 −0.388341 0.921516i \(-0.626952\pi\)
−0.388341 + 0.921516i \(0.626952\pi\)
\(468\) 0 0
\(469\) 2.53240e9 1.13352
\(470\) −2.80393e8 −0.124573
\(471\) 4.08116e9 1.79974
\(472\) −1.09742e8 −0.0480371
\(473\) −4.30971e8 −0.187255
\(474\) 6.37443e7 0.0274927
\(475\) 4.70970e9 2.01635
\(476\) 1.87215e9 0.795640
\(477\) −1.58357e9 −0.668071
\(478\) −2.77439e8 −0.116190
\(479\) −2.16475e9 −0.899980 −0.449990 0.893034i \(-0.648572\pi\)
−0.449990 + 0.893034i \(0.648572\pi\)
\(480\) 9.11147e8 0.376049
\(481\) 0 0
\(482\) 1.48902e8 0.0605669
\(483\) −3.60125e9 −1.45425
\(484\) 2.44323e9 0.979502
\(485\) 7.78902e8 0.310018
\(486\) 1.93357e8 0.0764069
\(487\) 3.61830e9 1.41956 0.709779 0.704425i \(-0.248795\pi\)
0.709779 + 0.704425i \(0.248795\pi\)
\(488\) −1.11776e7 −0.00435392
\(489\) −1.26143e9 −0.487847
\(490\) 2.60485e8 0.100022
\(491\) −1.79288e9 −0.683544 −0.341772 0.939783i \(-0.611027\pi\)
−0.341772 + 0.939783i \(0.611027\pi\)
\(492\) −6.98475e8 −0.264407
\(493\) 1.63971e9 0.616315
\(494\) 0 0
\(495\) −4.32527e8 −0.160286
\(496\) −1.97800e9 −0.727848
\(497\) −6.15380e9 −2.24852
\(498\) −7.97291e7 −0.0289277
\(499\) −1.87794e9 −0.676596 −0.338298 0.941039i \(-0.609851\pi\)
−0.338298 + 0.941039i \(0.609851\pi\)
\(500\) 2.05035e9 0.733556
\(501\) −4.22861e8 −0.150233
\(502\) −1.00897e7 −0.00355971
\(503\) −1.13195e8 −0.0396589 −0.0198294 0.999803i \(-0.506312\pi\)
−0.0198294 + 0.999803i \(0.506312\pi\)
\(504\) 3.87360e8 0.134775
\(505\) 4.23322e9 1.46269
\(506\) 1.72807e7 0.00592971
\(507\) 0 0
\(508\) 1.02932e9 0.348359
\(509\) −5.42611e9 −1.82380 −0.911898 0.410418i \(-0.865383\pi\)
−0.911898 + 0.410418i \(0.865383\pi\)
\(510\) −2.09896e8 −0.0700663
\(511\) 2.51062e9 0.832355
\(512\) −8.98445e8 −0.295833
\(513\) −1.21410e9 −0.397047
\(514\) −3.39318e8 −0.110214
\(515\) 3.13850e9 1.01250
\(516\) 5.97195e9 1.91356
\(517\) −5.40401e8 −0.171988
\(518\) −3.71590e7 −0.0117465
\(519\) 5.41499e9 1.70025
\(520\) 0 0
\(521\) −2.65903e9 −0.823741 −0.411871 0.911242i \(-0.635124\pi\)
−0.411871 + 0.911242i \(0.635124\pi\)
\(522\) 1.69327e8 0.0521051
\(523\) 4.04445e9 1.23624 0.618122 0.786082i \(-0.287894\pi\)
0.618122 + 0.786082i \(0.287894\pi\)
\(524\) −1.61197e9 −0.489436
\(525\) 9.33410e9 2.81524
\(526\) −2.06087e7 −0.00617448
\(527\) 1.37527e9 0.409310
\(528\) 5.81823e8 0.172017
\(529\) −1.44537e9 −0.424507
\(530\) −2.75647e8 −0.0804244
\(531\) −1.08347e9 −0.314042
\(532\) −6.81994e9 −1.96377
\(533\) 0 0
\(534\) −1.85553e8 −0.0527318
\(535\) 9.04682e9 2.55422
\(536\) 3.37382e8 0.0946336
\(537\) −5.58609e9 −1.55668
\(538\) −7.50633e7 −0.0207821
\(539\) 5.02032e8 0.138093
\(540\) −1.65656e9 −0.452718
\(541\) 6.97904e9 1.89498 0.947491 0.319782i \(-0.103610\pi\)
0.947491 + 0.319782i \(0.103610\pi\)
\(542\) −3.42331e7 −0.00923525
\(543\) 1.59723e9 0.428124
\(544\) 3.74354e8 0.0996980
\(545\) −4.64244e9 −1.22845
\(546\) 0 0
\(547\) 5.47434e7 0.0143013 0.00715065 0.999974i \(-0.497724\pi\)
0.00715065 + 0.999974i \(0.497724\pi\)
\(548\) 3.61225e9 0.937661
\(549\) −1.10356e8 −0.0284637
\(550\) −4.47898e7 −0.0114791
\(551\) −5.97320e9 −1.52116
\(552\) −4.79781e8 −0.121411
\(553\) −1.95773e9 −0.492283
\(554\) 3.65784e8 0.0913989
\(555\) −1.15198e9 −0.286035
\(556\) 1.13273e9 0.279490
\(557\) 2.17057e8 0.0532207 0.0266103 0.999646i \(-0.491529\pi\)
0.0266103 + 0.999646i \(0.491529\pi\)
\(558\) 1.42020e8 0.0346043
\(559\) 0 0
\(560\) −9.27158e9 −2.23098
\(561\) −4.04533e8 −0.0967350
\(562\) −9.74450e7 −0.0231570
\(563\) 4.79943e9 1.13347 0.566735 0.823900i \(-0.308206\pi\)
0.566735 + 0.823900i \(0.308206\pi\)
\(564\) 7.48831e9 1.75755
\(565\) −1.17725e10 −2.74599
\(566\) −6.87616e7 −0.0159400
\(567\) −7.28760e9 −1.67897
\(568\) −8.19847e8 −0.187721
\(569\) 5.22411e9 1.18883 0.594415 0.804158i \(-0.297384\pi\)
0.594415 + 0.804158i \(0.297384\pi\)
\(570\) 7.64618e8 0.172935
\(571\) 9.53468e8 0.214328 0.107164 0.994241i \(-0.465823\pi\)
0.107164 + 0.994241i \(0.465823\pi\)
\(572\) 0 0
\(573\) 9.07338e9 2.01478
\(574\) −7.75794e7 −0.0171220
\(575\) −5.07871e9 −1.11408
\(576\) −3.51585e9 −0.766571
\(577\) −7.41729e6 −0.00160742 −0.000803711 1.00000i \(-0.500256\pi\)
−0.000803711 1.00000i \(0.500256\pi\)
\(578\) 1.92442e8 0.0414526
\(579\) −5.69720e9 −1.21980
\(580\) −8.15004e9 −1.73445
\(581\) 2.44866e9 0.517979
\(582\) 7.52288e7 0.0158181
\(583\) −5.31254e8 −0.111036
\(584\) 3.34481e8 0.0694906
\(585\) 0 0
\(586\) −2.08025e8 −0.0427046
\(587\) −6.00981e9 −1.22639 −0.613193 0.789933i \(-0.710115\pi\)
−0.613193 + 0.789933i \(0.710115\pi\)
\(588\) −6.95664e9 −1.41117
\(589\) −5.00990e9 −1.01024
\(590\) −1.88597e8 −0.0378053
\(591\) −1.06331e10 −2.11887
\(592\) 6.80731e8 0.134850
\(593\) 1.00461e9 0.197836 0.0989178 0.995096i \(-0.468462\pi\)
0.0989178 + 0.995096i \(0.468462\pi\)
\(594\) 1.15462e7 0.00226041
\(595\) 6.44639e9 1.25461
\(596\) 6.48560e9 1.25484
\(597\) −8.71365e9 −1.67606
\(598\) 0 0
\(599\) −4.70768e9 −0.894979 −0.447489 0.894289i \(-0.647682\pi\)
−0.447489 + 0.894289i \(0.647682\pi\)
\(600\) 1.24355e9 0.235035
\(601\) 6.05279e9 1.13735 0.568676 0.822562i \(-0.307456\pi\)
0.568676 + 0.822562i \(0.307456\pi\)
\(602\) 6.63302e8 0.123915
\(603\) 3.33094e9 0.618666
\(604\) 1.24602e9 0.230089
\(605\) 8.41279e9 1.54453
\(606\) 4.08857e8 0.0746307
\(607\) −7.12726e9 −1.29349 −0.646744 0.762707i \(-0.723870\pi\)
−0.646744 + 0.762707i \(0.723870\pi\)
\(608\) −1.36371e9 −0.246071
\(609\) −1.18382e10 −2.12386
\(610\) −1.92093e7 −0.00342655
\(611\) 0 0
\(612\) 2.46249e9 0.434255
\(613\) 1.00062e9 0.175452 0.0877258 0.996145i \(-0.472040\pi\)
0.0877258 + 0.996145i \(0.472040\pi\)
\(614\) −6.02006e6 −0.00104957
\(615\) −2.40507e9 −0.416931
\(616\) 1.29951e8 0.0224000
\(617\) −3.71765e9 −0.637192 −0.318596 0.947891i \(-0.603211\pi\)
−0.318596 + 0.947891i \(0.603211\pi\)
\(618\) 3.03126e8 0.0516611
\(619\) 8.30664e9 1.40769 0.703847 0.710352i \(-0.251464\pi\)
0.703847 + 0.710352i \(0.251464\pi\)
\(620\) −6.83568e9 −1.15189
\(621\) 1.30922e9 0.219378
\(622\) −2.68510e8 −0.0447398
\(623\) 5.69874e9 0.944214
\(624\) 0 0
\(625\) −1.90347e9 −0.311864
\(626\) 6.03359e8 0.0983027
\(627\) 1.47365e9 0.238757
\(628\) −8.33432e9 −1.34280
\(629\) −4.73302e8 −0.0758335
\(630\) 6.65697e8 0.106068
\(631\) −7.83901e9 −1.24211 −0.621053 0.783769i \(-0.713295\pi\)
−0.621053 + 0.783769i \(0.713295\pi\)
\(632\) −2.60821e8 −0.0410991
\(633\) 5.22784e9 0.819236
\(634\) 2.31084e8 0.0360128
\(635\) 3.54427e9 0.549311
\(636\) 7.36157e9 1.13467
\(637\) 0 0
\(638\) 5.68058e7 0.00866004
\(639\) −8.09427e9 −1.22723
\(640\) −2.47942e9 −0.373869
\(641\) 1.27214e9 0.190779 0.0953895 0.995440i \(-0.469590\pi\)
0.0953895 + 0.995440i \(0.469590\pi\)
\(642\) 8.73770e8 0.130324
\(643\) 5.67912e9 0.842447 0.421224 0.906957i \(-0.361601\pi\)
0.421224 + 0.906957i \(0.361601\pi\)
\(644\) 7.35428e9 1.08502
\(645\) 2.05633e10 3.01740
\(646\) 3.14151e8 0.0458485
\(647\) −9.83025e9 −1.42692 −0.713460 0.700696i \(-0.752873\pi\)
−0.713460 + 0.700696i \(0.752873\pi\)
\(648\) −9.70899e8 −0.140172
\(649\) −3.63483e8 −0.0521948
\(650\) 0 0
\(651\) −9.92905e9 −1.41050
\(652\) 2.57603e9 0.363986
\(653\) −3.85413e9 −0.541665 −0.270832 0.962626i \(-0.587299\pi\)
−0.270832 + 0.962626i \(0.587299\pi\)
\(654\) −4.48381e8 −0.0626795
\(655\) −5.55049e9 −0.771769
\(656\) 1.42121e9 0.196560
\(657\) 3.30229e9 0.454294
\(658\) 8.31725e8 0.113812
\(659\) −4.91498e9 −0.668995 −0.334498 0.942397i \(-0.608567\pi\)
−0.334498 + 0.942397i \(0.608567\pi\)
\(660\) 2.01069e9 0.272234
\(661\) 1.27915e10 1.72272 0.861360 0.507995i \(-0.169613\pi\)
0.861360 + 0.507995i \(0.169613\pi\)
\(662\) 3.73129e8 0.0499869
\(663\) 0 0
\(664\) 3.26225e8 0.0432443
\(665\) −2.34831e10 −3.09657
\(666\) −4.88763e7 −0.00641119
\(667\) 6.44120e9 0.840478
\(668\) 8.63544e8 0.112090
\(669\) 5.93939e9 0.766920
\(670\) 5.79807e8 0.0744769
\(671\) −3.70220e7 −0.00473076
\(672\) −2.70272e9 −0.343565
\(673\) −1.09851e10 −1.38916 −0.694581 0.719414i \(-0.744410\pi\)
−0.694581 + 0.719414i \(0.744410\pi\)
\(674\) −4.67618e8 −0.0588276
\(675\) −3.39337e9 −0.424686
\(676\) 0 0
\(677\) 3.14306e9 0.389307 0.194653 0.980872i \(-0.437642\pi\)
0.194653 + 0.980872i \(0.437642\pi\)
\(678\) −1.13702e9 −0.140109
\(679\) −2.31044e9 −0.283238
\(680\) 8.58827e8 0.104743
\(681\) 6.17296e9 0.748994
\(682\) 4.76447e7 0.00575134
\(683\) 1.54717e10 1.85808 0.929042 0.369975i \(-0.120634\pi\)
0.929042 + 0.369975i \(0.120634\pi\)
\(684\) −8.97046e9 −1.07181
\(685\) 1.24381e10 1.47855
\(686\) −4.40873e7 −0.00521409
\(687\) 5.44859e9 0.641115
\(688\) −1.21513e10 −1.42254
\(689\) 0 0
\(690\) −8.24526e8 −0.0955504
\(691\) 4.62295e9 0.533023 0.266512 0.963832i \(-0.414129\pi\)
0.266512 + 0.963832i \(0.414129\pi\)
\(692\) −1.10582e10 −1.26856
\(693\) 1.28300e9 0.146440
\(694\) 4.66678e8 0.0529980
\(695\) 3.90035e9 0.440714
\(696\) −1.57716e9 −0.177314
\(697\) −9.88145e8 −0.110537
\(698\) 7.02426e8 0.0781820
\(699\) 1.51443e10 1.67718
\(700\) −1.90616e10 −2.10047
\(701\) 1.41767e10 1.55440 0.777200 0.629253i \(-0.216639\pi\)
0.777200 + 0.629253i \(0.216639\pi\)
\(702\) 0 0
\(703\) 1.72416e9 0.187169
\(704\) −1.17949e9 −0.127407
\(705\) 2.57846e10 2.77139
\(706\) 7.28663e8 0.0779310
\(707\) −1.25569e10 −1.33634
\(708\) 5.03676e9 0.533378
\(709\) −8.17094e9 −0.861014 −0.430507 0.902587i \(-0.641665\pi\)
−0.430507 + 0.902587i \(0.641665\pi\)
\(710\) −1.40895e9 −0.147737
\(711\) −2.57506e9 −0.268685
\(712\) 7.59221e8 0.0788294
\(713\) 5.40242e9 0.558181
\(714\) 6.22612e8 0.0640138
\(715\) 0 0
\(716\) 1.14076e10 1.16145
\(717\) 2.55130e10 2.58490
\(718\) 4.46594e8 0.0450274
\(719\) −1.54234e10 −1.54749 −0.773745 0.633497i \(-0.781619\pi\)
−0.773745 + 0.633497i \(0.781619\pi\)
\(720\) −1.21952e10 −1.21766
\(721\) −9.30968e9 −0.925042
\(722\) −5.37331e8 −0.0531327
\(723\) −1.36928e10 −1.34744
\(724\) −3.26178e9 −0.319426
\(725\) −1.66950e10 −1.62705
\(726\) 8.12533e8 0.0788066
\(727\) −5.70391e9 −0.550557 −0.275279 0.961365i \(-0.588770\pi\)
−0.275279 + 0.961365i \(0.588770\pi\)
\(728\) 0 0
\(729\) −5.54588e9 −0.530181
\(730\) 5.74820e8 0.0546893
\(731\) 8.44862e9 0.799972
\(732\) 5.13012e8 0.0483436
\(733\) 1.66495e10 1.56148 0.780742 0.624854i \(-0.214841\pi\)
0.780742 + 0.624854i \(0.214841\pi\)
\(734\) 6.07623e8 0.0567150
\(735\) −2.39539e10 −2.22520
\(736\) 1.47056e9 0.135959
\(737\) 1.11746e9 0.102824
\(738\) −1.02042e8 −0.00934509
\(739\) −4.92732e9 −0.449112 −0.224556 0.974461i \(-0.572093\pi\)
−0.224556 + 0.974461i \(0.572093\pi\)
\(740\) 2.35251e9 0.213412
\(741\) 0 0
\(742\) 8.17647e8 0.0734772
\(743\) 9.91603e9 0.886904 0.443452 0.896298i \(-0.353754\pi\)
0.443452 + 0.896298i \(0.353754\pi\)
\(744\) −1.32281e9 −0.117758
\(745\) 2.23319e10 1.97870
\(746\) −4.64656e8 −0.0409775
\(747\) 3.22079e9 0.282709
\(748\) 8.26114e8 0.0721746
\(749\) −2.68354e10 −2.33358
\(750\) 6.81876e8 0.0590189
\(751\) 2.25292e10 1.94091 0.970456 0.241277i \(-0.0775663\pi\)
0.970456 + 0.241277i \(0.0775663\pi\)
\(752\) −1.52367e10 −1.30656
\(753\) 9.27835e8 0.0791933
\(754\) 0 0
\(755\) 4.29043e9 0.362816
\(756\) 4.91381e9 0.413611
\(757\) −2.21638e10 −1.85699 −0.928493 0.371351i \(-0.878895\pi\)
−0.928493 + 0.371351i \(0.878895\pi\)
\(758\) −7.74034e8 −0.0645532
\(759\) −1.58911e9 −0.131919
\(760\) −3.12857e9 −0.258522
\(761\) −7.67281e9 −0.631115 −0.315557 0.948907i \(-0.602191\pi\)
−0.315557 + 0.948907i \(0.602191\pi\)
\(762\) 3.42316e8 0.0280275
\(763\) 1.37708e10 1.12234
\(764\) −1.85291e10 −1.50324
\(765\) 8.47912e9 0.684756
\(766\) −9.13025e8 −0.0733976
\(767\) 0 0
\(768\) 1.61639e10 1.28760
\(769\) 8.97812e9 0.711940 0.355970 0.934497i \(-0.384151\pi\)
0.355970 + 0.934497i \(0.384151\pi\)
\(770\) 2.23327e8 0.0176289
\(771\) 3.12032e10 2.45194
\(772\) 1.16345e10 0.910097
\(773\) 1.12009e10 0.872218 0.436109 0.899894i \(-0.356356\pi\)
0.436109 + 0.899894i \(0.356356\pi\)
\(774\) 8.72460e8 0.0676320
\(775\) −1.40026e10 −1.08057
\(776\) −3.07811e8 −0.0236466
\(777\) 3.41709e9 0.261326
\(778\) 2.76248e8 0.0210315
\(779\) 3.59965e9 0.272822
\(780\) 0 0
\(781\) −2.71546e9 −0.203969
\(782\) −3.38765e8 −0.0253323
\(783\) 4.30373e9 0.320390
\(784\) 1.41549e10 1.04906
\(785\) −2.86976e10 −2.11740
\(786\) −5.36084e8 −0.0393780
\(787\) 1.10539e9 0.0808360 0.0404180 0.999183i \(-0.487131\pi\)
0.0404180 + 0.999183i \(0.487131\pi\)
\(788\) 2.17144e10 1.58090
\(789\) 1.89515e9 0.137364
\(790\) −4.48233e8 −0.0323451
\(791\) 3.49206e10 2.50878
\(792\) 1.70929e8 0.0122258
\(793\) 0 0
\(794\) 1.33712e8 0.00947982
\(795\) 2.53482e10 1.78921
\(796\) 1.77945e10 1.25052
\(797\) −1.49938e10 −1.04908 −0.524540 0.851386i \(-0.675763\pi\)
−0.524540 + 0.851386i \(0.675763\pi\)
\(798\) −2.26807e9 −0.157996
\(799\) 1.05939e10 0.734751
\(800\) −3.81154e9 −0.263200
\(801\) 7.49571e9 0.515346
\(802\) −6.79265e8 −0.0464974
\(803\) 1.10785e9 0.0755051
\(804\) −1.54846e10 −1.05076
\(805\) 2.53230e10 1.71092
\(806\) 0 0
\(807\) 6.90272e9 0.462342
\(808\) −1.67291e9 −0.111566
\(809\) 1.53212e10 1.01736 0.508679 0.860956i \(-0.330134\pi\)
0.508679 + 0.860956i \(0.330134\pi\)
\(810\) −1.66853e9 −0.110316
\(811\) 1.14391e10 0.753041 0.376521 0.926408i \(-0.377120\pi\)
0.376521 + 0.926408i \(0.377120\pi\)
\(812\) 2.41753e10 1.58462
\(813\) 3.14803e9 0.205458
\(814\) −1.63970e7 −0.00106556
\(815\) 8.87006e9 0.573951
\(816\) −1.14059e10 −0.734875
\(817\) −3.07769e10 −1.97446
\(818\) −1.10294e9 −0.0704555
\(819\) 0 0
\(820\) 4.91149e9 0.311075
\(821\) −2.17796e10 −1.37356 −0.686782 0.726864i \(-0.740977\pi\)
−0.686782 + 0.726864i \(0.740977\pi\)
\(822\) 1.20131e9 0.0754403
\(823\) −2.16314e9 −0.135265 −0.0676324 0.997710i \(-0.521544\pi\)
−0.0676324 + 0.997710i \(0.521544\pi\)
\(824\) −1.24029e9 −0.0772287
\(825\) 4.11881e9 0.255378
\(826\) 5.59432e8 0.0345396
\(827\) 2.27847e10 1.40079 0.700395 0.713755i \(-0.253007\pi\)
0.700395 + 0.713755i \(0.253007\pi\)
\(828\) 9.67329e9 0.592200
\(829\) 9.83839e9 0.599768 0.299884 0.953976i \(-0.403052\pi\)
0.299884 + 0.953976i \(0.403052\pi\)
\(830\) 5.60633e8 0.0340334
\(831\) −3.36370e10 −2.03336
\(832\) 0 0
\(833\) −9.84168e9 −0.589945
\(834\) 3.76708e8 0.0224866
\(835\) 2.97345e9 0.176749
\(836\) −3.00940e9 −0.178138
\(837\) 3.60967e9 0.212779
\(838\) 1.30342e8 0.00765121
\(839\) 2.09272e10 1.22333 0.611666 0.791116i \(-0.290500\pi\)
0.611666 + 0.791116i \(0.290500\pi\)
\(840\) −6.20047e9 −0.360950
\(841\) 3.92391e9 0.227475
\(842\) −7.94712e8 −0.0458793
\(843\) 8.96092e9 0.515176
\(844\) −1.06760e10 −0.611237
\(845\) 0 0
\(846\) 1.09399e9 0.0621180
\(847\) −2.49547e10 −1.41111
\(848\) −1.49788e10 −0.843514
\(849\) 6.32322e9 0.354619
\(850\) 8.78045e8 0.0490400
\(851\) −1.85925e9 −0.103415
\(852\) 3.76280e10 2.08436
\(853\) −2.52741e10 −1.39429 −0.697147 0.716928i \(-0.745548\pi\)
−0.697147 + 0.716928i \(0.745548\pi\)
\(854\) 5.69801e7 0.00313055
\(855\) −3.08880e10 −1.69009
\(856\) −3.57518e9 −0.194823
\(857\) 2.67167e10 1.44994 0.724969 0.688782i \(-0.241854\pi\)
0.724969 + 0.688782i \(0.241854\pi\)
\(858\) 0 0
\(859\) −8.51182e9 −0.458191 −0.229095 0.973404i \(-0.573577\pi\)
−0.229095 + 0.973404i \(0.573577\pi\)
\(860\) −4.19931e10 −2.25130
\(861\) 7.13410e9 0.380915
\(862\) −1.43700e8 −0.00764153
\(863\) −5.94525e9 −0.314871 −0.157435 0.987529i \(-0.550323\pi\)
−0.157435 + 0.987529i \(0.550323\pi\)
\(864\) 9.82563e8 0.0518277
\(865\) −3.80767e10 −2.00034
\(866\) 7.98646e8 0.0417871
\(867\) −1.76967e10 −0.922201
\(868\) 2.02766e10 1.05239
\(869\) −8.63878e8 −0.0446564
\(870\) −2.71042e9 −0.139547
\(871\) 0 0
\(872\) 1.83463e9 0.0937002
\(873\) −3.03899e9 −0.154589
\(874\) 1.23406e9 0.0625242
\(875\) −2.09419e10 −1.05679
\(876\) −1.53514e10 −0.771587
\(877\) 1.06461e10 0.532955 0.266477 0.963841i \(-0.414140\pi\)
0.266477 + 0.963841i \(0.414140\pi\)
\(878\) 1.64645e9 0.0820953
\(879\) 1.91297e10 0.950054
\(880\) −4.09122e9 −0.202378
\(881\) −3.83199e9 −0.188803 −0.0944014 0.995534i \(-0.530094\pi\)
−0.0944014 + 0.995534i \(0.530094\pi\)
\(882\) −1.01632e9 −0.0498757
\(883\) 1.75487e10 0.857792 0.428896 0.903354i \(-0.358903\pi\)
0.428896 + 0.903354i \(0.358903\pi\)
\(884\) 0 0
\(885\) 1.73431e10 0.841058
\(886\) −5.50972e7 −0.00266141
\(887\) −1.07458e10 −0.517020 −0.258510 0.966009i \(-0.583231\pi\)
−0.258510 + 0.966009i \(0.583231\pi\)
\(888\) 4.55246e8 0.0218173
\(889\) −1.05133e10 −0.501860
\(890\) 1.30476e9 0.0620389
\(891\) −3.21576e9 −0.152304
\(892\) −1.21291e10 −0.572204
\(893\) −3.85917e10 −1.81348
\(894\) 2.15688e9 0.100959
\(895\) 3.92799e10 1.83143
\(896\) 7.35465e9 0.341573
\(897\) 0 0
\(898\) −1.79902e7 −0.000829025 0
\(899\) 1.77591e10 0.815195
\(900\) −2.50722e10 −1.14642
\(901\) 1.04145e10 0.474355
\(902\) −3.42331e7 −0.00155319
\(903\) −6.09964e10 −2.75675
\(904\) 4.65233e9 0.209450
\(905\) −1.12313e10 −0.503687
\(906\) 4.14383e8 0.0185120
\(907\) −2.07199e10 −0.922067 −0.461034 0.887383i \(-0.652521\pi\)
−0.461034 + 0.887383i \(0.652521\pi\)
\(908\) −1.26061e10 −0.558829
\(909\) −1.65165e10 −0.729363
\(910\) 0 0
\(911\) −3.76677e10 −1.65065 −0.825325 0.564658i \(-0.809008\pi\)
−0.825325 + 0.564658i \(0.809008\pi\)
\(912\) 4.15498e10 1.81379
\(913\) 1.08051e9 0.0469872
\(914\) −1.79358e9 −0.0776977
\(915\) 1.76646e9 0.0762307
\(916\) −1.11268e10 −0.478340
\(917\) 1.64643e10 0.705101
\(918\) −2.26348e8 −0.00965667
\(919\) 1.56150e10 0.663646 0.331823 0.943342i \(-0.392336\pi\)
0.331823 + 0.943342i \(0.392336\pi\)
\(920\) 3.37369e9 0.142839
\(921\) 5.53597e8 0.0233499
\(922\) 1.49878e8 0.00629768
\(923\) 0 0
\(924\) −5.96429e9 −0.248718
\(925\) 4.81899e9 0.200198
\(926\) 9.53934e8 0.0394802
\(927\) −1.22453e10 −0.504882
\(928\) 4.83408e9 0.198562
\(929\) 2.75954e10 1.12923 0.564615 0.825355i \(-0.309025\pi\)
0.564615 + 0.825355i \(0.309025\pi\)
\(930\) −2.27331e9 −0.0926762
\(931\) 3.58516e10 1.45608
\(932\) −3.09269e10 −1.25135
\(933\) 2.46918e10 0.995332
\(934\) 1.16095e9 0.0466231
\(935\) 2.84457e9 0.113809
\(936\) 0 0
\(937\) −3.75571e9 −0.149143 −0.0745715 0.997216i \(-0.523759\pi\)
−0.0745715 + 0.997216i \(0.523759\pi\)
\(938\) −1.71987e9 −0.0680434
\(939\) −5.54841e10 −2.18695
\(940\) −5.26558e10 −2.06775
\(941\) 3.77084e10 1.47528 0.737641 0.675193i \(-0.235940\pi\)
0.737641 + 0.675193i \(0.235940\pi\)
\(942\) −2.77171e9 −0.108036
\(943\) −3.88168e9 −0.150740
\(944\) −1.02485e10 −0.396512
\(945\) 1.69198e10 0.652203
\(946\) 2.92692e8 0.0112407
\(947\) −4.58140e10 −1.75297 −0.876483 0.481433i \(-0.840117\pi\)
−0.876483 + 0.481433i \(0.840117\pi\)
\(948\) 1.19707e10 0.456343
\(949\) 0 0
\(950\) −3.19857e9 −0.121039
\(951\) −2.12502e10 −0.801181
\(952\) −2.54752e9 −0.0956950
\(953\) 1.83031e10 0.685013 0.342507 0.939515i \(-0.388724\pi\)
0.342507 + 0.939515i \(0.388724\pi\)
\(954\) 1.07547e9 0.0401034
\(955\) −6.38015e10 −2.37039
\(956\) −5.21011e10 −1.92861
\(957\) −5.22378e9 −0.192661
\(958\) 1.47018e9 0.0540245
\(959\) −3.68949e10 −1.35083
\(960\) 5.62782e10 2.05301
\(961\) −1.26175e10 −0.458609
\(962\) 0 0
\(963\) −3.52974e10 −1.27365
\(964\) 2.79627e10 1.00533
\(965\) 4.00612e10 1.43509
\(966\) 2.44578e9 0.0872965
\(967\) 2.62013e10 0.931816 0.465908 0.884833i \(-0.345728\pi\)
0.465908 + 0.884833i \(0.345728\pi\)
\(968\) −3.32462e9 −0.117809
\(969\) −2.88889e10 −1.02000
\(970\) −5.28988e8 −0.0186099
\(971\) 3.04960e9 0.106899 0.0534497 0.998571i \(-0.482978\pi\)
0.0534497 + 0.998571i \(0.482978\pi\)
\(972\) 3.63110e10 1.26826
\(973\) −1.15695e10 −0.402644
\(974\) −2.45735e9 −0.0852141
\(975\) 0 0
\(976\) −1.04384e9 −0.0359385
\(977\) −4.40597e10 −1.51151 −0.755754 0.654856i \(-0.772729\pi\)
−0.755754 + 0.654856i \(0.772729\pi\)
\(978\) 8.56698e8 0.0292848
\(979\) 2.51465e9 0.0856522
\(980\) 4.89172e10 1.66024
\(981\) 1.81131e10 0.612564
\(982\) 1.21763e9 0.0410322
\(983\) 3.19323e10 1.07224 0.536122 0.844141i \(-0.319889\pi\)
0.536122 + 0.844141i \(0.319889\pi\)
\(984\) 9.50449e8 0.0318014
\(985\) 7.47693e10 2.49285
\(986\) −1.11360e9 −0.0369965
\(987\) −7.64843e10 −2.53199
\(988\) 0 0
\(989\) 3.31883e10 1.09093
\(990\) 2.93749e8 0.00962172
\(991\) 3.66598e10 1.19655 0.598277 0.801289i \(-0.295852\pi\)
0.598277 + 0.801289i \(0.295852\pi\)
\(992\) 4.05449e9 0.131870
\(993\) −3.43124e10 −1.11206
\(994\) 4.17933e9 0.134975
\(995\) 6.12721e10 1.97189
\(996\) −1.49725e10 −0.480162
\(997\) 5.86084e10 1.87295 0.936476 0.350732i \(-0.114067\pi\)
0.936476 + 0.350732i \(0.114067\pi\)
\(998\) 1.27539e9 0.0406151
\(999\) −1.24227e9 −0.0394218
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.8.a.g.1.7 14
13.5 odd 4 169.8.b.d.168.8 14
13.6 odd 12 13.8.e.a.10.4 yes 14
13.8 odd 4 169.8.b.d.168.7 14
13.11 odd 12 13.8.e.a.4.4 14
13.12 even 2 inner 169.8.a.g.1.8 14
39.11 even 12 117.8.q.b.82.4 14
39.32 even 12 117.8.q.b.10.4 14
52.11 even 12 208.8.w.a.17.7 14
52.19 even 12 208.8.w.a.49.7 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.8.e.a.4.4 14 13.11 odd 12
13.8.e.a.10.4 yes 14 13.6 odd 12
117.8.q.b.10.4 14 39.32 even 12
117.8.q.b.82.4 14 39.11 even 12
169.8.a.g.1.7 14 1.1 even 1 trivial
169.8.a.g.1.8 14 13.12 even 2 inner
169.8.b.d.168.7 14 13.8 odd 4
169.8.b.d.168.8 14 13.5 odd 4
208.8.w.a.17.7 14 52.11 even 12
208.8.w.a.49.7 14 52.19 even 12