Properties

Label 169.8.a.g.1.13
Level $169$
Weight $8$
Character 169.1
Self dual yes
Analytic conductor $52.793$
Analytic rank $1$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,8,Mod(1,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.7930693068\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 1279 x^{12} + 629380 x^{10} - 148562016 x^{8} + 16872573312 x^{6} - 790180980480 x^{4} + \cdots - 4669637050368 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{13}\cdot 3^{3}\cdot 13^{6} \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Root \(16.7657\) of defining polynomial
Character \(\chi\) \(=\) 169.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+16.7657 q^{2} -81.0229 q^{3} +153.090 q^{4} -223.318 q^{5} -1358.41 q^{6} +666.907 q^{7} +420.649 q^{8} +4377.70 q^{9} -3744.09 q^{10} +7590.80 q^{11} -12403.8 q^{12} +11181.2 q^{14} +18093.9 q^{15} -12543.0 q^{16} -14102.9 q^{17} +73395.4 q^{18} -8343.98 q^{19} -34187.7 q^{20} -54034.7 q^{21} +127265. q^{22} +58145.3 q^{23} -34082.2 q^{24} -28254.0 q^{25} -177497. q^{27} +102097. q^{28} -33045.0 q^{29} +303357. q^{30} -91450.2 q^{31} -264136. q^{32} -615028. q^{33} -236445. q^{34} -148932. q^{35} +670182. q^{36} -355545. q^{37} -139893. q^{38} -93938.5 q^{40} -582075. q^{41} -905932. q^{42} -104498. q^{43} +1.16207e6 q^{44} -977620. q^{45} +974848. q^{46} +398024. q^{47} +1.01627e6 q^{48} -378778. q^{49} -473700. q^{50} +1.14266e6 q^{51} +1.49881e6 q^{53} -2.97587e6 q^{54} -1.69516e6 q^{55} +280534. q^{56} +676053. q^{57} -554024. q^{58} -330628. q^{59} +2.76999e6 q^{60} -1.44273e6 q^{61} -1.53323e6 q^{62} +2.91952e6 q^{63} -2.82292e6 q^{64} -1.03114e7 q^{66} -2.56680e6 q^{67} -2.15901e6 q^{68} -4.71110e6 q^{69} -2.49696e6 q^{70} +1.29773e6 q^{71} +1.84148e6 q^{72} -2.66195e6 q^{73} -5.96097e6 q^{74} +2.28922e6 q^{75} -1.27738e6 q^{76} +5.06236e6 q^{77} +2.13906e6 q^{79} +2.80108e6 q^{80} +4.80728e6 q^{81} -9.75892e6 q^{82} -1.63158e6 q^{83} -8.27217e6 q^{84} +3.14943e6 q^{85} -1.75198e6 q^{86} +2.67740e6 q^{87} +3.19306e6 q^{88} -401206. q^{89} -1.63905e7 q^{90} +8.90145e6 q^{92} +7.40955e6 q^{93} +6.67316e6 q^{94} +1.86336e6 q^{95} +2.14010e7 q^{96} -1.10423e7 q^{97} -6.35048e6 q^{98} +3.32303e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 52 q^{3} + 766 q^{4} + 6982 q^{9} - 1018 q^{10} - 38380 q^{12} - 47916 q^{14} + 1266 q^{16} - 76806 q^{17} + 251764 q^{22} - 137100 q^{23} - 39380 q^{25} - 432400 q^{27} - 443166 q^{29} - 315780 q^{30}+ \cdots - 86840772 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 16.7657 1.48190 0.740948 0.671563i \(-0.234377\pi\)
0.740948 + 0.671563i \(0.234377\pi\)
\(3\) −81.0229 −1.73254 −0.866270 0.499576i \(-0.833489\pi\)
−0.866270 + 0.499576i \(0.833489\pi\)
\(4\) 153.090 1.19601
\(5\) −223.318 −0.798967 −0.399483 0.916740i \(-0.630811\pi\)
−0.399483 + 0.916740i \(0.630811\pi\)
\(6\) −1358.41 −2.56744
\(7\) 666.907 0.734890 0.367445 0.930045i \(-0.380233\pi\)
0.367445 + 0.930045i \(0.380233\pi\)
\(8\) 420.649 0.290472
\(9\) 4377.70 2.00169
\(10\) −3744.09 −1.18399
\(11\) 7590.80 1.71954 0.859771 0.510679i \(-0.170606\pi\)
0.859771 + 0.510679i \(0.170606\pi\)
\(12\) −12403.8 −2.07214
\(13\) 0 0
\(14\) 11181.2 1.08903
\(15\) 18093.9 1.38424
\(16\) −12543.0 −0.765564
\(17\) −14102.9 −0.696204 −0.348102 0.937457i \(-0.613174\pi\)
−0.348102 + 0.937457i \(0.613174\pi\)
\(18\) 73395.4 2.96630
\(19\) −8343.98 −0.279085 −0.139542 0.990216i \(-0.544563\pi\)
−0.139542 + 0.990216i \(0.544563\pi\)
\(20\) −34187.7 −0.955576
\(21\) −54034.7 −1.27323
\(22\) 127265. 2.54818
\(23\) 58145.3 0.996476 0.498238 0.867040i \(-0.333981\pi\)
0.498238 + 0.867040i \(0.333981\pi\)
\(24\) −34082.2 −0.503255
\(25\) −28254.0 −0.361652
\(26\) 0 0
\(27\) −177497. −1.73547
\(28\) 102097. 0.878939
\(29\) −33045.0 −0.251601 −0.125801 0.992056i \(-0.540150\pi\)
−0.125801 + 0.992056i \(0.540150\pi\)
\(30\) 303357. 2.05130
\(31\) −91450.2 −0.551339 −0.275669 0.961252i \(-0.588900\pi\)
−0.275669 + 0.961252i \(0.588900\pi\)
\(32\) −264136. −1.42496
\(33\) −615028. −2.97918
\(34\) −236445. −1.03170
\(35\) −148932. −0.587153
\(36\) 670182. 2.39405
\(37\) −355545. −1.15395 −0.576977 0.816760i \(-0.695768\pi\)
−0.576977 + 0.816760i \(0.695768\pi\)
\(38\) −139893. −0.413574
\(39\) 0 0
\(40\) −93938.5 −0.232078
\(41\) −582075. −1.31897 −0.659486 0.751717i \(-0.729226\pi\)
−0.659486 + 0.751717i \(0.729226\pi\)
\(42\) −905932. −1.88679
\(43\) −104498. −0.200432 −0.100216 0.994966i \(-0.531953\pi\)
−0.100216 + 0.994966i \(0.531953\pi\)
\(44\) 1.16207e6 2.05660
\(45\) −977620. −1.59929
\(46\) 974848. 1.47667
\(47\) 398024. 0.559199 0.279600 0.960117i \(-0.409798\pi\)
0.279600 + 0.960117i \(0.409798\pi\)
\(48\) 1.01627e6 1.32637
\(49\) −378778. −0.459937
\(50\) −473700. −0.535930
\(51\) 1.14266e6 1.20620
\(52\) 0 0
\(53\) 1.49881e6 1.38287 0.691433 0.722441i \(-0.256980\pi\)
0.691433 + 0.722441i \(0.256980\pi\)
\(54\) −2.97587e6 −2.57179
\(55\) −1.69516e6 −1.37386
\(56\) 280534. 0.213465
\(57\) 676053. 0.483525
\(58\) −554024. −0.372847
\(59\) −330628. −0.209584 −0.104792 0.994494i \(-0.533418\pi\)
−0.104792 + 0.994494i \(0.533418\pi\)
\(60\) 2.76999e6 1.65557
\(61\) −1.44273e6 −0.813825 −0.406912 0.913467i \(-0.633395\pi\)
−0.406912 + 0.913467i \(0.633395\pi\)
\(62\) −1.53323e6 −0.817027
\(63\) 2.91952e6 1.47102
\(64\) −2.82292e6 −1.34608
\(65\) 0 0
\(66\) −1.03114e7 −4.41483
\(67\) −2.56680e6 −1.04263 −0.521316 0.853364i \(-0.674559\pi\)
−0.521316 + 0.853364i \(0.674559\pi\)
\(68\) −2.15901e6 −0.832670
\(69\) −4.71110e6 −1.72643
\(70\) −2.49696e6 −0.870099
\(71\) 1.29773e6 0.430307 0.215154 0.976580i \(-0.430975\pi\)
0.215154 + 0.976580i \(0.430975\pi\)
\(72\) 1.84148e6 0.581437
\(73\) −2.66195e6 −0.800885 −0.400442 0.916322i \(-0.631144\pi\)
−0.400442 + 0.916322i \(0.631144\pi\)
\(74\) −5.96097e6 −1.71004
\(75\) 2.28922e6 0.626576
\(76\) −1.27738e6 −0.333789
\(77\) 5.06236e6 1.26367
\(78\) 0 0
\(79\) 2.13906e6 0.488121 0.244060 0.969760i \(-0.421520\pi\)
0.244060 + 0.969760i \(0.421520\pi\)
\(80\) 2.80108e6 0.611661
\(81\) 4.80728e6 1.00508
\(82\) −9.75892e6 −1.95458
\(83\) −1.63158e6 −0.313211 −0.156605 0.987661i \(-0.550055\pi\)
−0.156605 + 0.987661i \(0.550055\pi\)
\(84\) −8.27217e6 −1.52280
\(85\) 3.14943e6 0.556244
\(86\) −1.75198e6 −0.297020
\(87\) 2.67740e6 0.435909
\(88\) 3.19306e6 0.499480
\(89\) −401206. −0.0603258 −0.0301629 0.999545i \(-0.509603\pi\)
−0.0301629 + 0.999545i \(0.509603\pi\)
\(90\) −1.63905e7 −2.36998
\(91\) 0 0
\(92\) 8.90145e6 1.19180
\(93\) 7.40955e6 0.955216
\(94\) 6.67316e6 0.828675
\(95\) 1.86336e6 0.222979
\(96\) 2.14010e7 2.46880
\(97\) −1.10423e7 −1.22846 −0.614228 0.789128i \(-0.710533\pi\)
−0.614228 + 0.789128i \(0.710533\pi\)
\(98\) −6.35048e6 −0.681578
\(99\) 3.32303e7 3.44200
\(100\) −4.32541e6 −0.432541
\(101\) 7.68319e6 0.742022 0.371011 0.928629i \(-0.379011\pi\)
0.371011 + 0.928629i \(0.379011\pi\)
\(102\) 1.91575e7 1.78746
\(103\) −485826. −0.0438077 −0.0219039 0.999760i \(-0.506973\pi\)
−0.0219039 + 0.999760i \(0.506973\pi\)
\(104\) 0 0
\(105\) 1.20669e7 1.01727
\(106\) 2.51286e7 2.04926
\(107\) −69974.3 −0.00552198 −0.00276099 0.999996i \(-0.500879\pi\)
−0.00276099 + 0.999996i \(0.500879\pi\)
\(108\) −2.71730e7 −2.07565
\(109\) −4.06366e6 −0.300556 −0.150278 0.988644i \(-0.548017\pi\)
−0.150278 + 0.988644i \(0.548017\pi\)
\(110\) −2.84206e7 −2.03591
\(111\) 2.88073e7 1.99927
\(112\) −8.36502e6 −0.562606
\(113\) −2.09954e7 −1.36883 −0.684417 0.729091i \(-0.739943\pi\)
−0.684417 + 0.729091i \(0.739943\pi\)
\(114\) 1.13345e7 0.716534
\(115\) −1.29849e7 −0.796152
\(116\) −5.05885e6 −0.300919
\(117\) 0 0
\(118\) −5.54322e6 −0.310581
\(119\) −9.40531e6 −0.511633
\(120\) 7.61117e6 0.402084
\(121\) 3.81330e7 1.95683
\(122\) −2.41884e7 −1.20600
\(123\) 4.71614e7 2.28517
\(124\) −1.40001e7 −0.659409
\(125\) 2.37564e7 1.08791
\(126\) 4.89479e7 2.17990
\(127\) 9.33567e6 0.404420 0.202210 0.979342i \(-0.435188\pi\)
0.202210 + 0.979342i \(0.435188\pi\)
\(128\) −1.35190e7 −0.569784
\(129\) 8.46671e6 0.347257
\(130\) 0 0
\(131\) −4.07546e7 −1.58390 −0.791948 0.610588i \(-0.790933\pi\)
−0.791948 + 0.610588i \(0.790933\pi\)
\(132\) −9.41545e7 −3.56314
\(133\) −5.56466e6 −0.205096
\(134\) −4.30343e7 −1.54507
\(135\) 3.96383e7 1.38659
\(136\) −5.93236e6 −0.202228
\(137\) −4.87238e7 −1.61890 −0.809449 0.587190i \(-0.800234\pi\)
−0.809449 + 0.587190i \(0.800234\pi\)
\(138\) −7.89850e7 −2.55840
\(139\) −5.32895e7 −1.68302 −0.841511 0.540240i \(-0.818334\pi\)
−0.841511 + 0.540240i \(0.818334\pi\)
\(140\) −2.28000e7 −0.702243
\(141\) −3.22490e7 −0.968835
\(142\) 2.17573e7 0.637670
\(143\) 0 0
\(144\) −5.49096e7 −1.53243
\(145\) 7.37955e6 0.201021
\(146\) −4.46296e7 −1.18683
\(147\) 3.06896e7 0.796858
\(148\) −5.44303e7 −1.38015
\(149\) −3.62391e7 −0.897480 −0.448740 0.893662i \(-0.648127\pi\)
−0.448740 + 0.893662i \(0.648127\pi\)
\(150\) 3.83805e7 0.928520
\(151\) 2.55676e7 0.604326 0.302163 0.953256i \(-0.402291\pi\)
0.302163 + 0.953256i \(0.402291\pi\)
\(152\) −3.50989e6 −0.0810664
\(153\) −6.17382e7 −1.39359
\(154\) 8.48741e7 1.87263
\(155\) 2.04225e7 0.440502
\(156\) 0 0
\(157\) 4.23295e7 0.872960 0.436480 0.899714i \(-0.356225\pi\)
0.436480 + 0.899714i \(0.356225\pi\)
\(158\) 3.58629e7 0.723344
\(159\) −1.21438e8 −2.39587
\(160\) 5.89863e7 1.13849
\(161\) 3.87775e7 0.732301
\(162\) 8.05976e7 1.48943
\(163\) 3.44898e7 0.623784 0.311892 0.950118i \(-0.399037\pi\)
0.311892 + 0.950118i \(0.399037\pi\)
\(164\) −8.91098e7 −1.57751
\(165\) 1.37347e8 2.38026
\(166\) −2.73547e7 −0.464145
\(167\) 8.00957e6 0.133077 0.0665383 0.997784i \(-0.478805\pi\)
0.0665383 + 0.997784i \(0.478805\pi\)
\(168\) −2.27297e7 −0.369837
\(169\) 0 0
\(170\) 5.28024e7 0.824295
\(171\) −3.65275e7 −0.558642
\(172\) −1.59975e7 −0.239720
\(173\) 3.73141e7 0.547912 0.273956 0.961742i \(-0.411668\pi\)
0.273956 + 0.961742i \(0.411668\pi\)
\(174\) 4.48886e7 0.645972
\(175\) −1.88428e7 −0.265774
\(176\) −9.52114e7 −1.31642
\(177\) 2.67884e7 0.363112
\(178\) −6.72652e6 −0.0893965
\(179\) −6.85207e7 −0.892968 −0.446484 0.894792i \(-0.647324\pi\)
−0.446484 + 0.894792i \(0.647324\pi\)
\(180\) −1.49664e8 −1.91277
\(181\) 1.20860e8 1.51498 0.757489 0.652848i \(-0.226426\pi\)
0.757489 + 0.652848i \(0.226426\pi\)
\(182\) 0 0
\(183\) 1.16894e8 1.40998
\(184\) 2.44588e7 0.289449
\(185\) 7.93996e7 0.921972
\(186\) 1.24227e8 1.41553
\(187\) −1.07052e8 −1.19715
\(188\) 6.09334e7 0.668810
\(189\) −1.18374e8 −1.27538
\(190\) 3.12406e7 0.330432
\(191\) −8.40445e7 −0.872755 −0.436377 0.899764i \(-0.643739\pi\)
−0.436377 + 0.899764i \(0.643739\pi\)
\(192\) 2.28721e8 2.33213
\(193\) −4.45097e7 −0.445661 −0.222830 0.974857i \(-0.571530\pi\)
−0.222830 + 0.974857i \(0.571530\pi\)
\(194\) −1.85133e8 −1.82044
\(195\) 0 0
\(196\) −5.79870e7 −0.550091
\(197\) 1.26502e8 1.17887 0.589437 0.807815i \(-0.299350\pi\)
0.589437 + 0.807815i \(0.299350\pi\)
\(198\) 5.57130e8 5.10068
\(199\) −9.62184e7 −0.865511 −0.432755 0.901511i \(-0.642459\pi\)
−0.432755 + 0.901511i \(0.642459\pi\)
\(200\) −1.18850e7 −0.105050
\(201\) 2.07970e8 1.80640
\(202\) 1.28814e8 1.09960
\(203\) −2.20380e7 −0.184899
\(204\) 1.74929e8 1.44263
\(205\) 1.29988e8 1.05382
\(206\) −8.14523e6 −0.0649185
\(207\) 2.54543e8 1.99464
\(208\) 0 0
\(209\) −6.33375e7 −0.479898
\(210\) 2.02311e8 1.50748
\(211\) −5.03533e7 −0.369011 −0.184505 0.982832i \(-0.559068\pi\)
−0.184505 + 0.982832i \(0.559068\pi\)
\(212\) 2.29452e8 1.65393
\(213\) −1.05145e8 −0.745524
\(214\) −1.17317e6 −0.00818300
\(215\) 2.33362e7 0.160139
\(216\) −7.46640e7 −0.504107
\(217\) −6.09888e7 −0.405173
\(218\) −6.81303e7 −0.445392
\(219\) 2.15679e8 1.38756
\(220\) −2.59512e8 −1.64315
\(221\) 0 0
\(222\) 4.82975e8 2.96271
\(223\) 2.45161e8 1.48042 0.740208 0.672378i \(-0.234727\pi\)
0.740208 + 0.672378i \(0.234727\pi\)
\(224\) −1.76154e8 −1.04719
\(225\) −1.23688e8 −0.723916
\(226\) −3.52004e8 −2.02847
\(227\) −1.90894e6 −0.0108318 −0.00541591 0.999985i \(-0.501724\pi\)
−0.00541591 + 0.999985i \(0.501724\pi\)
\(228\) 1.03497e8 0.578303
\(229\) −2.07407e8 −1.14130 −0.570650 0.821194i \(-0.693309\pi\)
−0.570650 + 0.821194i \(0.693309\pi\)
\(230\) −2.17701e8 −1.17981
\(231\) −4.10167e8 −2.18937
\(232\) −1.39004e7 −0.0730832
\(233\) −3.42955e8 −1.77620 −0.888099 0.459652i \(-0.847974\pi\)
−0.888099 + 0.459652i \(0.847974\pi\)
\(234\) 0 0
\(235\) −8.88859e7 −0.446782
\(236\) −5.06158e7 −0.250665
\(237\) −1.73312e8 −0.845689
\(238\) −1.57687e8 −0.758187
\(239\) 3.94963e8 1.87139 0.935693 0.352815i \(-0.114775\pi\)
0.935693 + 0.352815i \(0.114775\pi\)
\(240\) −2.26952e8 −1.05973
\(241\) −7.77374e7 −0.357742 −0.178871 0.983873i \(-0.557245\pi\)
−0.178871 + 0.983873i \(0.557245\pi\)
\(242\) 6.39328e8 2.89981
\(243\) −1.31373e6 −0.00587334
\(244\) −2.20867e8 −0.973346
\(245\) 8.45879e7 0.367474
\(246\) 7.90695e8 3.38638
\(247\) 0 0
\(248\) −3.84684e7 −0.160149
\(249\) 1.32196e8 0.542650
\(250\) 3.98293e8 1.61218
\(251\) −3.50877e8 −1.40054 −0.700272 0.713877i \(-0.746938\pi\)
−0.700272 + 0.713877i \(0.746938\pi\)
\(252\) 4.46949e8 1.75937
\(253\) 4.41369e8 1.71348
\(254\) 1.56519e8 0.599308
\(255\) −2.55176e8 −0.963715
\(256\) 1.34678e8 0.501715
\(257\) −3.59200e8 −1.31999 −0.659995 0.751270i \(-0.729442\pi\)
−0.659995 + 0.751270i \(0.729442\pi\)
\(258\) 1.41951e8 0.514598
\(259\) −2.37116e8 −0.848030
\(260\) 0 0
\(261\) −1.44661e8 −0.503629
\(262\) −6.83280e8 −2.34717
\(263\) −1.99512e8 −0.676277 −0.338139 0.941096i \(-0.609797\pi\)
−0.338139 + 0.941096i \(0.609797\pi\)
\(264\) −2.58711e8 −0.865368
\(265\) −3.34711e8 −1.10486
\(266\) −9.32957e7 −0.303932
\(267\) 3.25069e7 0.104517
\(268\) −3.92951e8 −1.24700
\(269\) −6.44857e7 −0.201990 −0.100995 0.994887i \(-0.532203\pi\)
−0.100995 + 0.994887i \(0.532203\pi\)
\(270\) 6.64565e8 2.05478
\(271\) −4.79494e7 −0.146349 −0.0731747 0.997319i \(-0.523313\pi\)
−0.0731747 + 0.997319i \(0.523313\pi\)
\(272\) 1.76892e8 0.532989
\(273\) 0 0
\(274\) −8.16891e8 −2.39904
\(275\) −2.14471e8 −0.621876
\(276\) −7.21221e8 −2.06484
\(277\) 5.93018e8 1.67644 0.838221 0.545331i \(-0.183596\pi\)
0.838221 + 0.545331i \(0.183596\pi\)
\(278\) −8.93438e8 −2.49406
\(279\) −4.00342e8 −1.10361
\(280\) −6.26483e7 −0.170552
\(281\) 1.74758e8 0.469856 0.234928 0.972013i \(-0.424515\pi\)
0.234928 + 0.972013i \(0.424515\pi\)
\(282\) −5.40679e8 −1.43571
\(283\) 6.61117e8 1.73391 0.866954 0.498389i \(-0.166075\pi\)
0.866954 + 0.498389i \(0.166075\pi\)
\(284\) 1.98669e8 0.514653
\(285\) −1.50975e8 −0.386321
\(286\) 0 0
\(287\) −3.88190e8 −0.969299
\(288\) −1.15631e9 −2.85233
\(289\) −2.11448e8 −0.515300
\(290\) 1.23724e8 0.297892
\(291\) 8.94681e8 2.12835
\(292\) −4.07518e8 −0.957869
\(293\) 5.36743e8 1.24661 0.623304 0.781980i \(-0.285790\pi\)
0.623304 + 0.781980i \(0.285790\pi\)
\(294\) 5.14534e8 1.18086
\(295\) 7.38352e7 0.167451
\(296\) −1.49560e8 −0.335192
\(297\) −1.34734e9 −2.98422
\(298\) −6.07574e8 −1.32997
\(299\) 0 0
\(300\) 3.50457e8 0.749394
\(301\) −6.96903e7 −0.147296
\(302\) 4.28660e8 0.895548
\(303\) −6.22514e8 −1.28558
\(304\) 1.04659e8 0.213657
\(305\) 3.22188e8 0.650219
\(306\) −1.03509e9 −2.06515
\(307\) 3.58135e8 0.706419 0.353209 0.935544i \(-0.385090\pi\)
0.353209 + 0.935544i \(0.385090\pi\)
\(308\) 7.74995e8 1.51137
\(309\) 3.93630e7 0.0758986
\(310\) 3.42398e8 0.652777
\(311\) −4.95093e8 −0.933309 −0.466655 0.884440i \(-0.654541\pi\)
−0.466655 + 0.884440i \(0.654541\pi\)
\(312\) 0 0
\(313\) −3.14797e8 −0.580263 −0.290131 0.956987i \(-0.593699\pi\)
−0.290131 + 0.956987i \(0.593699\pi\)
\(314\) 7.09685e8 1.29364
\(315\) −6.51982e8 −1.17530
\(316\) 3.27468e8 0.583800
\(317\) 6.24177e8 1.10053 0.550263 0.834991i \(-0.314527\pi\)
0.550263 + 0.834991i \(0.314527\pi\)
\(318\) −2.03599e9 −3.55043
\(319\) −2.50838e8 −0.432639
\(320\) 6.30410e8 1.07547
\(321\) 5.66952e6 0.00956706
\(322\) 6.50133e8 1.08519
\(323\) 1.17674e8 0.194300
\(324\) 7.35946e8 1.20209
\(325\) 0 0
\(326\) 5.78247e8 0.924382
\(327\) 3.29250e8 0.520725
\(328\) −2.44849e8 −0.383125
\(329\) 2.65445e8 0.410950
\(330\) 2.30272e9 3.52730
\(331\) −5.03800e8 −0.763590 −0.381795 0.924247i \(-0.624694\pi\)
−0.381795 + 0.924247i \(0.624694\pi\)
\(332\) −2.49779e8 −0.374604
\(333\) −1.55647e9 −2.30986
\(334\) 1.34286e8 0.197206
\(335\) 5.73213e8 0.833028
\(336\) 6.77758e8 0.974737
\(337\) 9.64189e8 1.37233 0.686164 0.727447i \(-0.259293\pi\)
0.686164 + 0.727447i \(0.259293\pi\)
\(338\) 0 0
\(339\) 1.70111e9 2.37156
\(340\) 4.82145e8 0.665276
\(341\) −6.94180e8 −0.948051
\(342\) −6.12410e8 −0.827849
\(343\) −8.01836e8 −1.07289
\(344\) −4.39569e7 −0.0582200
\(345\) 1.05207e9 1.37936
\(346\) 6.25598e8 0.811949
\(347\) 4.60468e8 0.591624 0.295812 0.955246i \(-0.404410\pi\)
0.295812 + 0.955246i \(0.404410\pi\)
\(348\) 4.09883e8 0.521354
\(349\) −2.44565e8 −0.307967 −0.153984 0.988073i \(-0.549210\pi\)
−0.153984 + 0.988073i \(0.549210\pi\)
\(350\) −3.15914e8 −0.393850
\(351\) 0 0
\(352\) −2.00500e9 −2.45028
\(353\) −5.42061e8 −0.655899 −0.327949 0.944695i \(-0.606358\pi\)
−0.327949 + 0.944695i \(0.606358\pi\)
\(354\) 4.49128e8 0.538094
\(355\) −2.89806e8 −0.343801
\(356\) −6.14206e7 −0.0721505
\(357\) 7.62045e8 0.886425
\(358\) −1.14880e9 −1.32329
\(359\) −5.16223e8 −0.588853 −0.294427 0.955674i \(-0.595129\pi\)
−0.294427 + 0.955674i \(0.595129\pi\)
\(360\) −4.11235e8 −0.464549
\(361\) −8.24250e8 −0.922112
\(362\) 2.02630e9 2.24504
\(363\) −3.08965e9 −3.39028
\(364\) 0 0
\(365\) 5.94462e8 0.639880
\(366\) 1.95982e9 2.08945
\(367\) 1.03213e9 1.08994 0.544969 0.838456i \(-0.316541\pi\)
0.544969 + 0.838456i \(0.316541\pi\)
\(368\) −7.29317e8 −0.762867
\(369\) −2.54815e9 −2.64018
\(370\) 1.33119e9 1.36627
\(371\) 9.99565e8 1.01625
\(372\) 1.13433e9 1.14245
\(373\) −1.80008e9 −1.79602 −0.898012 0.439971i \(-0.854989\pi\)
−0.898012 + 0.439971i \(0.854989\pi\)
\(374\) −1.79481e9 −1.77405
\(375\) −1.92481e9 −1.88486
\(376\) 1.67428e8 0.162432
\(377\) 0 0
\(378\) −1.98463e9 −1.88998
\(379\) −7.94428e8 −0.749579 −0.374790 0.927110i \(-0.622285\pi\)
−0.374790 + 0.927110i \(0.622285\pi\)
\(380\) 2.85262e8 0.266686
\(381\) −7.56403e8 −0.700674
\(382\) −1.40907e9 −1.29333
\(383\) −1.89190e9 −1.72069 −0.860346 0.509710i \(-0.829753\pi\)
−0.860346 + 0.509710i \(0.829753\pi\)
\(384\) 1.09535e9 0.987174
\(385\) −1.13052e9 −1.00963
\(386\) −7.46239e8 −0.660423
\(387\) −4.57460e8 −0.401204
\(388\) −1.69047e9 −1.46925
\(389\) 9.79194e8 0.843422 0.421711 0.906730i \(-0.361430\pi\)
0.421711 + 0.906730i \(0.361430\pi\)
\(390\) 0 0
\(391\) −8.20016e8 −0.693751
\(392\) −1.59332e8 −0.133599
\(393\) 3.30205e9 2.74416
\(394\) 2.12091e9 1.74697
\(395\) −4.77690e8 −0.389993
\(396\) 5.08721e9 4.11668
\(397\) −1.17845e9 −0.945244 −0.472622 0.881265i \(-0.656692\pi\)
−0.472622 + 0.881265i \(0.656692\pi\)
\(398\) −1.61317e9 −1.28260
\(399\) 4.50865e8 0.355338
\(400\) 3.54391e8 0.276868
\(401\) 9.42929e8 0.730254 0.365127 0.930958i \(-0.381026\pi\)
0.365127 + 0.930958i \(0.381026\pi\)
\(402\) 3.48676e9 2.67690
\(403\) 0 0
\(404\) 1.17622e9 0.887468
\(405\) −1.07355e9 −0.803029
\(406\) −3.69483e8 −0.274001
\(407\) −2.69887e9 −1.98427
\(408\) 4.80657e8 0.350368
\(409\) 1.96849e9 1.42266 0.711331 0.702858i \(-0.248093\pi\)
0.711331 + 0.702858i \(0.248093\pi\)
\(410\) 2.17934e9 1.56164
\(411\) 3.94774e9 2.80480
\(412\) −7.43751e7 −0.0523947
\(413\) −2.20498e8 −0.154021
\(414\) 4.26760e9 2.95585
\(415\) 3.64362e8 0.250245
\(416\) 0 0
\(417\) 4.31767e9 2.91590
\(418\) −1.06190e9 −0.711159
\(419\) −1.95673e9 −1.29952 −0.649758 0.760141i \(-0.725130\pi\)
−0.649758 + 0.760141i \(0.725130\pi\)
\(420\) 1.84732e9 1.21666
\(421\) 2.92602e8 0.191113 0.0955563 0.995424i \(-0.469537\pi\)
0.0955563 + 0.995424i \(0.469537\pi\)
\(422\) −8.44209e8 −0.546835
\(423\) 1.74243e9 1.11935
\(424\) 6.30471e8 0.401684
\(425\) 3.98463e8 0.251783
\(426\) −1.76284e9 −1.10479
\(427\) −9.62168e8 −0.598072
\(428\) −1.07123e7 −0.00660437
\(429\) 0 0
\(430\) 3.91249e8 0.237309
\(431\) 9.77619e7 0.0588165 0.0294083 0.999567i \(-0.490638\pi\)
0.0294083 + 0.999567i \(0.490638\pi\)
\(432\) 2.22635e9 1.32862
\(433\) −6.53277e8 −0.386714 −0.193357 0.981128i \(-0.561938\pi\)
−0.193357 + 0.981128i \(0.561938\pi\)
\(434\) −1.02252e9 −0.600425
\(435\) −5.97912e8 −0.348277
\(436\) −6.22105e8 −0.359469
\(437\) −4.85163e8 −0.278101
\(438\) 3.61601e9 2.05623
\(439\) 1.57565e9 0.888862 0.444431 0.895813i \(-0.353406\pi\)
0.444431 + 0.895813i \(0.353406\pi\)
\(440\) −7.13068e8 −0.399068
\(441\) −1.65818e9 −0.920652
\(442\) 0 0
\(443\) 2.36999e9 1.29519 0.647594 0.761985i \(-0.275775\pi\)
0.647594 + 0.761985i \(0.275775\pi\)
\(444\) 4.41010e9 2.39116
\(445\) 8.95966e7 0.0481983
\(446\) 4.11030e9 2.19382
\(447\) 2.93619e9 1.55492
\(448\) −1.88263e9 −0.989217
\(449\) −2.05507e8 −0.107143 −0.0535716 0.998564i \(-0.517061\pi\)
−0.0535716 + 0.998564i \(0.517061\pi\)
\(450\) −2.07372e9 −1.07277
\(451\) −4.41841e9 −2.26803
\(452\) −3.21419e9 −1.63714
\(453\) −2.07156e9 −1.04702
\(454\) −3.20048e7 −0.0160516
\(455\) 0 0
\(456\) 2.84381e8 0.140451
\(457\) 2.69717e9 1.32191 0.660954 0.750426i \(-0.270152\pi\)
0.660954 + 0.750426i \(0.270152\pi\)
\(458\) −3.47733e9 −1.69129
\(459\) 2.50322e9 1.20824
\(460\) −1.98785e9 −0.952209
\(461\) 1.92610e9 0.915642 0.457821 0.889044i \(-0.348630\pi\)
0.457821 + 0.889044i \(0.348630\pi\)
\(462\) −6.87675e9 −3.24441
\(463\) −2.34776e9 −1.09931 −0.549655 0.835391i \(-0.685241\pi\)
−0.549655 + 0.835391i \(0.685241\pi\)
\(464\) 4.14484e8 0.192617
\(465\) −1.65469e9 −0.763186
\(466\) −5.74989e9 −2.63214
\(467\) 1.71342e9 0.778493 0.389246 0.921134i \(-0.372736\pi\)
0.389246 + 0.921134i \(0.372736\pi\)
\(468\) 0 0
\(469\) −1.71182e9 −0.766219
\(470\) −1.49024e9 −0.662084
\(471\) −3.42966e9 −1.51244
\(472\) −1.39078e8 −0.0608783
\(473\) −7.93221e8 −0.344652
\(474\) −2.90571e9 −1.25322
\(475\) 2.35751e8 0.100931
\(476\) −1.43986e9 −0.611921
\(477\) 6.56133e9 2.76807
\(478\) 6.62184e9 2.77320
\(479\) 1.13940e8 0.0473697 0.0236848 0.999719i \(-0.492460\pi\)
0.0236848 + 0.999719i \(0.492460\pi\)
\(480\) −4.77924e9 −1.97249
\(481\) 0 0
\(482\) −1.30332e9 −0.530137
\(483\) −3.14186e9 −1.26874
\(484\) 5.83778e9 2.34039
\(485\) 2.46595e9 0.981496
\(486\) −2.20257e7 −0.00870367
\(487\) 7.96258e8 0.312394 0.156197 0.987726i \(-0.450077\pi\)
0.156197 + 0.987726i \(0.450077\pi\)
\(488\) −6.06883e8 −0.236394
\(489\) −2.79446e9 −1.08073
\(490\) 1.41818e9 0.544558
\(491\) 3.65621e9 1.39395 0.696973 0.717097i \(-0.254530\pi\)
0.696973 + 0.717097i \(0.254530\pi\)
\(492\) 7.21993e9 2.73310
\(493\) 4.66030e8 0.175166
\(494\) 0 0
\(495\) −7.42092e9 −2.75004
\(496\) 1.14706e9 0.422085
\(497\) 8.65463e8 0.316228
\(498\) 2.21636e9 0.804150
\(499\) 7.46131e8 0.268821 0.134411 0.990926i \(-0.457086\pi\)
0.134411 + 0.990926i \(0.457086\pi\)
\(500\) 3.63686e9 1.30116
\(501\) −6.48959e8 −0.230560
\(502\) −5.88270e9 −2.07546
\(503\) −4.68159e8 −0.164023 −0.0820117 0.996631i \(-0.526134\pi\)
−0.0820117 + 0.996631i \(0.526134\pi\)
\(504\) 1.22809e9 0.427292
\(505\) −1.71579e9 −0.592851
\(506\) 7.39987e9 2.53920
\(507\) 0 0
\(508\) 1.42920e9 0.483692
\(509\) 5.93386e8 0.199446 0.0997229 0.995015i \(-0.468204\pi\)
0.0997229 + 0.995015i \(0.468204\pi\)
\(510\) −4.27821e9 −1.42812
\(511\) −1.77527e9 −0.588562
\(512\) 3.98841e9 1.31327
\(513\) 1.48103e9 0.484344
\(514\) −6.02225e9 −1.95609
\(515\) 1.08494e8 0.0350009
\(516\) 1.29617e9 0.415324
\(517\) 3.02132e9 0.961567
\(518\) −3.97542e9 −1.25669
\(519\) −3.02329e9 −0.949280
\(520\) 0 0
\(521\) 2.35950e9 0.730950 0.365475 0.930821i \(-0.380907\pi\)
0.365475 + 0.930821i \(0.380907\pi\)
\(522\) −2.42535e9 −0.746325
\(523\) 5.49264e8 0.167890 0.0839451 0.996470i \(-0.473248\pi\)
0.0839451 + 0.996470i \(0.473248\pi\)
\(524\) −6.23911e9 −1.89436
\(525\) 1.52670e9 0.460465
\(526\) −3.34497e9 −1.00217
\(527\) 1.28971e9 0.383844
\(528\) 7.71430e9 2.28075
\(529\) −2.39521e7 −0.00703475
\(530\) −5.61167e9 −1.63729
\(531\) −1.44739e9 −0.419522
\(532\) −8.51893e8 −0.245298
\(533\) 0 0
\(534\) 5.45002e8 0.154883
\(535\) 1.56265e7 0.00441188
\(536\) −1.07972e9 −0.302856
\(537\) 5.55174e9 1.54710
\(538\) −1.08115e9 −0.299328
\(539\) −2.87522e9 −0.790881
\(540\) 6.06822e9 1.65838
\(541\) −6.19192e7 −0.0168126 −0.00840630 0.999965i \(-0.502676\pi\)
−0.00840630 + 0.999965i \(0.502676\pi\)
\(542\) −8.03907e8 −0.216874
\(543\) −9.79240e9 −2.62476
\(544\) 3.72507e9 0.992062
\(545\) 9.07489e8 0.240134
\(546\) 0 0
\(547\) −4.11747e9 −1.07566 −0.537830 0.843053i \(-0.680756\pi\)
−0.537830 + 0.843053i \(0.680756\pi\)
\(548\) −7.45912e9 −1.93622
\(549\) −6.31585e9 −1.62903
\(550\) −3.59576e9 −0.921555
\(551\) 2.75727e8 0.0702181
\(552\) −1.98172e9 −0.501482
\(553\) 1.42655e9 0.358715
\(554\) 9.94238e9 2.48431
\(555\) −6.43319e9 −1.59735
\(556\) −8.15808e9 −2.01292
\(557\) 4.03807e9 0.990105 0.495052 0.868863i \(-0.335149\pi\)
0.495052 + 0.868863i \(0.335149\pi\)
\(558\) −6.71202e9 −1.63544
\(559\) 0 0
\(560\) 1.86806e9 0.449503
\(561\) 8.67366e9 2.07411
\(562\) 2.92994e9 0.696277
\(563\) −6.53949e8 −0.154442 −0.0772209 0.997014i \(-0.524605\pi\)
−0.0772209 + 0.997014i \(0.524605\pi\)
\(564\) −4.93700e9 −1.15874
\(565\) 4.68866e9 1.09365
\(566\) 1.10841e10 2.56947
\(567\) 3.20601e9 0.738626
\(568\) 5.45887e8 0.124992
\(569\) 3.78098e9 0.860423 0.430211 0.902728i \(-0.358439\pi\)
0.430211 + 0.902728i \(0.358439\pi\)
\(570\) −2.53121e9 −0.572487
\(571\) 1.41244e9 0.317499 0.158750 0.987319i \(-0.449254\pi\)
0.158750 + 0.987319i \(0.449254\pi\)
\(572\) 0 0
\(573\) 6.80952e9 1.51208
\(574\) −6.50829e9 −1.43640
\(575\) −1.64284e9 −0.360377
\(576\) −1.23579e10 −2.69443
\(577\) 2.80901e9 0.608749 0.304374 0.952553i \(-0.401553\pi\)
0.304374 + 0.952553i \(0.401553\pi\)
\(578\) −3.54507e9 −0.763621
\(579\) 3.60631e9 0.772125
\(580\) 1.12973e9 0.240424
\(581\) −1.08812e9 −0.230175
\(582\) 1.50000e10 3.15399
\(583\) 1.13771e10 2.37790
\(584\) −1.11975e9 −0.232635
\(585\) 0 0
\(586\) 8.99889e9 1.84734
\(587\) −5.36072e9 −1.09393 −0.546965 0.837156i \(-0.684217\pi\)
−0.546965 + 0.837156i \(0.684217\pi\)
\(588\) 4.69827e9 0.953054
\(589\) 7.63059e8 0.153870
\(590\) 1.23790e9 0.248144
\(591\) −1.02496e10 −2.04245
\(592\) 4.45960e9 0.883426
\(593\) 2.19757e9 0.432765 0.216382 0.976309i \(-0.430574\pi\)
0.216382 + 0.976309i \(0.430574\pi\)
\(594\) −2.25892e10 −4.42230
\(595\) 2.10038e9 0.408778
\(596\) −5.54783e9 −1.07340
\(597\) 7.79589e9 1.49953
\(598\) 0 0
\(599\) −9.75825e9 −1.85515 −0.927573 0.373642i \(-0.878109\pi\)
−0.927573 + 0.373642i \(0.878109\pi\)
\(600\) 9.62960e8 0.182003
\(601\) 3.68732e9 0.692868 0.346434 0.938074i \(-0.387393\pi\)
0.346434 + 0.938074i \(0.387393\pi\)
\(602\) −1.16841e9 −0.218277
\(603\) −1.12367e10 −2.08703
\(604\) 3.91414e9 0.722782
\(605\) −8.51579e9 −1.56344
\(606\) −1.04369e10 −1.90510
\(607\) 5.90498e9 1.07166 0.535831 0.844325i \(-0.319998\pi\)
0.535831 + 0.844325i \(0.319998\pi\)
\(608\) 2.20394e9 0.397684
\(609\) 1.78558e9 0.320345
\(610\) 5.40171e9 0.963557
\(611\) 0 0
\(612\) −9.45149e9 −1.66675
\(613\) 8.40999e9 1.47463 0.737316 0.675548i \(-0.236093\pi\)
0.737316 + 0.675548i \(0.236093\pi\)
\(614\) 6.00439e9 1.04684
\(615\) −1.05320e10 −1.82578
\(616\) 2.12948e9 0.367063
\(617\) 8.51257e9 1.45902 0.729512 0.683967i \(-0.239747\pi\)
0.729512 + 0.683967i \(0.239747\pi\)
\(618\) 6.59950e8 0.112474
\(619\) 8.70392e9 1.47502 0.737509 0.675337i \(-0.236002\pi\)
0.737509 + 0.675337i \(0.236002\pi\)
\(620\) 3.12647e9 0.526846
\(621\) −1.03206e10 −1.72936
\(622\) −8.30060e9 −1.38307
\(623\) −2.67568e8 −0.0443328
\(624\) 0 0
\(625\) −3.09788e9 −0.507556
\(626\) −5.27780e9 −0.859889
\(627\) 5.13178e9 0.831442
\(628\) 6.48022e9 1.04407
\(629\) 5.01421e9 0.803388
\(630\) −1.09310e10 −1.74167
\(631\) −9.88656e9 −1.56654 −0.783272 0.621679i \(-0.786451\pi\)
−0.783272 + 0.621679i \(0.786451\pi\)
\(632\) 8.99792e8 0.141786
\(633\) 4.07976e9 0.639326
\(634\) 1.04648e10 1.63086
\(635\) −2.08482e9 −0.323118
\(636\) −1.85909e10 −2.86549
\(637\) 0 0
\(638\) −4.20548e9 −0.641126
\(639\) 5.68106e9 0.861343
\(640\) 3.01904e9 0.455239
\(641\) −6.76169e9 −1.01403 −0.507017 0.861936i \(-0.669252\pi\)
−0.507017 + 0.861936i \(0.669252\pi\)
\(642\) 9.50536e7 0.0141774
\(643\) 2.81532e9 0.417627 0.208814 0.977955i \(-0.433040\pi\)
0.208814 + 0.977955i \(0.433040\pi\)
\(644\) 5.93644e9 0.875842
\(645\) −1.89077e9 −0.277447
\(646\) 1.97289e9 0.287932
\(647\) −1.19349e10 −1.73243 −0.866213 0.499674i \(-0.833453\pi\)
−0.866213 + 0.499674i \(0.833453\pi\)
\(648\) 2.02218e9 0.291949
\(649\) −2.50973e9 −0.360388
\(650\) 0 0
\(651\) 4.94149e9 0.701979
\(652\) 5.28004e9 0.746054
\(653\) 1.28240e9 0.180231 0.0901153 0.995931i \(-0.471276\pi\)
0.0901153 + 0.995931i \(0.471276\pi\)
\(654\) 5.52011e9 0.771659
\(655\) 9.10123e9 1.26548
\(656\) 7.30097e9 1.00976
\(657\) −1.16532e10 −1.60313
\(658\) 4.45038e9 0.608985
\(659\) −4.85245e9 −0.660484 −0.330242 0.943896i \(-0.607130\pi\)
−0.330242 + 0.943896i \(0.607130\pi\)
\(660\) 2.10264e10 2.84683
\(661\) −4.76107e9 −0.641209 −0.320605 0.947213i \(-0.603886\pi\)
−0.320605 + 0.947213i \(0.603886\pi\)
\(662\) −8.44658e9 −1.13156
\(663\) 0 0
\(664\) −6.86325e8 −0.0909790
\(665\) 1.24269e9 0.163865
\(666\) −2.60954e10 −3.42298
\(667\) −1.92141e9 −0.250715
\(668\) 1.22618e9 0.159162
\(669\) −1.98636e10 −2.56488
\(670\) 9.61034e9 1.23446
\(671\) −1.09515e10 −1.39941
\(672\) 1.42725e10 1.81429
\(673\) −1.03481e10 −1.30861 −0.654303 0.756233i \(-0.727038\pi\)
−0.654303 + 0.756233i \(0.727038\pi\)
\(674\) 1.61653e10 2.03365
\(675\) 5.01501e9 0.627637
\(676\) 0 0
\(677\) −1.09230e9 −0.135295 −0.0676477 0.997709i \(-0.521549\pi\)
−0.0676477 + 0.997709i \(0.521549\pi\)
\(678\) 2.85204e10 3.51440
\(679\) −7.36421e9 −0.902780
\(680\) 1.32480e9 0.161573
\(681\) 1.54668e8 0.0187666
\(682\) −1.16384e10 −1.40491
\(683\) −7.72912e9 −0.928234 −0.464117 0.885774i \(-0.653628\pi\)
−0.464117 + 0.885774i \(0.653628\pi\)
\(684\) −5.59199e9 −0.668144
\(685\) 1.08809e10 1.29345
\(686\) −1.34434e10 −1.58992
\(687\) 1.68047e10 1.97735
\(688\) 1.31072e9 0.153444
\(689\) 0 0
\(690\) 1.76388e10 2.04407
\(691\) −8.59771e9 −0.991310 −0.495655 0.868519i \(-0.665072\pi\)
−0.495655 + 0.868519i \(0.665072\pi\)
\(692\) 5.71240e9 0.655311
\(693\) 2.21615e10 2.52949
\(694\) 7.72008e9 0.876725
\(695\) 1.19005e10 1.34468
\(696\) 1.12625e9 0.126620
\(697\) 8.20893e9 0.918273
\(698\) −4.10030e9 −0.456375
\(699\) 2.77872e10 3.07733
\(700\) −2.88465e9 −0.317870
\(701\) −4.34708e9 −0.476633 −0.238317 0.971188i \(-0.576596\pi\)
−0.238317 + 0.971188i \(0.576596\pi\)
\(702\) 0 0
\(703\) 2.96666e9 0.322051
\(704\) −2.14282e10 −2.31463
\(705\) 7.20179e9 0.774067
\(706\) −9.08805e9 −0.971973
\(707\) 5.12397e9 0.545304
\(708\) 4.10104e9 0.434287
\(709\) 1.22439e10 1.29020 0.645100 0.764098i \(-0.276816\pi\)
0.645100 + 0.764098i \(0.276816\pi\)
\(710\) −4.85880e9 −0.509477
\(711\) 9.36416e9 0.977069
\(712\) −1.68767e8 −0.0175230
\(713\) −5.31740e9 −0.549396
\(714\) 1.27762e10 1.31359
\(715\) 0 0
\(716\) −1.04898e10 −1.06800
\(717\) −3.20010e10 −3.24225
\(718\) −8.65486e9 −0.872619
\(719\) −2.29472e9 −0.230239 −0.115119 0.993352i \(-0.536725\pi\)
−0.115119 + 0.993352i \(0.536725\pi\)
\(720\) 1.22623e10 1.22436
\(721\) −3.24001e8 −0.0321939
\(722\) −1.38191e10 −1.36647
\(723\) 6.29851e9 0.619803
\(724\) 1.85024e10 1.81194
\(725\) 9.33655e8 0.0909921
\(726\) −5.18002e10 −5.02404
\(727\) 5.74619e9 0.554638 0.277319 0.960778i \(-0.410554\pi\)
0.277319 + 0.960778i \(0.410554\pi\)
\(728\) 0 0
\(729\) −1.04071e10 −0.994908
\(730\) 9.96659e9 0.948236
\(731\) 1.47372e9 0.139542
\(732\) 1.78953e10 1.68636
\(733\) 1.26955e9 0.119065 0.0595326 0.998226i \(-0.481039\pi\)
0.0595326 + 0.998226i \(0.481039\pi\)
\(734\) 1.73044e10 1.61518
\(735\) −6.85355e9 −0.636664
\(736\) −1.53582e10 −1.41994
\(737\) −1.94841e10 −1.79285
\(738\) −4.27216e10 −3.91247
\(739\) 2.57407e9 0.234620 0.117310 0.993095i \(-0.462573\pi\)
0.117310 + 0.993095i \(0.462573\pi\)
\(740\) 1.21553e10 1.10269
\(741\) 0 0
\(742\) 1.67584e10 1.50598
\(743\) 4.84335e9 0.433196 0.216598 0.976261i \(-0.430504\pi\)
0.216598 + 0.976261i \(0.430504\pi\)
\(744\) 3.11682e9 0.277464
\(745\) 8.09283e9 0.717057
\(746\) −3.01797e10 −2.66152
\(747\) −7.14260e9 −0.626952
\(748\) −1.63886e10 −1.43181
\(749\) −4.66664e7 −0.00405805
\(750\) −3.22708e10 −2.79316
\(751\) 2.07398e10 1.78676 0.893378 0.449307i \(-0.148329\pi\)
0.893378 + 0.449307i \(0.148329\pi\)
\(752\) −4.99242e9 −0.428103
\(753\) 2.84290e10 2.42650
\(754\) 0 0
\(755\) −5.70971e9 −0.482836
\(756\) −1.81219e10 −1.52538
\(757\) 2.98409e9 0.250021 0.125010 0.992155i \(-0.460104\pi\)
0.125010 + 0.992155i \(0.460104\pi\)
\(758\) −1.33192e10 −1.11080
\(759\) −3.57610e10 −2.96868
\(760\) 7.83821e8 0.0647694
\(761\) 2.11422e10 1.73901 0.869507 0.493920i \(-0.164436\pi\)
0.869507 + 0.493920i \(0.164436\pi\)
\(762\) −1.26816e10 −1.03832
\(763\) −2.71009e9 −0.220875
\(764\) −1.28663e10 −1.04383
\(765\) 1.37873e10 1.11343
\(766\) −3.17191e10 −2.54989
\(767\) 0 0
\(768\) −1.09120e10 −0.869240
\(769\) −1.37622e8 −0.0109130 −0.00545652 0.999985i \(-0.501737\pi\)
−0.00545652 + 0.999985i \(0.501737\pi\)
\(770\) −1.89539e10 −1.49617
\(771\) 2.91034e10 2.28693
\(772\) −6.81399e9 −0.533017
\(773\) 4.08746e9 0.318292 0.159146 0.987255i \(-0.449126\pi\)
0.159146 + 0.987255i \(0.449126\pi\)
\(774\) −7.66966e9 −0.594542
\(775\) 2.58384e9 0.199393
\(776\) −4.64495e9 −0.356833
\(777\) 1.92118e10 1.46924
\(778\) 1.64169e10 1.24986
\(779\) 4.85683e9 0.368105
\(780\) 0 0
\(781\) 9.85077e9 0.739932
\(782\) −1.37482e10 −1.02807
\(783\) 5.86539e9 0.436648
\(784\) 4.75101e9 0.352111
\(785\) −9.45295e9 −0.697466
\(786\) 5.53613e10 4.06656
\(787\) 1.83896e10 1.34481 0.672404 0.740184i \(-0.265262\pi\)
0.672404 + 0.740184i \(0.265262\pi\)
\(788\) 1.93662e10 1.40995
\(789\) 1.61651e10 1.17168
\(790\) −8.00882e9 −0.577928
\(791\) −1.40020e10 −1.00594
\(792\) 1.39783e10 0.999805
\(793\) 0 0
\(794\) −1.97576e10 −1.40075
\(795\) 2.71192e10 1.91422
\(796\) −1.47301e10 −1.03516
\(797\) −1.07541e10 −0.752436 −0.376218 0.926531i \(-0.622776\pi\)
−0.376218 + 0.926531i \(0.622776\pi\)
\(798\) 7.55908e9 0.526573
\(799\) −5.61328e9 −0.389317
\(800\) 7.46290e9 0.515339
\(801\) −1.75636e9 −0.120754
\(802\) 1.58089e10 1.08216
\(803\) −2.02063e10 −1.37716
\(804\) 3.18380e10 2.16048
\(805\) −8.65972e9 −0.585084
\(806\) 0 0
\(807\) 5.22482e9 0.349956
\(808\) 3.23192e9 0.215537
\(809\) 7.93391e9 0.526826 0.263413 0.964683i \(-0.415152\pi\)
0.263413 + 0.964683i \(0.415152\pi\)
\(810\) −1.79989e10 −1.19000
\(811\) 2.50497e10 1.64903 0.824517 0.565837i \(-0.191447\pi\)
0.824517 + 0.565837i \(0.191447\pi\)
\(812\) −3.37379e9 −0.221142
\(813\) 3.88500e9 0.253556
\(814\) −4.52485e10 −2.94049
\(815\) −7.70220e9 −0.498383
\(816\) −1.43323e10 −0.923424
\(817\) 8.71928e8 0.0559375
\(818\) 3.30032e10 2.10824
\(819\) 0 0
\(820\) 1.98998e10 1.26038
\(821\) −5.53755e9 −0.349234 −0.174617 0.984636i \(-0.555869\pi\)
−0.174617 + 0.984636i \(0.555869\pi\)
\(822\) 6.61868e10 4.15643
\(823\) 2.94660e10 1.84256 0.921282 0.388896i \(-0.127144\pi\)
0.921282 + 0.388896i \(0.127144\pi\)
\(824\) −2.04362e8 −0.0127249
\(825\) 1.73770e10 1.07742
\(826\) −3.69682e9 −0.228243
\(827\) 2.47966e10 1.52448 0.762241 0.647294i \(-0.224099\pi\)
0.762241 + 0.647294i \(0.224099\pi\)
\(828\) 3.89679e10 2.38562
\(829\) −1.08636e10 −0.662266 −0.331133 0.943584i \(-0.607431\pi\)
−0.331133 + 0.943584i \(0.607431\pi\)
\(830\) 6.10880e9 0.370837
\(831\) −4.80480e10 −2.90450
\(832\) 0 0
\(833\) 5.34185e9 0.320210
\(834\) 7.23889e10 4.32106
\(835\) −1.78868e9 −0.106324
\(836\) −9.69632e9 −0.573965
\(837\) 1.62321e10 0.956834
\(838\) −3.28060e10 −1.92575
\(839\) −1.43527e10 −0.839007 −0.419504 0.907754i \(-0.637796\pi\)
−0.419504 + 0.907754i \(0.637796\pi\)
\(840\) 5.07594e9 0.295488
\(841\) −1.61579e10 −0.936697
\(842\) 4.90568e9 0.283209
\(843\) −1.41594e10 −0.814044
\(844\) −7.70857e9 −0.441342
\(845\) 0 0
\(846\) 2.92131e10 1.65875
\(847\) 2.54312e10 1.43805
\(848\) −1.87995e10 −1.05867
\(849\) −5.35656e10 −3.00406
\(850\) 6.68053e9 0.373117
\(851\) −2.06733e10 −1.14989
\(852\) −1.60967e10 −0.891658
\(853\) 2.42734e10 1.33909 0.669543 0.742774i \(-0.266490\pi\)
0.669543 + 0.742774i \(0.266490\pi\)
\(854\) −1.61314e10 −0.886280
\(855\) 8.15725e9 0.446336
\(856\) −2.94346e7 −0.00160398
\(857\) −9.63070e9 −0.522667 −0.261334 0.965249i \(-0.584162\pi\)
−0.261334 + 0.965249i \(0.584162\pi\)
\(858\) 0 0
\(859\) 2.19480e10 1.18146 0.590729 0.806870i \(-0.298840\pi\)
0.590729 + 0.806870i \(0.298840\pi\)
\(860\) 3.57254e9 0.191528
\(861\) 3.14523e10 1.67935
\(862\) 1.63905e9 0.0871599
\(863\) −1.90983e10 −1.01148 −0.505740 0.862686i \(-0.668780\pi\)
−0.505740 + 0.862686i \(0.668780\pi\)
\(864\) 4.68833e10 2.47298
\(865\) −8.33290e9 −0.437764
\(866\) −1.09527e10 −0.573070
\(867\) 1.71321e10 0.892778
\(868\) −9.33676e9 −0.484593
\(869\) 1.62371e10 0.839345
\(870\) −1.00244e10 −0.516110
\(871\) 0 0
\(872\) −1.70938e9 −0.0873031
\(873\) −4.83401e10 −2.45899
\(874\) −8.13412e9 −0.412117
\(875\) 1.58433e10 0.799498
\(876\) 3.30182e10 1.65955
\(877\) −2.78380e10 −1.39360 −0.696802 0.717263i \(-0.745394\pi\)
−0.696802 + 0.717263i \(0.745394\pi\)
\(878\) 2.64169e10 1.31720
\(879\) −4.34885e10 −2.15980
\(880\) 2.12624e10 1.05178
\(881\) 2.24473e10 1.10598 0.552992 0.833186i \(-0.313486\pi\)
0.552992 + 0.833186i \(0.313486\pi\)
\(882\) −2.78005e10 −1.36431
\(883\) −1.41508e10 −0.691700 −0.345850 0.938290i \(-0.612409\pi\)
−0.345850 + 0.938290i \(0.612409\pi\)
\(884\) 0 0
\(885\) −5.98234e9 −0.290115
\(886\) 3.97346e10 1.91933
\(887\) 3.27385e10 1.57516 0.787582 0.616210i \(-0.211333\pi\)
0.787582 + 0.616210i \(0.211333\pi\)
\(888\) 1.21178e10 0.580733
\(889\) 6.22603e9 0.297204
\(890\) 1.50215e9 0.0714248
\(891\) 3.64911e10 1.72828
\(892\) 3.75316e10 1.77060
\(893\) −3.32110e9 −0.156064
\(894\) 4.92274e10 2.30423
\(895\) 1.53019e10 0.713452
\(896\) −9.01594e9 −0.418729
\(897\) 0 0
\(898\) −3.44548e9 −0.158775
\(899\) 3.02197e9 0.138718
\(900\) −1.89353e10 −0.865814
\(901\) −2.11375e10 −0.962756
\(902\) −7.40780e10 −3.36098
\(903\) 5.64651e9 0.255195
\(904\) −8.83171e9 −0.397608
\(905\) −2.69902e10 −1.21042
\(906\) −3.47313e10 −1.55157
\(907\) 4.64948e9 0.206909 0.103454 0.994634i \(-0.467010\pi\)
0.103454 + 0.994634i \(0.467010\pi\)
\(908\) −2.92239e8 −0.0129550
\(909\) 3.36347e10 1.48530
\(910\) 0 0
\(911\) −1.91286e9 −0.0838242 −0.0419121 0.999121i \(-0.513345\pi\)
−0.0419121 + 0.999121i \(0.513345\pi\)
\(912\) −8.47974e9 −0.370170
\(913\) −1.23850e10 −0.538579
\(914\) 4.52200e10 1.95893
\(915\) −2.61046e10 −1.12653
\(916\) −3.17519e10 −1.36501
\(917\) −2.71795e10 −1.16399
\(918\) 4.19683e10 1.79049
\(919\) −4.51305e10 −1.91808 −0.959039 0.283275i \(-0.908579\pi\)
−0.959039 + 0.283275i \(0.908579\pi\)
\(920\) −5.46208e9 −0.231260
\(921\) −2.90171e10 −1.22390
\(922\) 3.22925e10 1.35689
\(923\) 0 0
\(924\) −6.27923e10 −2.61851
\(925\) 1.00456e10 0.417330
\(926\) −3.93619e10 −1.62906
\(927\) −2.12680e9 −0.0876897
\(928\) 8.72837e9 0.358522
\(929\) −6.56214e9 −0.268529 −0.134264 0.990946i \(-0.542867\pi\)
−0.134264 + 0.990946i \(0.542867\pi\)
\(930\) −2.77420e10 −1.13096
\(931\) 3.16051e9 0.128361
\(932\) −5.25029e10 −2.12436
\(933\) 4.01139e10 1.61700
\(934\) 2.87267e10 1.15364
\(935\) 2.39067e10 0.956485
\(936\) 0 0
\(937\) −1.55199e10 −0.616314 −0.308157 0.951336i \(-0.599712\pi\)
−0.308157 + 0.951336i \(0.599712\pi\)
\(938\) −2.86999e10 −1.13546
\(939\) 2.55057e10 1.00533
\(940\) −1.36075e10 −0.534357
\(941\) −1.49766e10 −0.585933 −0.292967 0.956123i \(-0.594642\pi\)
−0.292967 + 0.956123i \(0.594642\pi\)
\(942\) −5.75007e10 −2.24128
\(943\) −3.38449e10 −1.31432
\(944\) 4.14707e9 0.160450
\(945\) 2.64351e10 1.01899
\(946\) −1.32989e10 −0.510738
\(947\) 1.19869e10 0.458651 0.229325 0.973350i \(-0.426348\pi\)
0.229325 + 0.973350i \(0.426348\pi\)
\(948\) −2.65324e10 −1.01146
\(949\) 0 0
\(950\) 3.95254e9 0.149570
\(951\) −5.05726e10 −1.90671
\(952\) −3.95633e9 −0.148615
\(953\) −6.04429e9 −0.226214 −0.113107 0.993583i \(-0.536080\pi\)
−0.113107 + 0.993583i \(0.536080\pi\)
\(954\) 1.10006e11 4.10200
\(955\) 1.87686e10 0.697302
\(956\) 6.04648e10 2.23820
\(957\) 2.03236e10 0.749565
\(958\) 1.91028e9 0.0701969
\(959\) −3.24943e10 −1.18971
\(960\) −5.10776e10 −1.86329
\(961\) −1.91495e10 −0.696025
\(962\) 0 0
\(963\) −3.06327e8 −0.0110533
\(964\) −1.19008e10 −0.427865
\(965\) 9.93983e9 0.356068
\(966\) −5.26757e10 −1.88014
\(967\) 4.09241e9 0.145541 0.0727706 0.997349i \(-0.476816\pi\)
0.0727706 + 0.997349i \(0.476816\pi\)
\(968\) 1.60406e10 0.568404
\(969\) −9.53430e9 −0.336632
\(970\) 4.13435e10 1.45447
\(971\) 4.94435e10 1.73317 0.866587 0.499026i \(-0.166309\pi\)
0.866587 + 0.499026i \(0.166309\pi\)
\(972\) −2.01119e8 −0.00702460
\(973\) −3.55392e10 −1.23684
\(974\) 1.33498e10 0.462935
\(975\) 0 0
\(976\) 1.80962e10 0.623035
\(977\) −4.89243e10 −1.67839 −0.839197 0.543828i \(-0.816974\pi\)
−0.839197 + 0.543828i \(0.816974\pi\)
\(978\) −4.68512e10 −1.60153
\(979\) −3.04548e9 −0.103733
\(980\) 1.29495e10 0.439504
\(981\) −1.77895e10 −0.601620
\(982\) 6.12991e10 2.06568
\(983\) −1.74370e10 −0.585511 −0.292755 0.956187i \(-0.594572\pi\)
−0.292755 + 0.956187i \(0.594572\pi\)
\(984\) 1.98384e10 0.663779
\(985\) −2.82503e10 −0.941881
\(986\) 7.81333e9 0.259577
\(987\) −2.15071e10 −0.711987
\(988\) 0 0
\(989\) −6.07605e9 −0.199726
\(990\) −1.24417e11 −4.07528
\(991\) −4.84851e10 −1.58252 −0.791262 0.611477i \(-0.790576\pi\)
−0.791262 + 0.611477i \(0.790576\pi\)
\(992\) 2.41553e10 0.785635
\(993\) 4.08193e10 1.32295
\(994\) 1.45101e10 0.468618
\(995\) 2.14873e10 0.691515
\(996\) 2.02378e10 0.649017
\(997\) 2.19592e10 0.701752 0.350876 0.936422i \(-0.385884\pi\)
0.350876 + 0.936422i \(0.385884\pi\)
\(998\) 1.25094e10 0.398365
\(999\) 6.31082e10 2.00266
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.8.a.g.1.13 14
13.5 odd 4 169.8.b.d.168.2 14
13.6 odd 12 13.8.e.a.10.1 yes 14
13.8 odd 4 169.8.b.d.168.13 14
13.11 odd 12 13.8.e.a.4.1 14
13.12 even 2 inner 169.8.a.g.1.2 14
39.11 even 12 117.8.q.b.82.7 14
39.32 even 12 117.8.q.b.10.7 14
52.11 even 12 208.8.w.a.17.1 14
52.19 even 12 208.8.w.a.49.1 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.8.e.a.4.1 14 13.11 odd 12
13.8.e.a.10.1 yes 14 13.6 odd 12
117.8.q.b.10.7 14 39.32 even 12
117.8.q.b.82.7 14 39.11 even 12
169.8.a.g.1.2 14 13.12 even 2 inner
169.8.a.g.1.13 14 1.1 even 1 trivial
169.8.b.d.168.2 14 13.5 odd 4
169.8.b.d.168.13 14 13.8 odd 4
208.8.w.a.17.1 14 52.11 even 12
208.8.w.a.49.1 14 52.19 even 12