Newspace parameters
Level: | \( N \) | \(=\) | \( 169 = 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 169.e (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.97132279097\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\zeta_{12})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 3^{2} \) |
Twist minimal: | no (minimal twist has level 13) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring
\(\beta_{1}\) | \(=\) |
\( 3\zeta_{12} \)
|
\(\beta_{2}\) | \(=\) |
\( \zeta_{12}^{2} \)
|
\(\beta_{3}\) | \(=\) |
\( 3\zeta_{12}^{3} \)
|
\(\zeta_{12}\) | \(=\) |
\( ( \beta_1 ) / 3 \)
|
\(\zeta_{12}^{2}\) | \(=\) |
\( \beta_{2} \)
|
\(\zeta_{12}^{3}\) | \(=\) |
\( ( \beta_{3} ) / 3 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).
\(n\) | \(2\) |
\(\chi(n)\) | \(\beta_{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23.1 |
|
−2.59808 | + | 1.50000i | 0.500000 | + | 0.866025i | 0.500000 | − | 0.866025i | 9.00000i | −2.59808 | − | 1.50000i | −12.9904 | − | 7.50000i | − | 21.0000i | 13.0000 | − | 22.5167i | −13.5000 | − | 23.3827i | |||||||||||||||
23.2 | 2.59808 | − | 1.50000i | 0.500000 | + | 0.866025i | 0.500000 | − | 0.866025i | − | 9.00000i | 2.59808 | + | 1.50000i | 12.9904 | + | 7.50000i | 21.0000i | 13.0000 | − | 22.5167i | −13.5000 | − | 23.3827i | ||||||||||||||||
147.1 | −2.59808 | − | 1.50000i | 0.500000 | − | 0.866025i | 0.500000 | + | 0.866025i | − | 9.00000i | −2.59808 | + | 1.50000i | −12.9904 | + | 7.50000i | 21.0000i | 13.0000 | + | 22.5167i | −13.5000 | + | 23.3827i | ||||||||||||||||
147.2 | 2.59808 | + | 1.50000i | 0.500000 | − | 0.866025i | 0.500000 | + | 0.866025i | 9.00000i | 2.59808 | − | 1.50000i | 12.9904 | − | 7.50000i | − | 21.0000i | 13.0000 | + | 22.5167i | −13.5000 | + | 23.3827i | ||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
13.c | even | 3 | 1 | inner |
13.e | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 169.4.e.d | 4 | |
13.b | even | 2 | 1 | inner | 169.4.e.d | 4 | |
13.c | even | 3 | 1 | 13.4.b.a | ✓ | 2 | |
13.c | even | 3 | 1 | inner | 169.4.e.d | 4 | |
13.d | odd | 4 | 1 | 169.4.c.b | 2 | ||
13.d | odd | 4 | 1 | 169.4.c.c | 2 | ||
13.e | even | 6 | 1 | 13.4.b.a | ✓ | 2 | |
13.e | even | 6 | 1 | inner | 169.4.e.d | 4 | |
13.f | odd | 12 | 1 | 169.4.a.b | 1 | ||
13.f | odd | 12 | 1 | 169.4.a.c | 1 | ||
13.f | odd | 12 | 1 | 169.4.c.b | 2 | ||
13.f | odd | 12 | 1 | 169.4.c.c | 2 | ||
39.h | odd | 6 | 1 | 117.4.b.a | 2 | ||
39.i | odd | 6 | 1 | 117.4.b.a | 2 | ||
39.k | even | 12 | 1 | 1521.4.a.d | 1 | ||
39.k | even | 12 | 1 | 1521.4.a.i | 1 | ||
52.i | odd | 6 | 1 | 208.4.f.b | 2 | ||
52.j | odd | 6 | 1 | 208.4.f.b | 2 | ||
65.l | even | 6 | 1 | 325.4.c.b | 2 | ||
65.n | even | 6 | 1 | 325.4.c.b | 2 | ||
65.q | odd | 12 | 1 | 325.4.d.a | 2 | ||
65.q | odd | 12 | 1 | 325.4.d.b | 2 | ||
65.r | odd | 12 | 1 | 325.4.d.a | 2 | ||
65.r | odd | 12 | 1 | 325.4.d.b | 2 | ||
104.n | odd | 6 | 1 | 832.4.f.c | 2 | ||
104.p | odd | 6 | 1 | 832.4.f.c | 2 | ||
104.r | even | 6 | 1 | 832.4.f.e | 2 | ||
104.s | even | 6 | 1 | 832.4.f.e | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
13.4.b.a | ✓ | 2 | 13.c | even | 3 | 1 | |
13.4.b.a | ✓ | 2 | 13.e | even | 6 | 1 | |
117.4.b.a | 2 | 39.h | odd | 6 | 1 | ||
117.4.b.a | 2 | 39.i | odd | 6 | 1 | ||
169.4.a.b | 1 | 13.f | odd | 12 | 1 | ||
169.4.a.c | 1 | 13.f | odd | 12 | 1 | ||
169.4.c.b | 2 | 13.d | odd | 4 | 1 | ||
169.4.c.b | 2 | 13.f | odd | 12 | 1 | ||
169.4.c.c | 2 | 13.d | odd | 4 | 1 | ||
169.4.c.c | 2 | 13.f | odd | 12 | 1 | ||
169.4.e.d | 4 | 1.a | even | 1 | 1 | trivial | |
169.4.e.d | 4 | 13.b | even | 2 | 1 | inner | |
169.4.e.d | 4 | 13.c | even | 3 | 1 | inner | |
169.4.e.d | 4 | 13.e | even | 6 | 1 | inner | |
208.4.f.b | 2 | 52.i | odd | 6 | 1 | ||
208.4.f.b | 2 | 52.j | odd | 6 | 1 | ||
325.4.c.b | 2 | 65.l | even | 6 | 1 | ||
325.4.c.b | 2 | 65.n | even | 6 | 1 | ||
325.4.d.a | 2 | 65.q | odd | 12 | 1 | ||
325.4.d.a | 2 | 65.r | odd | 12 | 1 | ||
325.4.d.b | 2 | 65.q | odd | 12 | 1 | ||
325.4.d.b | 2 | 65.r | odd | 12 | 1 | ||
832.4.f.c | 2 | 104.n | odd | 6 | 1 | ||
832.4.f.c | 2 | 104.p | odd | 6 | 1 | ||
832.4.f.e | 2 | 104.r | even | 6 | 1 | ||
832.4.f.e | 2 | 104.s | even | 6 | 1 | ||
1521.4.a.d | 1 | 39.k | even | 12 | 1 | ||
1521.4.a.i | 1 | 39.k | even | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} - 9T_{2}^{2} + 81 \)
acting on \(S_{4}^{\mathrm{new}}(169, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} - 9T^{2} + 81 \)
$3$
\( (T^{2} - T + 1)^{2} \)
$5$
\( (T^{2} + 81)^{2} \)
$7$
\( T^{4} - 225 T^{2} + 50625 \)
$11$
\( T^{4} - 2304 T^{2} + \cdots + 5308416 \)
$13$
\( T^{4} \)
$17$
\( (T^{2} - 45 T + 2025)^{2} \)
$19$
\( T^{4} - 36T^{2} + 1296 \)
$23$
\( (T^{2} + 162 T + 26244)^{2} \)
$29$
\( (T^{2} - 144 T + 20736)^{2} \)
$31$
\( (T^{2} + 69696)^{2} \)
$37$
\( T^{4} - 91809 T^{2} + \cdots + 8428892481 \)
$41$
\( T^{4} - 36864 T^{2} + \cdots + 1358954496 \)
$43$
\( (T^{2} - 97 T + 9409)^{2} \)
$47$
\( (T^{2} + 12321)^{2} \)
$53$
\( (T + 414)^{4} \)
$59$
\( T^{4} - 272484 T^{2} + \cdots + 74247530256 \)
$61$
\( (T^{2} + 376 T + 141376)^{2} \)
$67$
\( T^{4} - 1296 T^{2} + \cdots + 1679616 \)
$71$
\( T^{4} - 127449 T^{2} + \cdots + 16243247601 \)
$73$
\( (T^{2} + 1205604)^{2} \)
$79$
\( (T + 830)^{4} \)
$83$
\( (T^{2} + 191844)^{2} \)
$89$
\( T^{4} - 191844 T^{2} + \cdots + 36804120336 \)
$97$
\( T^{4} - 725904 T^{2} + \cdots + 526936617216 \)
show more
show less