Properties

Label 169.4.e.c.23.2
Level $169$
Weight $4$
Character 169.23
Analytic conductor $9.971$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,4,Mod(23,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.23");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 169.e (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.97132279097\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 23.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 169.23
Dual form 169.4.e.c.147.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.46410 - 2.00000i) q^{2} +(-1.00000 - 1.73205i) q^{3} +(4.00000 - 6.92820i) q^{4} +17.0000i q^{5} +(-6.92820 - 4.00000i) q^{6} +(17.3205 + 10.0000i) q^{7} +(11.5000 - 19.9186i) q^{9} +O(q^{10})\) \(q+(3.46410 - 2.00000i) q^{2} +(-1.00000 - 1.73205i) q^{3} +(4.00000 - 6.92820i) q^{4} +17.0000i q^{5} +(-6.92820 - 4.00000i) q^{6} +(17.3205 + 10.0000i) q^{7} +(11.5000 - 19.9186i) q^{9} +(34.0000 + 58.8897i) q^{10} +(27.7128 - 16.0000i) q^{11} -16.0000 q^{12} +80.0000 q^{14} +(29.4449 - 17.0000i) q^{15} +(32.0000 + 55.4256i) q^{16} +(-6.50000 + 11.2583i) q^{17} -92.0000i q^{18} +(-25.9808 - 15.0000i) q^{19} +(117.779 + 68.0000i) q^{20} -40.0000i q^{21} +(64.0000 - 110.851i) q^{22} +(39.0000 + 67.5500i) q^{23} -164.000 q^{25} -100.000 q^{27} +(138.564 - 80.0000i) q^{28} +(-98.5000 - 170.607i) q^{29} +(68.0000 - 117.779i) q^{30} -74.0000i q^{31} +(221.703 + 128.000i) q^{32} +(-55.4256 - 32.0000i) q^{33} +52.0000i q^{34} +(-170.000 + 294.449i) q^{35} +(-92.0000 - 159.349i) q^{36} +(196.588 - 113.500i) q^{37} -120.000 q^{38} +(-142.894 + 82.5000i) q^{41} +(-80.0000 - 138.564i) q^{42} +(-78.0000 + 135.100i) q^{43} -256.000i q^{44} +(338.616 + 195.500i) q^{45} +(270.200 + 156.000i) q^{46} +162.000i q^{47} +(64.0000 - 110.851i) q^{48} +(28.5000 + 49.3634i) q^{49} +(-568.113 + 328.000i) q^{50} +26.0000 q^{51} +93.0000 q^{53} +(-346.410 + 200.000i) q^{54} +(272.000 + 471.118i) q^{55} +60.0000i q^{57} +(-682.428 - 394.000i) q^{58} +(-748.246 - 432.000i) q^{59} -272.000i q^{60} +(-72.5000 + 125.574i) q^{61} +(-148.000 - 256.344i) q^{62} +(398.372 - 230.000i) q^{63} +512.000 q^{64} -256.000 q^{66} +(746.514 - 431.000i) q^{67} +(52.0000 + 90.0666i) q^{68} +(78.0000 - 135.100i) q^{69} +1360.00i q^{70} +(-566.381 - 327.000i) q^{71} -215.000i q^{73} +(454.000 - 786.351i) q^{74} +(164.000 + 284.056i) q^{75} +(-207.846 + 120.000i) q^{76} +640.000 q^{77} -76.0000 q^{79} +(-942.236 + 544.000i) q^{80} +(-210.500 - 364.597i) q^{81} +(-330.000 + 571.577i) q^{82} +628.000i q^{83} +(-277.128 - 160.000i) q^{84} +(-191.392 - 110.500i) q^{85} +624.000i q^{86} +(-197.000 + 341.214i) q^{87} +(230.363 - 133.000i) q^{89} +1564.00 q^{90} +624.000 q^{92} +(-128.172 + 74.0000i) q^{93} +(324.000 + 561.184i) q^{94} +(255.000 - 441.673i) q^{95} -512.000i q^{96} +(-206.114 - 119.000i) q^{97} +(197.454 + 114.000i) q^{98} -736.000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 16 q^{4} + 46 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{3} + 16 q^{4} + 46 q^{9} + 136 q^{10} - 64 q^{12} + 320 q^{14} + 128 q^{16} - 26 q^{17} + 256 q^{22} + 156 q^{23} - 656 q^{25} - 400 q^{27} - 394 q^{29} + 272 q^{30} - 680 q^{35} - 368 q^{36} - 480 q^{38} - 320 q^{42} - 312 q^{43} + 256 q^{48} + 114 q^{49} + 104 q^{51} + 372 q^{53} + 1088 q^{55} - 290 q^{61} - 592 q^{62} + 2048 q^{64} - 1024 q^{66} + 208 q^{68} + 312 q^{69} + 1816 q^{74} + 656 q^{75} + 2560 q^{77} - 304 q^{79} - 842 q^{81} - 1320 q^{82} - 788 q^{87} + 6256 q^{90} + 2496 q^{92} + 1296 q^{94} + 1020 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.46410 2.00000i 1.22474 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(3\) −1.00000 1.73205i −0.192450 0.333333i 0.753612 0.657320i \(-0.228310\pi\)
−0.946062 + 0.323987i \(0.894977\pi\)
\(4\) 4.00000 6.92820i 0.500000 0.866025i
\(5\) 17.0000i 1.52053i 0.649615 + 0.760263i \(0.274930\pi\)
−0.649615 + 0.760263i \(0.725070\pi\)
\(6\) −6.92820 4.00000i −0.471405 0.272166i
\(7\) 17.3205 + 10.0000i 0.935220 + 0.539949i 0.888459 0.458957i \(-0.151777\pi\)
0.0467610 + 0.998906i \(0.485110\pi\)
\(8\) 0 0
\(9\) 11.5000 19.9186i 0.425926 0.737725i
\(10\) 34.0000 + 58.8897i 1.07517 + 1.86226i
\(11\) 27.7128 16.0000i 0.759612 0.438562i −0.0695447 0.997579i \(-0.522155\pi\)
0.829156 + 0.559017i \(0.188821\pi\)
\(12\) −16.0000 −0.384900
\(13\) 0 0
\(14\) 80.0000 1.52721
\(15\) 29.4449 17.0000i 0.506842 0.292625i
\(16\) 32.0000 + 55.4256i 0.500000 + 0.866025i
\(17\) −6.50000 + 11.2583i −0.0927342 + 0.160620i −0.908661 0.417535i \(-0.862894\pi\)
0.815927 + 0.578156i \(0.196227\pi\)
\(18\) 92.0000i 1.20470i
\(19\) −25.9808 15.0000i −0.313705 0.181118i 0.334878 0.942261i \(-0.391305\pi\)
−0.648583 + 0.761144i \(0.724638\pi\)
\(20\) 117.779 + 68.0000i 1.31681 + 0.760263i
\(21\) 40.0000i 0.415653i
\(22\) 64.0000 110.851i 0.620220 1.07425i
\(23\) 39.0000 + 67.5500i 0.353568 + 0.612398i 0.986872 0.161506i \(-0.0516350\pi\)
−0.633304 + 0.773903i \(0.718302\pi\)
\(24\) 0 0
\(25\) −164.000 −1.31200
\(26\) 0 0
\(27\) −100.000 −0.712778
\(28\) 138.564 80.0000i 0.935220 0.539949i
\(29\) −98.5000 170.607i −0.630724 1.09245i −0.987404 0.158219i \(-0.949425\pi\)
0.356680 0.934227i \(-0.383909\pi\)
\(30\) 68.0000 117.779i 0.413835 0.716783i
\(31\) 74.0000i 0.428735i −0.976753 0.214368i \(-0.931231\pi\)
0.976753 0.214368i \(-0.0687691\pi\)
\(32\) 221.703 + 128.000i 1.22474 + 0.707107i
\(33\) −55.4256 32.0000i −0.292375 0.168803i
\(34\) 52.0000i 0.262292i
\(35\) −170.000 + 294.449i −0.821007 + 1.42203i
\(36\) −92.0000 159.349i −0.425926 0.737725i
\(37\) 196.588 113.500i 0.873482 0.504305i 0.00497814 0.999988i \(-0.498415\pi\)
0.868504 + 0.495683i \(0.165082\pi\)
\(38\) −120.000 −0.512278
\(39\) 0 0
\(40\) 0 0
\(41\) −142.894 + 82.5000i −0.544301 + 0.314252i −0.746820 0.665026i \(-0.768420\pi\)
0.202520 + 0.979278i \(0.435087\pi\)
\(42\) −80.0000 138.564i −0.293911 0.509069i
\(43\) −78.0000 + 135.100i −0.276625 + 0.479129i −0.970544 0.240924i \(-0.922549\pi\)
0.693919 + 0.720053i \(0.255883\pi\)
\(44\) 256.000i 0.877124i
\(45\) 338.616 + 195.500i 1.12173 + 0.647632i
\(46\) 270.200 + 156.000i 0.866061 + 0.500021i
\(47\) 162.000i 0.502769i 0.967887 + 0.251384i \(0.0808858\pi\)
−0.967887 + 0.251384i \(0.919114\pi\)
\(48\) 64.0000 110.851i 0.192450 0.333333i
\(49\) 28.5000 + 49.3634i 0.0830904 + 0.143917i
\(50\) −568.113 + 328.000i −1.60687 + 0.927724i
\(51\) 26.0000 0.0713868
\(52\) 0 0
\(53\) 93.0000 0.241029 0.120514 0.992712i \(-0.461546\pi\)
0.120514 + 0.992712i \(0.461546\pi\)
\(54\) −346.410 + 200.000i −0.872971 + 0.504010i
\(55\) 272.000 + 471.118i 0.666845 + 1.15501i
\(56\) 0 0
\(57\) 60.0000i 0.139424i
\(58\) −682.428 394.000i −1.54495 0.891978i
\(59\) −748.246 432.000i −1.65107 0.953248i −0.976632 0.214919i \(-0.931051\pi\)
−0.674442 0.738328i \(-0.735616\pi\)
\(60\) 272.000i 0.585251i
\(61\) −72.5000 + 125.574i −0.152175 + 0.263575i −0.932027 0.362389i \(-0.881961\pi\)
0.779852 + 0.625964i \(0.215294\pi\)
\(62\) −148.000 256.344i −0.303162 0.525091i
\(63\) 398.372 230.000i 0.796668 0.459957i
\(64\) 512.000 1.00000
\(65\) 0 0
\(66\) −256.000 −0.477446
\(67\) 746.514 431.000i 1.36121 0.785896i 0.371427 0.928462i \(-0.378869\pi\)
0.989785 + 0.142566i \(0.0455354\pi\)
\(68\) 52.0000 + 90.0666i 0.0927342 + 0.160620i
\(69\) 78.0000 135.100i 0.136088 0.235712i
\(70\) 1360.00i 2.32216i
\(71\) −566.381 327.000i −0.946718 0.546588i −0.0546585 0.998505i \(-0.517407\pi\)
−0.892060 + 0.451917i \(0.850740\pi\)
\(72\) 0 0
\(73\) 215.000i 0.344710i −0.985035 0.172355i \(-0.944862\pi\)
0.985035 0.172355i \(-0.0551377\pi\)
\(74\) 454.000 786.351i 0.713195 1.23529i
\(75\) 164.000 + 284.056i 0.252495 + 0.437333i
\(76\) −207.846 + 120.000i −0.313705 + 0.181118i
\(77\) 640.000 0.947205
\(78\) 0 0
\(79\) −76.0000 −0.108236 −0.0541182 0.998535i \(-0.517235\pi\)
−0.0541182 + 0.998535i \(0.517235\pi\)
\(80\) −942.236 + 544.000i −1.31681 + 0.760263i
\(81\) −210.500 364.597i −0.288752 0.500133i
\(82\) −330.000 + 571.577i −0.444420 + 0.769757i
\(83\) 628.000i 0.830505i 0.909706 + 0.415253i \(0.136307\pi\)
−0.909706 + 0.415253i \(0.863693\pi\)
\(84\) −277.128 160.000i −0.359966 0.207827i
\(85\) −191.392 110.500i −0.244227 0.141005i
\(86\) 624.000i 0.782415i
\(87\) −197.000 + 341.214i −0.242766 + 0.420483i
\(88\) 0 0
\(89\) 230.363 133.000i 0.274364 0.158404i −0.356505 0.934293i \(-0.616032\pi\)
0.630869 + 0.775889i \(0.282698\pi\)
\(90\) 1564.00 1.83178
\(91\) 0 0
\(92\) 624.000 0.707136
\(93\) −128.172 + 74.0000i −0.142912 + 0.0825101i
\(94\) 324.000 + 561.184i 0.355511 + 0.615763i
\(95\) 255.000 441.673i 0.275394 0.476997i
\(96\) 512.000i 0.544331i
\(97\) −206.114 119.000i −0.215750 0.124563i 0.388231 0.921562i \(-0.373086\pi\)
−0.603981 + 0.796999i \(0.706420\pi\)
\(98\) 197.454 + 114.000i 0.203529 + 0.117508i
\(99\) 736.000i 0.747180i
\(100\) −656.000 + 1136.23i −0.656000 + 1.13623i
\(101\) −409.500 709.275i −0.403433 0.698767i 0.590704 0.806888i \(-0.298850\pi\)
−0.994138 + 0.108121i \(0.965517\pi\)
\(102\) 90.0666 52.0000i 0.0874307 0.0504781i
\(103\) −1638.00 −1.56696 −0.783480 0.621417i \(-0.786557\pi\)
−0.783480 + 0.621417i \(0.786557\pi\)
\(104\) 0 0
\(105\) 680.000 0.632011
\(106\) 322.161 186.000i 0.295199 0.170433i
\(107\) −261.000 452.065i −0.235811 0.408437i 0.723697 0.690118i \(-0.242441\pi\)
−0.959508 + 0.281681i \(0.909108\pi\)
\(108\) −400.000 + 692.820i −0.356389 + 0.617284i
\(109\) 1634.00i 1.43586i −0.696115 0.717930i \(-0.745090\pi\)
0.696115 0.717930i \(-0.254910\pi\)
\(110\) 1884.47 + 1088.00i 1.63343 + 0.943061i
\(111\) −393.176 227.000i −0.336203 0.194107i
\(112\) 1280.00i 1.07990i
\(113\) −163.500 + 283.190i −0.136113 + 0.235755i −0.926022 0.377469i \(-0.876794\pi\)
0.789909 + 0.613224i \(0.210128\pi\)
\(114\) 120.000 + 207.846i 0.0985880 + 0.170759i
\(115\) −1148.35 + 663.000i −0.931167 + 0.537609i
\(116\) −1576.00 −1.26145
\(117\) 0 0
\(118\) −3456.00 −2.69619
\(119\) −225.167 + 130.000i −0.173454 + 0.100144i
\(120\) 0 0
\(121\) −153.500 + 265.870i −0.115327 + 0.199752i
\(122\) 580.000i 0.430416i
\(123\) 285.788 + 165.000i 0.209501 + 0.120956i
\(124\) −512.687 296.000i −0.371296 0.214368i
\(125\) 663.000i 0.474404i
\(126\) 920.000 1593.49i 0.650477 1.12666i
\(127\) −1079.00 1868.88i −0.753904 1.30580i −0.945918 0.324407i \(-0.894835\pi\)
0.192014 0.981392i \(-0.438498\pi\)
\(128\) 0 0
\(129\) 312.000 0.212946
\(130\) 0 0
\(131\) 730.000 0.486873 0.243437 0.969917i \(-0.421725\pi\)
0.243437 + 0.969917i \(0.421725\pi\)
\(132\) −443.405 + 256.000i −0.292375 + 0.168803i
\(133\) −300.000 519.615i −0.195589 0.338770i
\(134\) 1724.00 2986.06i 1.11142 1.92504i
\(135\) 1700.00i 1.08380i
\(136\) 0 0
\(137\) 1447.13 + 835.500i 0.902456 + 0.521033i 0.877996 0.478667i \(-0.158880\pi\)
0.0244601 + 0.999701i \(0.492213\pi\)
\(138\) 624.000i 0.384916i
\(139\) −456.000 + 789.815i −0.278255 + 0.481951i −0.970951 0.239278i \(-0.923089\pi\)
0.692696 + 0.721229i \(0.256423\pi\)
\(140\) 1360.00 + 2355.59i 0.821007 + 1.42203i
\(141\) 280.592 162.000i 0.167590 0.0967579i
\(142\) −2616.00 −1.54598
\(143\) 0 0
\(144\) 1472.00 0.851852
\(145\) 2900.32 1674.50i 1.66109 0.959032i
\(146\) −430.000 744.782i −0.243747 0.422182i
\(147\) 57.0000 98.7269i 0.0319815 0.0553936i
\(148\) 1816.00i 1.00861i
\(149\) 1831.64 + 1057.50i 1.00707 + 0.581435i 0.910334 0.413875i \(-0.135825\pi\)
0.0967407 + 0.995310i \(0.469158\pi\)
\(150\) 1136.23 + 656.000i 0.618483 + 0.357081i
\(151\) 514.000i 0.277011i −0.990362 0.138506i \(-0.955770\pi\)
0.990362 0.138506i \(-0.0442299\pi\)
\(152\) 0 0
\(153\) 149.500 + 258.942i 0.0789958 + 0.136825i
\(154\) 2217.03 1280.00i 1.16008 0.669775i
\(155\) 1258.00 0.651903
\(156\) 0 0
\(157\) 2901.00 1.47468 0.737341 0.675521i \(-0.236081\pi\)
0.737341 + 0.675521i \(0.236081\pi\)
\(158\) −263.272 + 152.000i −0.132562 + 0.0765346i
\(159\) −93.0000 161.081i −0.0463860 0.0803430i
\(160\) −2176.00 + 3768.94i −1.07517 + 1.86226i
\(161\) 1560.00i 0.763635i
\(162\) −1458.39 842.000i −0.707294 0.408357i
\(163\) 2043.82 + 1180.00i 0.982112 + 0.567023i 0.902907 0.429835i \(-0.141428\pi\)
0.0792052 + 0.996858i \(0.474762\pi\)
\(164\) 1320.00i 0.628504i
\(165\) 544.000 942.236i 0.256669 0.444563i
\(166\) 1256.00 + 2175.46i 0.587256 + 1.01716i
\(167\) −242.487 + 140.000i −0.112361 + 0.0648714i −0.555127 0.831766i \(-0.687330\pi\)
0.442767 + 0.896637i \(0.353997\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −884.000 −0.398822
\(171\) −597.558 + 345.000i −0.267230 + 0.154285i
\(172\) 624.000 + 1080.80i 0.276625 + 0.479129i
\(173\) 663.000 1148.35i 0.291370 0.504667i −0.682764 0.730639i \(-0.739222\pi\)
0.974134 + 0.225972i \(0.0725557\pi\)
\(174\) 1576.00i 0.686645i
\(175\) −2840.56 1640.00i −1.22701 0.708413i
\(176\) 1773.62 + 1024.00i 0.759612 + 0.438562i
\(177\) 1728.00i 0.733810i
\(178\) 532.000 921.451i 0.224017 0.388009i
\(179\) 2132.00 + 3692.73i 0.890241 + 1.54194i 0.839586 + 0.543227i \(0.182798\pi\)
0.0506550 + 0.998716i \(0.483869\pi\)
\(180\) 2708.93 1564.00i 1.12173 0.647632i
\(181\) 403.000 0.165496 0.0827479 0.996571i \(-0.473630\pi\)
0.0827479 + 0.996571i \(0.473630\pi\)
\(182\) 0 0
\(183\) 290.000 0.117144
\(184\) 0 0
\(185\) 1929.50 + 3341.99i 0.766809 + 1.32815i
\(186\) −296.000 + 512.687i −0.116687 + 0.202108i
\(187\) 416.000i 0.162679i
\(188\) 1122.37 + 648.000i 0.435410 + 0.251384i
\(189\) −1732.05 1000.00i −0.666604 0.384864i
\(190\) 2040.00i 0.778932i
\(191\) 623.000 1079.07i 0.236014 0.408788i −0.723553 0.690269i \(-0.757492\pi\)
0.959567 + 0.281481i \(0.0908255\pi\)
\(192\) −512.000 886.810i −0.192450 0.333333i
\(193\) −231.229 + 133.500i −0.0862394 + 0.0497904i −0.542500 0.840056i \(-0.682522\pi\)
0.456260 + 0.889846i \(0.349189\pi\)
\(194\) −952.000 −0.352318
\(195\) 0 0
\(196\) 456.000 0.166181
\(197\) 1106.78 639.000i 0.400278 0.231101i −0.286326 0.958132i \(-0.592434\pi\)
0.686604 + 0.727032i \(0.259101\pi\)
\(198\) −1472.00 2549.58i −0.528336 0.915104i
\(199\) 2119.00 3670.22i 0.754834 1.30741i −0.190623 0.981663i \(-0.561051\pi\)
0.945457 0.325747i \(-0.105616\pi\)
\(200\) 0 0
\(201\) −1493.03 862.000i −0.523931 0.302492i
\(202\) −2837.10 1638.00i −0.988206 0.570541i
\(203\) 3940.00i 1.36224i
\(204\) 104.000 180.133i 0.0356934 0.0618228i
\(205\) −1402.50 2429.20i −0.477829 0.827623i
\(206\) −5674.20 + 3276.00i −1.91913 + 1.10801i
\(207\) 1794.00 0.602375
\(208\) 0 0
\(209\) −960.000 −0.317725
\(210\) 2355.59 1360.00i 0.774053 0.446900i
\(211\) −1535.00 2658.70i −0.500823 0.867452i −1.00000 0.000951154i \(-0.999697\pi\)
0.499176 0.866501i \(-0.333636\pi\)
\(212\) 372.000 644.323i 0.120514 0.208737i
\(213\) 1308.00i 0.420764i
\(214\) −1808.26 1044.00i −0.577618 0.333488i
\(215\) −2296.70 1326.00i −0.728528 0.420616i
\(216\) 0 0
\(217\) 740.000 1281.72i 0.231495 0.400962i
\(218\) −3268.00 5660.34i −1.01531 1.75856i
\(219\) −372.391 + 215.000i −0.114903 + 0.0663395i
\(220\) 4352.00 1.33369
\(221\) 0 0
\(222\) −1816.00 −0.549018
\(223\) −4657.48 + 2689.00i −1.39860 + 0.807483i −0.994246 0.107119i \(-0.965838\pi\)
−0.404356 + 0.914602i \(0.632504\pi\)
\(224\) 2560.00 + 4434.05i 0.763604 + 1.32260i
\(225\) −1886.00 + 3266.65i −0.558815 + 0.967896i
\(226\) 1308.00i 0.384986i
\(227\) 3441.58 + 1987.00i 1.00628 + 0.580977i 0.910101 0.414387i \(-0.136004\pi\)
0.0961811 + 0.995364i \(0.469337\pi\)
\(228\) 415.692 + 240.000i 0.120745 + 0.0697122i
\(229\) 6298.00i 1.81740i 0.417455 + 0.908698i \(0.362922\pi\)
−0.417455 + 0.908698i \(0.637078\pi\)
\(230\) −2652.00 + 4593.40i −0.760294 + 1.31687i
\(231\) −640.000 1108.51i −0.182290 0.315735i
\(232\) 0 0
\(233\) −4030.00 −1.13311 −0.566554 0.824025i \(-0.691724\pi\)
−0.566554 + 0.824025i \(0.691724\pi\)
\(234\) 0 0
\(235\) −2754.00 −0.764473
\(236\) −5985.97 + 3456.00i −1.65107 + 0.953248i
\(237\) 76.0000 + 131.636i 0.0208301 + 0.0360788i
\(238\) −520.000 + 900.666i −0.141624 + 0.245301i
\(239\) 984.000i 0.266317i −0.991095 0.133158i \(-0.957488\pi\)
0.991095 0.133158i \(-0.0425119\pi\)
\(240\) 1884.47 + 1088.00i 0.506842 + 0.292625i
\(241\) 816.662 + 471.500i 0.218281 + 0.126025i 0.605154 0.796108i \(-0.293111\pi\)
−0.386873 + 0.922133i \(0.626445\pi\)
\(242\) 1228.00i 0.326194i
\(243\) −1771.00 + 3067.46i −0.467530 + 0.809785i
\(244\) 580.000 + 1004.59i 0.152175 + 0.263575i
\(245\) −839.179 + 484.500i −0.218829 + 0.126341i
\(246\) 1320.00 0.342114
\(247\) 0 0
\(248\) 0 0
\(249\) 1087.73 628.000i 0.276835 0.159831i
\(250\) −1326.00 2296.70i −0.335454 0.581024i
\(251\) −1365.00 + 2364.25i −0.343259 + 0.594542i −0.985036 0.172349i \(-0.944864\pi\)
0.641777 + 0.766891i \(0.278198\pi\)
\(252\) 3680.00i 0.919914i
\(253\) 2161.60 + 1248.00i 0.537149 + 0.310123i
\(254\) −7475.53 4316.00i −1.84668 1.06618i
\(255\) 442.000i 0.108546i
\(256\) −2048.00 + 3547.24i −0.500000 + 0.866025i
\(257\) −942.500 1632.46i −0.228761 0.396225i 0.728680 0.684854i \(-0.240134\pi\)
−0.957441 + 0.288629i \(0.906801\pi\)
\(258\) 1080.80 624.000i 0.260805 0.150576i
\(259\) 4540.00 1.08920
\(260\) 0 0
\(261\) −4531.00 −1.07457
\(262\) 2528.79 1460.00i 0.596296 0.344271i
\(263\) −2016.00 3491.81i −0.472669 0.818686i 0.526842 0.849963i \(-0.323376\pi\)
−0.999511 + 0.0312769i \(0.990043\pi\)
\(264\) 0 0
\(265\) 1581.00i 0.366491i
\(266\) −2078.46 1200.00i −0.479093 0.276604i
\(267\) −460.726 266.000i −0.105603 0.0609698i
\(268\) 6896.00i 1.57179i
\(269\) −2003.00 + 3469.30i −0.453997 + 0.786345i −0.998630 0.0523292i \(-0.983335\pi\)
0.544633 + 0.838674i \(0.316669\pi\)
\(270\) −3400.00 5888.97i −0.766361 1.32738i
\(271\) 3720.45 2148.00i 0.833952 0.481482i −0.0212520 0.999774i \(-0.506765\pi\)
0.855204 + 0.518292i \(0.173432\pi\)
\(272\) −832.000 −0.185468
\(273\) 0 0
\(274\) 6684.00 1.47371
\(275\) −4544.90 + 2624.00i −0.996610 + 0.575393i
\(276\) −624.000 1080.80i −0.136088 0.235712i
\(277\) −2775.50 + 4807.31i −0.602035 + 1.04275i 0.390478 + 0.920612i \(0.372310\pi\)
−0.992513 + 0.122142i \(0.961024\pi\)
\(278\) 3648.00i 0.787023i
\(279\) −1473.98 851.000i −0.316289 0.182609i
\(280\) 0 0
\(281\) 5557.00i 1.17973i 0.807504 + 0.589863i \(0.200818\pi\)
−0.807504 + 0.589863i \(0.799182\pi\)
\(282\) 648.000 1122.37i 0.136836 0.237007i
\(283\) 1560.00 + 2702.00i 0.327676 + 0.567552i 0.982050 0.188619i \(-0.0604012\pi\)
−0.654374 + 0.756171i \(0.727068\pi\)
\(284\) −4531.04 + 2616.00i −0.946718 + 0.546588i
\(285\) −1020.00 −0.211999
\(286\) 0 0
\(287\) −3300.00 −0.678721
\(288\) 5099.16 2944.00i 1.04330 0.602350i
\(289\) 2372.00 + 4108.42i 0.482801 + 0.836235i
\(290\) 6698.00 11601.3i 1.35628 2.34914i
\(291\) 476.000i 0.0958887i
\(292\) −1489.56 860.000i −0.298528 0.172355i
\(293\) 7188.88 + 4150.50i 1.43337 + 0.827559i 0.997376 0.0723887i \(-0.0230622\pi\)
0.435998 + 0.899948i \(0.356396\pi\)
\(294\) 456.000i 0.0904573i
\(295\) 7344.00 12720.2i 1.44944 2.51050i
\(296\) 0 0
\(297\) −2771.28 + 1600.00i −0.541435 + 0.312597i
\(298\) 8460.00 1.64455
\(299\) 0 0
\(300\) 2624.00 0.504989
\(301\) −2702.00 + 1560.00i −0.517411 + 0.298727i
\(302\) −1028.00 1780.55i −0.195877 0.339268i
\(303\) −819.000 + 1418.55i −0.155282 + 0.268956i
\(304\) 1920.00i 0.362235i
\(305\) −2134.75 1232.50i −0.400772 0.231386i
\(306\) 1035.77 + 598.000i 0.193499 + 0.111717i
\(307\) 8678.00i 1.61329i −0.591037 0.806644i \(-0.701281\pi\)
0.591037 0.806644i \(-0.298719\pi\)
\(308\) 2560.00 4434.05i 0.473602 0.820303i
\(309\) 1638.00 + 2837.10i 0.301562 + 0.522320i
\(310\) 4357.84 2516.00i 0.798415 0.460965i
\(311\) −8658.00 −1.57862 −0.789309 0.613996i \(-0.789561\pi\)
−0.789309 + 0.613996i \(0.789561\pi\)
\(312\) 0 0
\(313\) −5250.00 −0.948075 −0.474038 0.880505i \(-0.657204\pi\)
−0.474038 + 0.880505i \(0.657204\pi\)
\(314\) 10049.4 5802.00i 1.80611 1.04276i
\(315\) 3910.00 + 6772.32i 0.699376 + 1.21136i
\(316\) −304.000 + 526.543i −0.0541182 + 0.0937354i
\(317\) 6413.00i 1.13625i 0.822944 + 0.568123i \(0.192330\pi\)
−0.822944 + 0.568123i \(0.807670\pi\)
\(318\) −644.323 372.000i −0.113622 0.0655998i
\(319\) −5459.42 3152.00i −0.958210 0.553223i
\(320\) 8704.00i 1.52053i
\(321\) −522.000 + 904.131i −0.0907639 + 0.157208i
\(322\) 3120.00 + 5404.00i 0.539971 + 0.935258i
\(323\) 337.750 195.000i 0.0581824 0.0335916i
\(324\) −3368.00 −0.577503
\(325\) 0 0
\(326\) 9440.00 1.60378
\(327\) −2830.17 + 1634.00i −0.478620 + 0.276332i
\(328\) 0 0
\(329\) −1620.00 + 2805.92i −0.271470 + 0.470199i
\(330\) 4352.00i 0.725969i
\(331\) −3020.70 1744.00i −0.501609 0.289604i 0.227769 0.973715i \(-0.426857\pi\)
−0.729378 + 0.684111i \(0.760190\pi\)
\(332\) 4350.91 + 2512.00i 0.719239 + 0.415253i
\(333\) 5221.00i 0.859186i
\(334\) −560.000 + 969.948i −0.0917420 + 0.158902i
\(335\) 7327.00 + 12690.7i 1.19498 + 2.06976i
\(336\) 2217.03 1280.00i 0.359966 0.207827i
\(337\) 1833.00 0.296290 0.148145 0.988966i \(-0.452670\pi\)
0.148145 + 0.988966i \(0.452670\pi\)
\(338\) 0 0
\(339\) 654.000 0.104780
\(340\) −1531.13 + 884.000i −0.244227 + 0.141005i
\(341\) −1184.00 2050.75i −0.188027 0.325672i
\(342\) −1380.00 + 2390.23i −0.218193 + 0.377921i
\(343\) 5720.00i 0.900440i
\(344\) 0 0
\(345\) 2296.70 + 1326.00i 0.358406 + 0.206926i
\(346\) 5304.00i 0.824118i
\(347\) −3615.00 + 6261.36i −0.559260 + 0.968667i 0.438298 + 0.898830i \(0.355581\pi\)
−0.997558 + 0.0698377i \(0.977752\pi\)
\(348\) 1576.00 + 2729.71i 0.242766 + 0.420483i
\(349\) 4553.56 2629.00i 0.698414 0.403230i −0.108342 0.994114i \(-0.534554\pi\)
0.806757 + 0.590884i \(0.201221\pi\)
\(350\) −13120.0 −2.00370
\(351\) 0 0
\(352\) 8192.00 1.24044
\(353\) 2739.24 1581.50i 0.413017 0.238455i −0.279068 0.960271i \(-0.590026\pi\)
0.692085 + 0.721816i \(0.256692\pi\)
\(354\) 3456.00 + 5985.97i 0.518882 + 0.898730i
\(355\) 5559.00 9628.47i 0.831102 1.43951i
\(356\) 2128.00i 0.316808i
\(357\) 450.333 + 260.000i 0.0667624 + 0.0385453i
\(358\) 14770.9 + 8528.00i 2.18064 + 1.25899i
\(359\) 10068.0i 1.48014i 0.672532 + 0.740068i \(0.265207\pi\)
−0.672532 + 0.740068i \(0.734793\pi\)
\(360\) 0 0
\(361\) −2979.50 5160.65i −0.434393 0.752390i
\(362\) 1396.03 806.000i 0.202690 0.117023i
\(363\) 614.000 0.0887786
\(364\) 0 0
\(365\) 3655.00 0.524141
\(366\) 1004.59 580.000i 0.143472 0.0828336i
\(367\) −3719.00 6441.50i −0.528965 0.916195i −0.999429 0.0337755i \(-0.989247\pi\)
0.470464 0.882419i \(-0.344086\pi\)
\(368\) −2496.00 + 4323.20i −0.353568 + 0.612398i
\(369\) 3795.00i 0.535392i
\(370\) 13368.0 + 7718.00i 1.87829 + 1.08443i
\(371\) 1610.81 + 930.000i 0.225415 + 0.130143i
\(372\) 1184.00i 0.165020i
\(373\) 4841.50 8385.72i 0.672073 1.16407i −0.305242 0.952275i \(-0.598737\pi\)
0.977315 0.211790i \(-0.0679294\pi\)
\(374\) 832.000 + 1441.07i 0.115031 + 0.199240i
\(375\) −1148.35 + 663.000i −0.158135 + 0.0912991i
\(376\) 0 0
\(377\) 0 0
\(378\) −8000.00 −1.08856
\(379\) −919.719 + 531.000i −0.124651 + 0.0719674i −0.561029 0.827796i \(-0.689594\pi\)
0.436378 + 0.899763i \(0.356261\pi\)
\(380\) −2040.00 3533.38i −0.275394 0.476997i
\(381\) −2158.00 + 3737.77i −0.290178 + 0.502602i
\(382\) 4984.00i 0.667549i
\(383\) 3058.80 + 1766.00i 0.408087 + 0.235609i 0.689968 0.723840i \(-0.257625\pi\)
−0.281880 + 0.959450i \(0.590958\pi\)
\(384\) 0 0
\(385\) 10880.0i 1.44025i
\(386\) −534.000 + 924.915i −0.0704142 + 0.121961i
\(387\) 1794.00 + 3107.30i 0.235644 + 0.408147i
\(388\) −1648.91 + 952.000i −0.215750 + 0.124563i
\(389\) 11063.0 1.44194 0.720972 0.692964i \(-0.243696\pi\)
0.720972 + 0.692964i \(0.243696\pi\)
\(390\) 0 0
\(391\) −1014.00 −0.131151
\(392\) 0 0
\(393\) −730.000 1264.40i −0.0936988 0.162291i
\(394\) 2556.00 4427.12i 0.326826 0.566079i
\(395\) 1292.00i 0.164576i
\(396\) −5099.16 2944.00i −0.647077 0.373590i
\(397\) −5184.03 2993.00i −0.655362 0.378374i 0.135145 0.990826i \(-0.456850\pi\)
−0.790508 + 0.612452i \(0.790183\pi\)
\(398\) 16952.0i 2.13499i
\(399\) −600.000 + 1039.23i −0.0752821 + 0.130392i
\(400\) −5248.00 9089.80i −0.656000 1.13623i
\(401\) −5139.86 + 2967.50i −0.640081 + 0.369551i −0.784646 0.619945i \(-0.787155\pi\)
0.144565 + 0.989495i \(0.453822\pi\)
\(402\) −6896.00 −0.855575
\(403\) 0 0
\(404\) −6552.00 −0.806867
\(405\) 6198.14 3578.50i 0.760465 0.439055i
\(406\) −7880.00 13648.6i −0.963246 1.66839i
\(407\) 3632.00 6290.81i 0.442338 0.766152i
\(408\) 0 0
\(409\) 13067.5 + 7544.50i 1.57981 + 0.912106i 0.994884 + 0.101023i \(0.0322116\pi\)
0.584931 + 0.811083i \(0.301122\pi\)
\(410\) −9716.81 5610.00i −1.17044 0.675752i
\(411\) 3342.00i 0.401092i
\(412\) −6552.00 + 11348.4i −0.783480 + 1.35703i
\(413\) −8640.00 14964.9i −1.02941 1.78299i
\(414\) 6214.60 3588.00i 0.737756 0.425943i
\(415\) −10676.0 −1.26281
\(416\) 0 0
\(417\) 1824.00 0.214201
\(418\) −3325.54 + 1920.00i −0.389132 + 0.224666i
\(419\) 5407.00 + 9365.20i 0.630428 + 1.09193i 0.987464 + 0.157843i \(0.0504538\pi\)
−0.357037 + 0.934090i \(0.616213\pi\)
\(420\) 2720.00 4711.18i 0.316006 0.547338i
\(421\) 6535.00i 0.756524i −0.925699 0.378262i \(-0.876522\pi\)
0.925699 0.378262i \(-0.123478\pi\)
\(422\) −10634.8 6140.00i −1.22676 0.708271i
\(423\) 3226.81 + 1863.00i 0.370905 + 0.214142i
\(424\) 0 0
\(425\) 1066.00 1846.37i 0.121667 0.210734i
\(426\) 2616.00 + 4531.04i 0.297525 + 0.515328i
\(427\) −2511.47 + 1450.00i −0.284634 + 0.164334i
\(428\) −4176.00 −0.471623
\(429\) 0 0
\(430\) −10608.0 −1.18968
\(431\) 1714.73 990.000i 0.191637 0.110642i −0.401112 0.916029i \(-0.631376\pi\)
0.592749 + 0.805387i \(0.298043\pi\)
\(432\) −3200.00 5542.56i −0.356389 0.617284i
\(433\) −3464.50 + 6000.69i −0.384511 + 0.665993i −0.991701 0.128564i \(-0.958963\pi\)
0.607190 + 0.794556i \(0.292297\pi\)
\(434\) 5920.00i 0.654767i
\(435\) −5800.64 3349.00i −0.639355 0.369132i
\(436\) −11320.7 6536.00i −1.24349 0.717930i
\(437\) 2340.00i 0.256150i
\(438\) −860.000 + 1489.56i −0.0938182 + 0.162498i
\(439\) −2288.00 3962.93i −0.248748 0.430844i 0.714431 0.699706i \(-0.246686\pi\)
−0.963179 + 0.268862i \(0.913352\pi\)
\(440\) 0 0
\(441\) 1311.00 0.141561
\(442\) 0 0
\(443\) −8812.00 −0.945081 −0.472540 0.881309i \(-0.656663\pi\)
−0.472540 + 0.881309i \(0.656663\pi\)
\(444\) −3145.40 + 1816.00i −0.336203 + 0.194107i
\(445\) 2261.00 + 3916.17i 0.240858 + 0.417178i
\(446\) −10756.0 + 18629.9i −1.14195 + 1.97792i
\(447\) 4230.00i 0.447589i
\(448\) 8868.10 + 5120.00i 0.935220 + 0.539949i
\(449\) 1661.04 + 959.000i 0.174586 + 0.100797i 0.584747 0.811216i \(-0.301194\pi\)
−0.410160 + 0.912013i \(0.634527\pi\)
\(450\) 15088.0i 1.58057i
\(451\) −2640.00 + 4572.61i −0.275638 + 0.477419i
\(452\) 1308.00 + 2265.52i 0.136113 + 0.235755i
\(453\) −890.274 + 514.000i −0.0923371 + 0.0533109i
\(454\) 15896.0 1.64325
\(455\) 0 0
\(456\) 0 0
\(457\) −10185.3 + 5880.50i −1.04256 + 0.601922i −0.920557 0.390608i \(-0.872265\pi\)
−0.122002 + 0.992530i \(0.538931\pi\)
\(458\) 12596.0 + 21816.9i 1.28509 + 2.22585i
\(459\) 650.000 1125.83i 0.0660989 0.114487i
\(460\) 10608.0i 1.07522i
\(461\) −780.289 450.500i −0.0788323 0.0455138i 0.460066 0.887885i \(-0.347826\pi\)
−0.538898 + 0.842371i \(0.681159\pi\)
\(462\) −4434.05 2560.00i −0.446517 0.257796i
\(463\) 1372.00i 0.137715i −0.997626 0.0688577i \(-0.978065\pi\)
0.997626 0.0688577i \(-0.0219354\pi\)
\(464\) 6304.00 10918.8i 0.630724 1.09245i
\(465\) −1258.00 2178.92i −0.125459 0.217301i
\(466\) −13960.3 + 8060.00i −1.38777 + 0.801228i
\(467\) 6396.00 0.633772 0.316886 0.948464i \(-0.397363\pi\)
0.316886 + 0.948464i \(0.397363\pi\)
\(468\) 0 0
\(469\) 17240.0 1.69738
\(470\) −9540.14 + 5508.00i −0.936284 + 0.540564i
\(471\) −2901.00 5024.68i −0.283803 0.491561i
\(472\) 0 0
\(473\) 4992.00i 0.485269i
\(474\) 526.543 + 304.000i 0.0510231 + 0.0294582i
\(475\) 4260.84 + 2460.00i 0.411581 + 0.237626i
\(476\) 2080.00i 0.200287i
\(477\) 1069.50 1852.43i 0.102660 0.177813i
\(478\) −1968.00 3408.68i −0.188314 0.326170i
\(479\) −2831.90 + 1635.00i −0.270131 + 0.155960i −0.628947 0.777448i \(-0.716514\pi\)
0.358816 + 0.933408i \(0.383181\pi\)
\(480\) 8704.00 0.827670
\(481\) 0 0
\(482\) 3772.00 0.356452
\(483\) 2702.00 1560.00i 0.254545 0.146962i
\(484\) 1228.00 + 2126.96i 0.115327 + 0.199752i
\(485\) 2023.00 3503.94i 0.189401 0.328053i
\(486\) 14168.0i 1.32237i
\(487\) −17251.2 9960.00i −1.60519 0.926757i −0.990426 0.138046i \(-0.955918\pi\)
−0.614765 0.788711i \(-0.710749\pi\)
\(488\) 0 0
\(489\) 4720.00i 0.436494i
\(490\) −1938.00 + 3356.71i −0.178673 + 0.309471i
\(491\) 3276.00 + 5674.20i 0.301108 + 0.521534i 0.976387 0.216028i \(-0.0693103\pi\)
−0.675280 + 0.737562i \(0.735977\pi\)
\(492\) 2286.31 1320.00i 0.209501 0.120956i
\(493\) 2561.00 0.233959
\(494\) 0 0
\(495\) 12512.0 1.13611
\(496\) 4101.50 2368.00i 0.371296 0.214368i
\(497\) −6540.00 11327.6i −0.590260 1.02236i
\(498\) 2512.00 4350.91i 0.226035 0.391504i
\(499\) 1746.00i 0.156637i 0.996928 + 0.0783183i \(0.0249551\pi\)
−0.996928 + 0.0783183i \(0.975045\pi\)
\(500\) −4593.40 2652.00i −0.410846 0.237202i
\(501\) 484.974 + 280.000i 0.0432476 + 0.0249690i
\(502\) 10920.0i 0.970883i
\(503\) −7346.00 + 12723.6i −0.651177 + 1.12787i 0.331661 + 0.943399i \(0.392391\pi\)
−0.982838 + 0.184473i \(0.940942\pi\)
\(504\) 0 0
\(505\) 12057.7 6961.50i 1.06249 0.613431i
\(506\) 9984.00 0.877160
\(507\) 0 0
\(508\) −17264.0 −1.50781
\(509\) 6994.89 4038.50i 0.609122 0.351677i −0.163500 0.986543i \(-0.552278\pi\)
0.772622 + 0.634867i \(0.218945\pi\)
\(510\) 884.000 + 1531.13i 0.0767533 + 0.132941i
\(511\) 2150.00 3723.91i 0.186126 0.322380i
\(512\) 16384.0i 1.41421i
\(513\) 2598.08 + 1500.00i 0.223602 + 0.129097i
\(514\) −6529.83 3770.00i −0.560347 0.323517i
\(515\) 27846.0i 2.38260i
\(516\) 1248.00 2161.60i 0.106473 0.184417i
\(517\) 2592.00 + 4489.48i 0.220495 + 0.381909i
\(518\) 15727.0 9080.00i 1.33399 0.770178i
\(519\) −2652.00 −0.224296
\(520\) 0 0
\(521\) 11247.0 0.945758 0.472879 0.881127i \(-0.343215\pi\)
0.472879 + 0.881127i \(0.343215\pi\)
\(522\) −15695.8 + 9062.00i −1.31607 + 0.759833i
\(523\) −1366.00 2365.98i −0.114208 0.197815i 0.803255 0.595636i \(-0.203100\pi\)
−0.917463 + 0.397821i \(0.869767\pi\)
\(524\) 2920.00 5057.59i 0.243437 0.421645i
\(525\) 6560.00i 0.545337i
\(526\) −13967.3 8064.00i −1.15780 0.668455i
\(527\) 833.116 + 481.000i 0.0688636 + 0.0397584i
\(528\) 4096.00i 0.337605i
\(529\) 3041.50 5268.03i 0.249979 0.432977i
\(530\) 3162.00 + 5476.74i 0.259148 + 0.448858i
\(531\) −17209.7 + 9936.00i −1.40647 + 0.812026i
\(532\) −4800.00 −0.391177
\(533\) 0 0
\(534\) −2128.00 −0.172449
\(535\) 7685.11 4437.00i 0.621040 0.358557i
\(536\) 0 0
\(537\) 4264.00 7385.46i 0.342654 0.593494i
\(538\) 16024.0i 1.28410i
\(539\) 1579.63 + 912.000i 0.126233 + 0.0728806i
\(540\) −11777.9 6800.00i −0.938596 0.541899i
\(541\) 18375.0i 1.46026i 0.683306 + 0.730132i \(0.260542\pi\)
−0.683306 + 0.730132i \(0.739458\pi\)
\(542\) 8592.00 14881.8i 0.680919 1.17939i
\(543\) −403.000 698.016i −0.0318497 0.0551653i
\(544\) −2882.13 + 1664.00i −0.227151 + 0.131146i
\(545\) 27778.0 2.18326
\(546\) 0 0
\(547\) −10346.0 −0.808708 −0.404354 0.914603i \(-0.632504\pi\)
−0.404354 + 0.914603i \(0.632504\pi\)
\(548\) 11577.0 6684.00i 0.902456 0.521033i
\(549\) 1667.50 + 2888.19i 0.129631 + 0.224527i
\(550\) −10496.0 + 18179.6i −0.813729 + 1.40942i
\(551\) 5910.00i 0.456941i
\(552\) 0 0
\(553\) −1316.36 760.000i −0.101225 0.0584421i
\(554\) 22204.0i 1.70281i
\(555\) 3859.00 6683.98i 0.295145 0.511206i
\(556\) 3648.00 + 6318.52i 0.278255 + 0.481951i
\(557\) −298.779 + 172.500i −0.0227283 + 0.0131222i −0.511321 0.859390i \(-0.670844\pi\)
0.488593 + 0.872512i \(0.337510\pi\)
\(558\) −6808.00 −0.516498
\(559\) 0 0
\(560\) −21760.0 −1.64201
\(561\) 720.533 416.000i 0.0542263 0.0313075i
\(562\) 11114.0 + 19250.0i 0.834192 + 1.44486i
\(563\) −4290.00 + 7430.50i −0.321140 + 0.556231i −0.980724 0.195400i \(-0.937399\pi\)
0.659583 + 0.751631i \(0.270733\pi\)
\(564\) 2592.00i 0.193516i
\(565\) −4814.24 2779.50i −0.358472 0.206964i
\(566\) 10808.0 + 6240.00i 0.802640 + 0.463404i
\(567\) 8420.00i 0.623645i
\(568\) 0 0
\(569\) −9841.00 17045.1i −0.725055 1.25583i −0.958951 0.283570i \(-0.908481\pi\)
0.233897 0.972261i \(-0.424852\pi\)
\(570\) −3533.38 + 2040.00i −0.259644 + 0.149906i
\(571\) −26624.0 −1.95128 −0.975639 0.219382i \(-0.929596\pi\)
−0.975639 + 0.219382i \(0.929596\pi\)
\(572\) 0 0
\(573\) −2492.00 −0.181684
\(574\) −11431.5 + 6600.00i −0.831260 + 0.479928i
\(575\) −6396.00 11078.2i −0.463881 0.803466i
\(576\) 5888.00 10198.3i 0.425926 0.737725i
\(577\) 14101.0i 1.01739i −0.860948 0.508694i \(-0.830129\pi\)
0.860948 0.508694i \(-0.169871\pi\)
\(578\) 16433.7 + 9488.00i 1.18262 + 0.682783i
\(579\) 462.458 + 267.000i 0.0331936 + 0.0191643i
\(580\) 26792.0i 1.91806i
\(581\) −6280.00 + 10877.3i −0.448431 + 0.776705i
\(582\) 952.000 + 1648.91i 0.0678036 + 0.117439i
\(583\) 2577.29 1488.00i 0.183088 0.105706i
\(584\) 0 0
\(585\) 0 0
\(586\) 33204.0 2.34069
\(587\) 1219.36 704.000i 0.0857386 0.0495012i −0.456518 0.889714i \(-0.650904\pi\)
0.542256 + 0.840213i \(0.317570\pi\)
\(588\) −456.000 789.815i −0.0319815 0.0553936i
\(589\) −1110.00 + 1922.58i −0.0776515 + 0.134496i
\(590\) 58752.0i 4.09963i
\(591\) −2213.56 1278.00i −0.154067 0.0889508i
\(592\) 12581.6 + 7264.00i 0.873482 + 0.504305i
\(593\) 1241.00i 0.0859389i 0.999076 + 0.0429694i \(0.0136818\pi\)
−0.999076 + 0.0429694i \(0.986318\pi\)
\(594\) −6400.00 + 11085.1i −0.442079 + 0.765704i
\(595\) −2210.00 3827.83i −0.152271 0.263741i
\(596\) 14653.1 8460.00i 1.00707 0.581435i
\(597\) −8476.00 −0.581071
\(598\) 0 0
\(599\) 11078.0 0.755651 0.377825 0.925877i \(-0.376672\pi\)
0.377825 + 0.925877i \(0.376672\pi\)
\(600\) 0 0
\(601\) 6908.50 + 11965.9i 0.468891 + 0.812143i 0.999368 0.0355563i \(-0.0113203\pi\)
−0.530477 + 0.847700i \(0.677987\pi\)
\(602\) −6240.00 + 10808.0i −0.422464 + 0.731729i
\(603\) 19826.0i 1.33893i
\(604\) −3561.10 2056.00i −0.239899 0.138506i
\(605\) −4519.79 2609.50i −0.303728 0.175357i
\(606\) 6552.00i 0.439203i
\(607\) −4135.00 + 7162.03i −0.276498 + 0.478909i −0.970512 0.241053i \(-0.922507\pi\)
0.694014 + 0.719962i \(0.255841\pi\)
\(608\) −3840.00 6651.08i −0.256139 0.443646i
\(609\) −6824.28 + 3940.00i −0.454078 + 0.262162i
\(610\) −9860.00 −0.654459
\(611\) 0 0
\(612\) 2392.00 0.157992
\(613\) 19289.0 11136.5i 1.27092 0.733767i 0.295760 0.955262i \(-0.404427\pi\)
0.975161 + 0.221496i \(0.0710938\pi\)
\(614\) −17356.0 30061.5i −1.14077 1.97587i
\(615\) −2805.00 + 4858.40i −0.183916 + 0.318552i
\(616\) 0 0
\(617\) 16445.0 + 9494.50i 1.07301 + 0.619504i 0.929003 0.370072i \(-0.120667\pi\)
0.144010 + 0.989576i \(0.454000\pi\)
\(618\) 11348.4 + 6552.00i 0.738672 + 0.426473i
\(619\) 72.0000i 0.00467516i −0.999997 0.00233758i \(-0.999256\pi\)
0.999997 0.00233758i \(-0.000744076\pi\)
\(620\) 5032.00 8715.68i 0.325952 0.564565i
\(621\) −3900.00 6755.00i −0.252015 0.436504i
\(622\) −29992.2 + 17316.0i −1.93340 + 1.11625i
\(623\) 5320.00 0.342121
\(624\) 0 0
\(625\) −9229.00 −0.590656
\(626\) −18186.5 + 10500.0i −1.16115 + 0.670390i
\(627\) 960.000 + 1662.77i 0.0611463 + 0.105908i
\(628\) 11604.0 20098.7i 0.737341 1.27711i
\(629\) 2951.00i 0.187065i
\(630\) 27089.3 + 15640.0i 1.71312 + 0.989067i
\(631\) −20247.7 11690.0i −1.27741 0.737514i −0.301040 0.953611i \(-0.597334\pi\)
−0.976372 + 0.216097i \(0.930667\pi\)
\(632\) 0 0
\(633\) −3070.00 + 5317.40i −0.192767 + 0.333882i
\(634\) 12826.0 + 22215.3i 0.803447 + 1.39161i
\(635\) 31771.0 18343.0i 1.98550 1.14633i
\(636\) −1488.00 −0.0927721
\(637\) 0 0
\(638\) −25216.0 −1.56475
\(639\) −13026.8 + 7521.00i −0.806464 + 0.465612i
\(640\) 0 0
\(641\) 3191.50 5527.84i 0.196656 0.340619i −0.750786 0.660546i \(-0.770325\pi\)
0.947442 + 0.319927i \(0.103658\pi\)
\(642\) 4176.00i 0.256719i
\(643\) 14812.5 + 8552.00i 0.908473 + 0.524507i 0.879939 0.475086i \(-0.157583\pi\)
0.0285332 + 0.999593i \(0.490916\pi\)
\(644\) 10808.0 + 6240.00i 0.661327 + 0.381817i
\(645\) 5304.00i 0.323790i
\(646\) 780.000 1351.00i 0.0475057 0.0822823i
\(647\) 3497.00 + 6056.98i 0.212490 + 0.368044i 0.952493 0.304560i \(-0.0985093\pi\)
−0.740003 + 0.672604i \(0.765176\pi\)
\(648\) 0 0
\(649\) −27648.0 −1.67223
\(650\) 0 0
\(651\) −2960.00 −0.178205
\(652\) 16350.6 9440.00i 0.982112 0.567023i
\(653\) 2625.00 + 4546.63i 0.157311 + 0.272471i 0.933898 0.357539i \(-0.116384\pi\)
−0.776587 + 0.630010i \(0.783051\pi\)
\(654\) −6536.00 + 11320.7i −0.390792 + 0.676871i
\(655\) 12410.0i 0.740304i
\(656\) −9145.23 5280.00i −0.544301 0.314252i
\(657\) −4282.50 2472.50i −0.254301 0.146821i
\(658\) 12960.0i 0.767832i
\(659\) 2170.00 3758.55i 0.128272 0.222173i −0.794735 0.606956i \(-0.792390\pi\)
0.923007 + 0.384783i \(0.125724\pi\)
\(660\) −4352.00 7537.89i −0.256669 0.444563i
\(661\) 3619.12 2089.50i 0.212961 0.122953i −0.389726 0.920931i \(-0.627430\pi\)
0.602687 + 0.797978i \(0.294097\pi\)
\(662\) −13952.0 −0.819124
\(663\) 0 0
\(664\) 0 0
\(665\) 8833.46 5100.00i 0.515108 0.297398i
\(666\) −10442.0 18086.1i −0.607536 1.05228i
\(667\) 7683.00 13307.3i 0.446007 0.772508i
\(668\) 2240.00i 0.129743i
\(669\) 9314.97 + 5378.00i 0.538322 + 0.310800i
\(670\) 50762.9 + 29308.0i 2.92708 + 1.68995i
\(671\) 4640.00i 0.266953i
\(672\) 5120.00 8868.10i 0.293911 0.509069i
\(673\) 11433.5 + 19803.4i 0.654872 + 1.13427i 0.981926 + 0.189266i \(0.0606109\pi\)
−0.327054 + 0.945006i \(0.606056\pi\)
\(674\) 6349.70 3666.00i 0.362880 0.209509i
\(675\) 16400.0 0.935165
\(676\) 0 0
\(677\) 5410.00 0.307124 0.153562 0.988139i \(-0.450925\pi\)
0.153562 + 0.988139i \(0.450925\pi\)
\(678\) 2265.52 1308.00i 0.128329 0.0740906i
\(679\) −2380.00 4122.28i −0.134515 0.232988i
\(680\) 0 0
\(681\) 7948.00i 0.447236i
\(682\) −8202.99 4736.00i −0.460570 0.265910i
\(683\) −11758.9 6789.00i −0.658772 0.380342i 0.133037 0.991111i \(-0.457527\pi\)
−0.791809 + 0.610769i \(0.790861\pi\)
\(684\) 5520.00i 0.308571i
\(685\) −14203.5 + 24601.2i −0.792245 + 1.37221i
\(686\) −11440.0 19814.7i −0.636707 1.10281i
\(687\) 10908.5 6298.00i 0.605798 0.349758i
\(688\) −9984.00 −0.553251
\(689\) 0 0
\(690\) 10608.0 0.585275
\(691\) 11036.6 6372.00i 0.607602 0.350799i −0.164424 0.986390i \(-0.552577\pi\)
0.772026 + 0.635590i \(0.219243\pi\)
\(692\) −5304.00 9186.80i −0.291370 0.504667i
\(693\) 7360.00 12747.9i 0.403439 0.698777i
\(694\) 28920.0i 1.58183i
\(695\) −13426.9 7752.00i −0.732820 0.423094i
\(696\) 0 0
\(697\) 2145.00i 0.116568i
\(698\) 10516.0 18214.2i 0.570253 0.987707i
\(699\) 4030.00 + 6980.16i 0.218067 + 0.377703i
\(700\) −22724.5 + 13120.0i −1.22701 + 0.708413i
\(701\) −16406.0 −0.883946 −0.441973 0.897028i \(-0.645721\pi\)
−0.441973 + 0.897028i \(0.645721\pi\)
\(702\) 0 0
\(703\) −6810.00 −0.365354
\(704\) 14189.0 8192.00i 0.759612 0.438562i
\(705\) 2754.00 + 4770.07i 0.147123 + 0.254824i
\(706\) 6326.00 10957.0i 0.337227 0.584094i
\(707\) 16380.0i 0.871334i
\(708\) 11971.9 + 6912.00i 0.635498 + 0.366905i
\(709\) 614.012 + 354.500i 0.0325243 + 0.0187779i 0.516174 0.856484i \(-0.327356\pi\)
−0.483650 + 0.875262i \(0.660689\pi\)
\(710\) 44472.0i 2.35071i
\(711\) −874.000 + 1513.81i −0.0461006 + 0.0798487i
\(712\) 0 0
\(713\) 4998.70 2886.00i 0.262556 0.151587i
\(714\) 2080.00 0.109022
\(715\) 0 0
\(716\) 34112.0 1.78048
\(717\) −1704.34 + 984.000i −0.0887722 + 0.0512527i
\(718\) 20136.0 + 34876.6i 1.04661 + 1.81279i
\(719\) −3822.00 + 6619.90i −0.198243 + 0.343367i −0.947959 0.318393i \(-0.896857\pi\)
0.749716 + 0.661760i \(0.230190\pi\)
\(720\) 25024.0i 1.29526i
\(721\) −28371.0 16380.0i −1.46545 0.846079i
\(722\) −20642.6 11918.0i −1.06404 0.614324i
\(723\) 1886.00i 0.0970140i
\(724\) 1612.00 2792.07i 0.0827479 0.143324i
\(725\) 16154.0 + 27979.5i 0.827510 + 1.43329i
\(726\) 2126.96 1228.00i 0.108731 0.0627760i
\(727\) 15808.0 0.806446 0.403223 0.915102i \(-0.367890\pi\)
0.403223 + 0.915102i \(0.367890\pi\)
\(728\) 0 0
\(729\) −4283.00 −0.217599
\(730\) 12661.3 7310.00i 0.641939 0.370624i
\(731\) −1014.00 1756.30i −0.0513053 0.0888633i
\(732\) 1160.00 2009.18i 0.0585722 0.101450i
\(733\) 2583.00i 0.130157i −0.997880 0.0650786i \(-0.979270\pi\)
0.997880 0.0650786i \(-0.0207298\pi\)
\(734\) −25766.0 14876.0i −1.29569 0.748070i
\(735\) 1678.36 + 969.000i 0.0842274 + 0.0486287i
\(736\) 19968.0i 1.00004i
\(737\) 13792.0 23888.4i 0.689328 1.19395i
\(738\) 7590.00 + 13146.3i 0.378580 + 0.655719i
\(739\) −3529.92 + 2038.00i −0.175711 + 0.101447i −0.585276 0.810834i \(-0.699014\pi\)
0.409565 + 0.912281i \(0.365680\pi\)
\(740\) 30872.0 1.53362
\(741\) 0 0
\(742\) 7440.00 0.368101
\(743\) −29493.4 + 17028.0i −1.45627 + 0.840776i −0.998825 0.0484632i \(-0.984568\pi\)
−0.457442 + 0.889239i \(0.651234\pi\)
\(744\) 0 0
\(745\) −17977.5 + 31137.9i −0.884087 + 1.53128i
\(746\) 38732.0i 1.90091i
\(747\) 12508.9 + 7222.00i 0.612685 + 0.353734i
\(748\) 2882.13 + 1664.00i 0.140884 + 0.0813394i
\(749\) 10440.0i 0.509305i
\(750\) −2652.00 + 4593.40i −0.129116 + 0.223636i
\(751\) −182.000 315.233i −0.00884324 0.0153169i 0.861570 0.507639i \(-0.169482\pi\)
−0.870413 + 0.492322i \(0.836148\pi\)
\(752\) −8978.95 + 5184.00i −0.435410 + 0.251384i
\(753\) 5460.00 0.264241
\(754\) 0 0
\(755\) 8738.00 0.421203
\(756\) −13856.4 + 8000.00i −0.666604 + 0.384864i
\(757\) 3457.00 + 5987.70i 0.165980 + 0.287486i 0.937003 0.349322i \(-0.113588\pi\)
−0.771023 + 0.636807i \(0.780255\pi\)
\(758\) −2124.00 + 3678.88i −0.101777 + 0.176283i
\(759\) 4992.00i 0.238733i
\(760\) 0 0
\(761\) 12108.8 + 6991.00i 0.576797 + 0.333014i 0.759859 0.650087i \(-0.225268\pi\)
−0.183062 + 0.983101i \(0.558601\pi\)
\(762\) 17264.0i 0.820746i
\(763\) 16340.0 28301.7i 0.775292 1.34284i
\(764\) −4984.00 8632.54i −0.236014 0.408788i
\(765\) −4402.01 + 2541.50i −0.208046 + 0.120115i
\(766\) 14128.0 0.666404
\(767\) 0 0
\(768\) 8192.00 0.384900
\(769\) −15645.6 + 9033.00i −0.733674 + 0.423587i −0.819765 0.572700i \(-0.805896\pi\)
0.0860907 + 0.996287i \(0.472563\pi\)
\(770\) 21760.0 + 37689.4i 1.01841 + 1.76394i
\(771\) −1885.00 + 3264.92i −0.0880501