Properties

Label 169.4.c.l
Level $169$
Weight $4$
Character orbit 169.c
Analytic conductor $9.971$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 169.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.97132279097\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Defining polynomial: \( x^{18} - 4 x^{17} + 62 x^{16} - 106 x^{15} + 2016 x^{14} - 2731 x^{13} + 39895 x^{12} - 21896 x^{11} + 490851 x^{10} - 318018 x^{9} + 3391249 x^{8} - 990441 x^{7} + \cdots + 16777216 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 13^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{17}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - \beta_{2} + \beta_1) q^{2} + ( - \beta_{14} + \beta_{11}) q^{3} + (\beta_{12} - \beta_{10} - \beta_{6} + 5 \beta_{3} - 5) q^{4} + ( - \beta_{17} + \beta_{16} + \beta_{12} + \beta_{11} - \beta_{9} + \beta_{7} + \beta_{5} - 3 \beta_{2} - 2) q^{5} + ( - \beta_{14} + 2 \beta_{10} - \beta_{7} + 2 \beta_{6} - 6 \beta_{3} + \beta_1 + 6) q^{6} + ( - \beta_{14} - \beta_{12} + \beta_{7} - 2 \beta_{6} - 2 \beta_{4} - 4 \beta_{3} + \beta_1 + 4) q^{7} + ( - \beta_{17} + \beta_{12} + \beta_{11} + 4 \beta_{9} - 4 \beta_{7} + 4 \beta_{2} - 9) q^{8} + ( - 2 \beta_{14} + \beta_{10} - \beta_{8} + 3 \beta_{7} + \beta_{6} - \beta_{4} + 7 \beta_{3} + \cdots - 7) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{3} - \beta_{2} + \beta_1) q^{2} + ( - \beta_{14} + \beta_{11}) q^{3} + (\beta_{12} - \beta_{10} - \beta_{6} + 5 \beta_{3} - 5) q^{4} + ( - \beta_{17} + \beta_{16} + \beta_{12} + \beta_{11} - \beta_{9} + \beta_{7} + \beta_{5} - 3 \beta_{2} - 2) q^{5} + ( - \beta_{14} + 2 \beta_{10} - \beta_{7} + 2 \beta_{6} - 6 \beta_{3} + \beta_1 + 6) q^{6} + ( - \beta_{14} - \beta_{12} + \beta_{7} - 2 \beta_{6} - 2 \beta_{4} - 4 \beta_{3} + \beta_1 + 4) q^{7} + ( - \beta_{17} + \beta_{12} + \beta_{11} + 4 \beta_{9} - 4 \beta_{7} + 4 \beta_{2} - 9) q^{8} + ( - 2 \beta_{14} + \beta_{10} - \beta_{8} + 3 \beta_{7} + \beta_{6} - \beta_{4} + 7 \beta_{3} + \cdots - 7) q^{9}+ \cdots + (18 \beta_{17} + 100 \beta_{16} + 14 \beta_{15} + 14 \beta_{13} - 18 \beta_{12} + \cdots - 121) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 5 q^{2} - q^{3} - 37 q^{4} - 60 q^{5} + 48 q^{6} + 38 q^{7} - 120 q^{8} - 66 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q + 5 q^{2} - q^{3} - 37 q^{4} - 60 q^{5} + 48 q^{6} + 38 q^{7} - 120 q^{8} - 66 q^{9} + 147 q^{10} + 181 q^{11} + 78 q^{12} - 294 q^{14} + 218 q^{15} - 269 q^{16} + 55 q^{17} - 158 q^{18} + 161 q^{19} + 370 q^{20} - 376 q^{21} - 340 q^{22} + 204 q^{23} + 798 q^{24} + 614 q^{25} - 1336 q^{27} + 344 q^{28} - 280 q^{29} - 521 q^{30} - 1412 q^{31} + 680 q^{32} + 500 q^{33} - 432 q^{34} - 20 q^{35} + 909 q^{36} + 298 q^{37} - 1478 q^{38} + 26 q^{40} + 1201 q^{41} + 4 q^{42} + 533 q^{43} - 710 q^{44} - 90 q^{45} - 840 q^{46} - 1912 q^{47} + 132 q^{48} - 403 q^{49} - 1156 q^{50} + 940 q^{51} - 556 q^{53} - 2555 q^{54} + 250 q^{55} - 250 q^{56} + 1620 q^{57} - 2877 q^{58} + 1377 q^{59} + 6314 q^{60} + 136 q^{61} - 2035 q^{62} - 944 q^{63} + 568 q^{64} + 6558 q^{66} - 931 q^{67} + 1536 q^{68} + 2050 q^{69} + 9708 q^{70} + 2046 q^{71} - 4342 q^{72} + 90 q^{73} + 1990 q^{74} - 2393 q^{75} - 3608 q^{76} - 1436 q^{77} + 824 q^{79} - 787 q^{80} + 835 q^{81} - 2757 q^{82} - 7418 q^{83} - 1539 q^{84} - 2106 q^{85} - 250 q^{86} + 786 q^{87} + 636 q^{88} + 1663 q^{89} - 2560 q^{90} + 8020 q^{92} - 1186 q^{93} + 2531 q^{94} + 1614 q^{95} + 6168 q^{96} - 1087 q^{97} - 282 q^{98} - 2714 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{18} - 4 x^{17} + 62 x^{16} - 106 x^{15} + 2016 x^{14} - 2731 x^{13} + 39895 x^{12} - 21896 x^{11} + 490851 x^{10} - 318018 x^{9} + 3391249 x^{8} - 990441 x^{7} + \cdots + 16777216 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 71\!\cdots\!85 \nu^{17} + \cdots + 26\!\cdots\!56 ) / 32\!\cdots\!52 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 12\!\cdots\!53 \nu^{17} + \cdots + 61\!\cdots\!76 ) / 25\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 11\!\cdots\!41 \nu^{17} + \cdots + 25\!\cdots\!24 ) / 20\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 10\!\cdots\!51 \nu^{17} + \cdots - 56\!\cdots\!96 ) / 16\!\cdots\!28 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 17\!\cdots\!07 \nu^{17} + \cdots + 13\!\cdots\!44 ) / 20\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 28\!\cdots\!09 \nu^{17} + \cdots + 74\!\cdots\!32 ) / 31\!\cdots\!64 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 12\!\cdots\!01 \nu^{17} + \cdots + 90\!\cdots\!72 ) / 10\!\cdots\!08 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 11\!\cdots\!13 \nu^{17} + \cdots - 33\!\cdots\!56 ) / 81\!\cdots\!64 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 38\!\cdots\!47 \nu^{17} + \cdots - 14\!\cdots\!88 ) / 20\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 28\!\cdots\!69 \nu^{17} + \cdots + 11\!\cdots\!84 ) / 12\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 54\!\cdots\!69 \nu^{17} + \cdots + 17\!\cdots\!56 ) / 20\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 25\!\cdots\!97 \nu^{17} + \cdots - 63\!\cdots\!36 ) / 81\!\cdots\!64 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 82\!\cdots\!31 \nu^{17} + \cdots + 18\!\cdots\!88 ) / 20\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 65\!\cdots\!29 \nu^{17} + \cdots + 10\!\cdots\!20 ) / 12\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 11\!\cdots\!21 \nu^{17} + \cdots - 19\!\cdots\!44 ) / 16\!\cdots\!28 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( 12\!\cdots\!63 \nu^{17} + \cdots - 14\!\cdots\!88 ) / 16\!\cdots\!28 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{17} + \beta_{16} - \beta_{13} + \beta_{10} + \beta_{6} - 12\beta_{3} - 2\beta_{2} + 2\beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{17} + 3\beta_{16} - 3\beta_{13} + 2\beta_{12} - \beta_{11} - 4\beta_{9} + 4\beta_{7} - 23\beta_{2} - 12 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -8\beta_{14} + 27\beta_{12} - 37\beta_{10} + 8\beta_{7} - 32\beta_{6} - 5\beta_{4} + 260\beta_{3} - 77\beta _1 - 260 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 75 \beta_{17} - 128 \beta_{16} + 10 \beta_{15} - 45 \beta_{14} + 166 \beta_{13} + 45 \beta_{11} - 166 \beta_{10} + 138 \beta_{9} - 10 \beta_{8} - 128 \beta_{6} - 18 \beta_{5} - 18 \beta_{4} + 604 \beta_{3} + 636 \beta_{2} - 636 \beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 748 \beta_{17} - 1004 \beta_{16} + 46 \beta_{15} + 1315 \beta_{13} - 748 \beta_{12} + 339 \beta_{11} + 490 \beta_{9} - 490 \beta_{7} - 299 \beta_{5} + 2746 \beta_{2} + 6752 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 1762 \beta_{14} - 2684 \beta_{12} + 6896 \beta_{10} + 644 \beta_{8} - 4588 \beta_{7} + 4677 \beta_{6} + 1299 \beta_{4} - 23360 \beta_{3} + 19224 \beta _1 + 23360 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 21858 \beta_{17} + 32278 \beta_{16} - 3242 \beta_{15} + 12178 \beta_{14} - 46550 \beta_{13} - 12178 \beta_{11} + 46550 \beta_{10} - 21190 \beta_{9} + 3242 \beta_{8} + 32278 \beta_{6} + 12940 \beta_{5} + \cdots + 95033 \beta_1 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 93585 \beta_{17} + 164491 \beta_{16} - 29122 \beta_{15} - 260223 \beta_{13} + 93585 \beta_{12} - 65220 \beta_{11} - 155738 \beta_{9} + 155738 \beta_{7} + 63424 \beta_{5} - 609880 \beta_{2} + \cdots - 831272 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 423443 \beta_{14} + 667892 \beta_{12} - 1637813 \beta_{10} - 155970 \beta_{8} + 812858 \beta_{7} - 1058555 \beta_{6} - 500294 \beta_{4} + 5853008 \beta_{3} - 3244441 \beta _1 - 5853008 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 3212681 \beta_{17} - 5697380 \beta_{16} + 1156558 \beta_{15} - 2341040 \beta_{14} + 9404329 \beta_{13} + 2341040 \beta_{11} - 9404329 \beta_{10} + 5347886 \beta_{9} - 1156558 \beta_{8} + \cdots - 19896385 \beta_1 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 21117643 \beta_{17} - 35204052 \beta_{16} + 6439744 \beta_{15} + 57218756 \beta_{13} - 21117643 \beta_{12} + 14595321 \beta_{11} + 29575380 \beta_{9} - 29575380 \beta_{7} + \cdots + 185118648 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 82492865 \beta_{14} - 109440828 \beta_{12} + 332264719 \beta_{10} + 43215104 \beta_{8} - 184233596 \beta_{7} + 195850226 \beta_{6} + 101502237 \beta_{4} + \cdots + 974986692 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 684437956 \beta_{17} + 1181688405 \beta_{16} - 246219578 \beta_{15} + 501405476 \beta_{14} - 1986451992 \beta_{13} - 501405476 \beta_{11} + 1986451992 \beta_{10} + \cdots + 3738644514 \beta_1 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 3716482924 \beta_{17} + 6705745868 \beta_{16} - 1562310104 \beta_{15} - 11588149060 \beta_{13} + 3716482924 \beta_{12} - 2873366536 \beta_{11} + \cdots - 33051801880 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 17193582024 \beta_{14} + 22567596581 \beta_{12} - 68620566389 \beta_{10} - 9017389320 \beta_{8} + 36572897116 \beta_{7} - 39902478713 \beta_{6} + \cdots - 198745293060 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( 126112059954 \beta_{17} - 229119790391 \beta_{16} + 55380969056 \beta_{15} - 99346555769 \beta_{14} + 400991725275 \beta_{13} + 99346555769 \beta_{11} + \cdots - 745830358799 \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1 + \beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
22.1
2.92009 + 5.05774i
2.41719 + 4.18670i
1.36382 + 2.36220i
0.695058 + 1.20388i
0.425471 + 0.736937i
−0.613994 1.06347i
−1.08068 1.87179i
−1.91278 3.31303i
−2.21418 3.83507i
2.92009 5.05774i
2.41719 4.18670i
1.36382 2.36220i
0.695058 1.20388i
0.425471 0.736937i
−0.613994 + 1.06347i
−1.08068 + 1.87179i
−1.91278 + 3.31303i
−2.21418 + 3.83507i
−2.42009 + 4.19172i 3.09831 5.36643i −7.71365 13.3604i −15.2399 14.9964 + 25.9745i 2.15810 + 3.73794i 35.9495 −5.69903 9.87102i 36.8818 63.8811i
22.2 −1.91719 + 3.32067i 0.139581 0.241762i −3.35124 5.80452i −11.3710 0.535209 + 0.927008i 15.5311 + 26.9007i −4.97517 13.4610 + 23.3152i 21.8004 37.7594i
22.3 −0.863817 + 1.49617i −3.44796 + 5.97204i 2.50764 + 4.34336i −20.8281 −5.95681 10.3175i 3.78283 + 6.55206i −22.4856 −10.2768 17.8000i 17.9916 31.1624i
22.4 −0.195058 + 0.337850i −1.80483 + 3.12606i 3.92391 + 6.79640i 7.52136 −0.704093 1.21953i 9.77228 + 16.9261i −6.18247 6.98515 + 12.0986i −1.46710 + 2.54109i
22.5 0.0745292 0.129088i 3.24429 5.61927i 3.98889 + 6.90896i 10.2526 −0.483588 0.837600i −14.8372 25.6987i 2.38162 −7.55083 13.0784i 0.764114 1.32348i
22.6 1.11399 1.92949i 4.87434 8.44260i 1.51803 + 2.62931i 8.20685 −10.8600 18.8100i 4.17747 + 7.23560i 24.5882 −34.0183 58.9214i 9.14239 15.8351i
22.7 1.58068 2.73781i −3.54442 + 6.13911i −0.997073 1.72698i −13.6039 11.2051 + 19.4079i −7.16574 12.4114i 18.9866 −11.6258 20.1364i −21.5034 + 37.2450i
22.8 2.41278 4.17905i −2.22176 + 3.84820i −7.64299 13.2380i 12.7712 10.7212 + 18.5697i 13.0936 + 22.6787i −35.1589 3.62756 + 6.28312i 30.8140 53.3715i
22.9 2.71418 4.70109i −0.837548 + 1.45068i −10.7335 18.5910i −7.70909 4.54651 + 7.87478i −7.51249 13.0120i −73.1038 12.0970 + 20.9527i −20.9238 + 36.2412i
146.1 −2.42009 4.19172i 3.09831 + 5.36643i −7.71365 + 13.3604i −15.2399 14.9964 25.9745i 2.15810 3.73794i 35.9495 −5.69903 + 9.87102i 36.8818 + 63.8811i
146.2 −1.91719 3.32067i 0.139581 + 0.241762i −3.35124 + 5.80452i −11.3710 0.535209 0.927008i 15.5311 26.9007i −4.97517 13.4610 23.3152i 21.8004 + 37.7594i
146.3 −0.863817 1.49617i −3.44796 5.97204i 2.50764 4.34336i −20.8281 −5.95681 + 10.3175i 3.78283 6.55206i −22.4856 −10.2768 + 17.8000i 17.9916 + 31.1624i
146.4 −0.195058 0.337850i −1.80483 3.12606i 3.92391 6.79640i 7.52136 −0.704093 + 1.21953i 9.77228 16.9261i −6.18247 6.98515 12.0986i −1.46710 2.54109i
146.5 0.0745292 + 0.129088i 3.24429 + 5.61927i 3.98889 6.90896i 10.2526 −0.483588 + 0.837600i −14.8372 + 25.6987i 2.38162 −7.55083 + 13.0784i 0.764114 + 1.32348i
146.6 1.11399 + 1.92949i 4.87434 + 8.44260i 1.51803 2.62931i 8.20685 −10.8600 + 18.8100i 4.17747 7.23560i 24.5882 −34.0183 + 58.9214i 9.14239 + 15.8351i
146.7 1.58068 + 2.73781i −3.54442 6.13911i −0.997073 + 1.72698i −13.6039 11.2051 19.4079i −7.16574 + 12.4114i 18.9866 −11.6258 + 20.1364i −21.5034 37.2450i
146.8 2.41278 + 4.17905i −2.22176 3.84820i −7.64299 + 13.2380i 12.7712 10.7212 18.5697i 13.0936 22.6787i −35.1589 3.62756 6.28312i 30.8140 + 53.3715i
146.9 2.71418 + 4.70109i −0.837548 1.45068i −10.7335 + 18.5910i −7.70909 4.54651 7.87478i −7.51249 + 13.0120i −73.1038 12.0970 20.9527i −20.9238 36.2412i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 146.9
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 169.4.c.l 18
13.b even 2 1 169.4.c.k 18
13.c even 3 1 169.4.a.k 9
13.c even 3 1 inner 169.4.c.l 18
13.d odd 4 2 169.4.e.h 36
13.e even 6 1 169.4.a.l yes 9
13.e even 6 1 169.4.c.k 18
13.f odd 12 2 169.4.b.g 18
13.f odd 12 2 169.4.e.h 36
39.h odd 6 1 1521.4.a.bg 9
39.i odd 6 1 1521.4.a.bh 9
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
169.4.a.k 9 13.c even 3 1
169.4.a.l yes 9 13.e even 6 1
169.4.b.g 18 13.f odd 12 2
169.4.c.k 18 13.b even 2 1
169.4.c.k 18 13.e even 6 1
169.4.c.l 18 1.a even 1 1 trivial
169.4.c.l 18 13.c even 3 1 inner
169.4.e.h 36 13.d odd 4 2
169.4.e.h 36 13.f odd 12 2
1521.4.a.bg 9 39.h odd 6 1
1521.4.a.bh 9 39.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{18} - 5 T_{2}^{17} + 67 T_{2}^{16} - 200 T_{2}^{15} + 2303 T_{2}^{14} - 6060 T_{2}^{13} + 48373 T_{2}^{12} - 82227 T_{2}^{11} + 596508 T_{2}^{10} - 861638 T_{2}^{9} + 4613216 T_{2}^{8} - 2514618 T_{2}^{7} + \cdots + 118336 \) acting on \(S_{4}^{\mathrm{new}}(169, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{18} - 5 T^{17} + 67 T^{16} + \cdots + 118336 \) Copy content Toggle raw display
$3$ \( T^{18} + T^{17} + 155 T^{16} + \cdots + 20654576089 \) Copy content Toggle raw display
$5$ \( (T^{9} + 30 T^{8} - 266 T^{7} + \cdots + 3059376152)^{2} \) Copy content Toggle raw display
$7$ \( T^{18} - 38 T^{17} + \cdots + 76\!\cdots\!76 \) Copy content Toggle raw display
$11$ \( T^{18} - 181 T^{17} + \cdots + 76\!\cdots\!61 \) Copy content Toggle raw display
$13$ \( T^{18} \) Copy content Toggle raw display
$17$ \( T^{18} - 55 T^{17} + \cdots + 31\!\cdots\!49 \) Copy content Toggle raw display
$19$ \( T^{18} - 161 T^{17} + \cdots + 74\!\cdots\!61 \) Copy content Toggle raw display
$23$ \( T^{18} - 204 T^{17} + \cdots + 46\!\cdots\!64 \) Copy content Toggle raw display
$29$ \( T^{18} + 280 T^{17} + \cdots + 31\!\cdots\!16 \) Copy content Toggle raw display
$31$ \( (T^{9} + 706 T^{8} + \cdots - 30\!\cdots\!56)^{2} \) Copy content Toggle raw display
$37$ \( T^{18} - 298 T^{17} + \cdots + 96\!\cdots\!04 \) Copy content Toggle raw display
$41$ \( T^{18} - 1201 T^{17} + \cdots + 38\!\cdots\!09 \) Copy content Toggle raw display
$43$ \( T^{18} - 533 T^{17} + \cdots + 12\!\cdots\!29 \) Copy content Toggle raw display
$47$ \( (T^{9} + 956 T^{8} + \cdots + 11\!\cdots\!84)^{2} \) Copy content Toggle raw display
$53$ \( (T^{9} + 278 T^{8} + \cdots - 12\!\cdots\!76)^{2} \) Copy content Toggle raw display
$59$ \( T^{18} - 1377 T^{17} + \cdots + 75\!\cdots\!29 \) Copy content Toggle raw display
$61$ \( T^{18} - 136 T^{17} + \cdots + 75\!\cdots\!24 \) Copy content Toggle raw display
$67$ \( T^{18} + 931 T^{17} + \cdots + 10\!\cdots\!01 \) Copy content Toggle raw display
$71$ \( T^{18} - 2046 T^{17} + \cdots + 19\!\cdots\!84 \) Copy content Toggle raw display
$73$ \( (T^{9} - 45 T^{8} + \cdots - 31\!\cdots\!21)^{2} \) Copy content Toggle raw display
$79$ \( (T^{9} - 412 T^{8} + \cdots + 63\!\cdots\!88)^{2} \) Copy content Toggle raw display
$83$ \( (T^{9} + 3709 T^{8} + \cdots + 14\!\cdots\!61)^{2} \) Copy content Toggle raw display
$89$ \( T^{18} - 1663 T^{17} + \cdots + 19\!\cdots\!29 \) Copy content Toggle raw display
$97$ \( T^{18} + 1087 T^{17} + \cdots + 43\!\cdots\!21 \) Copy content Toggle raw display
show more
show less